Se numește ordinea minoră care determină rangul matricei. Calcularea rangului unei matrice folosind transformări elementare

Elementar Următoarele transformări de matrice se numesc:

1) permutarea oricăror două rânduri (sau coloane),

2) înmulțirea unui rând (sau coloană) cu un număr diferit de zero,

3) adăugarea la un rând (sau coloană) a unui alt rând (sau coloană), înmulțit cu un anumit număr.

Cele două matrici sunt numite echivalent, dacă una dintre ele este obținută de la cealaltă folosind o mulțime finită de transformări elementare.

Matricele echivalente nu sunt, în general, egale, dar rangurile lor sunt egale. Dacă matricele A și B sunt echivalente, atunci se scrie după cum urmează: A ~ B.

Canonic O matrice este o matrice în care la începutul diagonalei principale există mai multe pe rând (al căror număr poate fi zero), iar toate celelalte elemente sunt egale cu zero, de exemplu,

Cu ajutor transformări elementare rânduri și coloane, orice matrice poate fi redusă la canonică. Rangul matricei canonice egală cu numărul unități pe diagonala sa principală.

Exemplul 2 Aflați rangul unei matrice

A=

și să-l aducă la forma canonică.

Soluţie. Din a doua linie, scădeți prima și rearanjați aceste linii:

.

Acum din a doua și a treia linie o scădem pe prima, înmulțită cu 2, respectiv 5:

;

scădeți primul din a treia linie; obținem o matrice

B = ,

care este echivalentă cu matricea A, deoarece se obține din ea folosind o mulțime finită de transformări elementare. În mod evident, rangul matricei B este 2 și, prin urmare, r(A)=2. Matricea B poate fi ușor redusă la canonică. Scăzând prima coloană, înmulțită cu numere potrivite, din toate cele ulterioare, întoarcem la zero toate elementele primului rând, cu excepția primului, iar elementele rândurilor rămase nu se modifică. Apoi, scăzând a doua coloană, înmulțită cu numerele potrivite, din toate cele ulterioare, trecem la zero toate elementele din al doilea rând, cu excepția celui de-al doilea, și obținem matricea canonică:

.

Kronecker - teorema Capelli- criteriul de compatibilitate pentru un sistem liniar ecuații algebrice:

Pentru ca un sistem liniar să fie consistent, este necesar și suficient ca rangul matricei extinse a acestui sistem să fie egal cu rangul matricea sa principală.

Dovada (condiții de compatibilitate a sistemului)

Necesitate

Lăsa sistem comun Apoi, există numere astfel încât . Prin urmare, coloana este o combinație liniară a coloanelor matricei. Din faptul că rangul unei matrice nu se va schimba dacă un rând (coloană) este șters sau adăugat din sistemul rândurilor sale (coloanelor), care este o combinație liniară a altor rânduri (coloane), rezultă că .

Adecvarea

Lăsa . Să luăm unele minore de bază în matrice. Din moment ce, atunci va fi și baza minoră a matricei. Apoi, conform teoremei de bază minor, ultima coloană a matricei va fi o combinație liniară a coloanelor de bază, adică coloanele matricei. Prin urmare, coloana de termeni liberi ai sistemului este o combinație liniară a coloanelor matricei.

Consecințe

    Numărul de variabile principale sisteme egal cu rangul sistemului.

    Comun sistem va fi definit (soluția sa este unică) dacă rangul sistemului este egal cu numărul tuturor variabilelor sale.

Sistem omogen de ecuații

Oferi15 . 2 Sistem omogen de ecuații

este întotdeauna comună.

Dovada. Pentru acest sistem, mulțimea numerelor , , , este o soluție.

În această secțiune vom folosi notația matricială a sistemului: .

Oferi15 . 3 Suma soluțiilor unui sistem omogen de ecuații liniare este o soluție a acestui sistem. O soluție înmulțită cu un număr este, de asemenea, o soluție.

Dovada. Lăsați-le să servească drept soluții pentru sistem. Apoi și. Lăsa . Apoi

Din moment ce, atunci - soluția.

Fie un număr arbitrar, . Apoi

Din moment ce, atunci - soluția.

Consecinţă15 . 1 Dacă un sistem omogen ecuatii lineare are o soluție diferită de zero, apoi are infinit de soluții diferite.

Într-adevăr, înmulțind o soluție diferită de zero cu diverse numere, vom obține soluții diferite.

Definiție15 . 5 Vom spune că soluțiile forme de sisteme sistem fundamental de soluții, dacă coloane formează liniar sistem independentși orice soluție a sistemului este o combinație liniară a acestor coloane.

>>Rang matrice

Rangul matricei

Determinarea rangului unei matrice

Luați în considerare o matrice dreptunghiulară. Dacă în această matrice selectăm în mod arbitrar k linii şi k coloane, apoi elementele de la intersecția rândurilor și coloanelor selectate formează o matrice pătrată de ordinul k-lea. Determinantul acestei matrice se numește minor de ordinul k-lea matricea A. Evident, matricea A are minore de orice ordin de la 1 la cel mai mic dintre numerele m și n. Dintre toate minorele nenule ale matricei A, există cel puțin un minor a cărui ordine este cea mai mare. Se numește cel mai mare dintre ordinele minore diferite de zero ale unei matrice date rang matrici. Dacă rangul matricei A este r, aceasta înseamnă că matricea A are un minor de ordin diferit de zero r, dar fiecare minor de ordin mai mare decât r, egal cu zero. Rangul matricei A este notat cu r(A). Evident, relația este valabilă

Calcularea rangului unei matrice folosind minori

Rangul matricei se găsește fie prin metoda limitării minorilor, fie prin metoda transformărilor elementare. Când calculați rangul unei matrice folosind prima metodă, ar trebui să treceți de la minorii de ordin inferior la minorii de ordin superior. Dacă a fost deja găsit un D minor de ordinul k al matricei A, diferit de zero, atunci numai minorele de ordin (k+1) care mărginesc D minor necesită calcul, adică. conținându-l ca minor. Dacă toate sunt egale cu zero, atunci rangul matricei este egal cu k.

Exemplul 1.Găsiți rangul matricei folosind metoda limitării minorilor

.

Soluţie.Începem cu minorii de ordinul 1, adică. dintre elementele matricei A. Să alegem, de exemplu, un (element) minor M 1 = 1, situat în primul rând și prima coloană. Mărginind cu ajutorul celui de-al doilea rând și al treilea coloan, obținem un M 2 minor = diferit de zero. Ne întoarcem acum la minorii de ordinul 3 care se învecinează cu M2. Sunt doar două dintre ele (puteți adăuga o a doua sau a patra coloană). Să le calculăm: = 0. Astfel, toți minorii învecinați de ordinul al treilea s-au dovedit a fi egali cu zero. Rangul matricei A este doi.

Calcularea rangului unei matrice folosind transformări elementare

ElementarUrmătoarele transformări de matrice se numesc:

1) permutarea oricăror două rânduri (sau coloane),

2) înmulțirea unui rând (sau coloană) cu un număr diferit de zero,

3) adăugarea la un rând (sau coloană) a unui alt rând (sau coloană), înmulțit cu un anumit număr.

Cele două matrici sunt numite echivalent, dacă una dintre ele este obținută de la cealaltă folosind o mulțime finită de transformări elementare.

Matricele echivalente nu sunt, în general, egale, dar rangurile lor sunt egale. Dacă matricele A și B sunt echivalente, atunci se scrie după cum urmează: A~B.

CanonicO matrice este o matrice în care la începutul diagonalei principale există mai multe pe rând (al căror număr poate fi zero), iar toate celelalte elemente sunt egale cu zero, de exemplu,

.

Folosind transformări elementare de rânduri și coloane, orice matrice poate fi redusă la canonică. Rangul unei matrice canonice este egal cu numărul celor de pe diagonala sa principală.

Exemplul 2Aflați rangul unei matrice

A=

și să-l aducă la forma canonică.

Soluţie. Din a doua linie, scădeți prima și rearanjați aceste linii:

.

Acum din a doua și a treia linie o scădem pe prima, înmulțită cu 2, respectiv 5:

;

scădeți primul din a treia linie; obținem o matrice

B = ,

care este echivalentă cu matricea A, deoarece se obține din ea folosind o mulțime finită de transformări elementare. În mod evident, rangul matricei B este 2 și, prin urmare, r(A)=2. Matricea B poate fi ușor redusă la canonică. Scăzând prima coloană, înmulțită cu numere potrivite, din toate cele ulterioare, întoarcem la zero toate elementele primului rând, cu excepția primului, iar elementele rândurilor rămase nu se modifică. Apoi, scăzând a doua coloană, înmulțită cu numerele potrivite, din toate cele ulterioare, trecem la zero toate elementele din al doilea rând, cu excepția celui de-al doilea, și obținem matricea canonică:

.

Determinarea rangului unei matrice

Considerăm o matrice \(A\) de tip \((m,n)\). Fie, pentru certitudine, \(m \leq n\). Să luăm \(m\) rânduri și să alegem \(m\) coloane ale matricei \(A\), la intersecția acestor rânduri și coloane obținem o matrice pătrată de ordinul \(m\), al cărei determinant se numește comanda minora \(m\) matrice \(A\). Dacă acest minor este diferit de 0, se numește minor de bază iar ei spun că rangul matricei \(A\) este egal cu \(m\). Daca acest determinant este egal cu 0, atunci se aleg alte coloane \(m\), la intersectia lor exista elemente care formeaza un alt minor de ordin \(m\). Dacă minorul este 0, continuăm procedura. Dacă dintre toate posibilele minore de ordin \(m\) nu există zerouri, selectăm \(m-1\) rânduri și coloane din matricea \(A\), la intersecția lor o matrice pătrată de ordin \(m- 1\) apare, determinantul său se numește minor de ordinul \(m-1\) al matricei originale. Continuând procedura, căutăm un minor non-zero, trecând prin toți minorii posibili, coborându-le ordinea.

Definiție.

Se numește minorul diferit de zero al unei matrice date de ordinul cel mai înalt minor de bază din matricea originală, ordinea acesteia se numește rang matricele \(A\), rândurile și coloanele, la intersecția cărora există o bază minoră, se numesc rânduri și coloane de bază. Rangul unei matrice este notat cu \(rang(A)\).

Din aceasta definitie rezulta proprietăți simple rangul matricei: acesta este un număr întreg, iar rangul nu este matrice zero satisface inegalitățile: \(1 \leq rang(A) \leq \min(m,n)\).

Cum se va schimba rangul matricei dacă un rând este șters? Adăugați o linie?

Verifică răspunsul

1) Rangul poate scădea cu 1.

2) Rangul poate crește cu 1.

Dependența liniară și independența liniară a coloanelor matriceale

Fie \(A\) o matrice de tip \((m,n)\). Luați în considerare coloanele matricei \(A\) - acestea sunt coloane cu numere \(m\) fiecare. Să le notăm \(A_1,A_2,...,A_n\). Fie \(c_1,c_2,...,c_n\) niște numere.

Definiție.

Coloana \[ D=c_1A_1+c_2A_2+...+c_nA_n = \sum _(m=1)^nc_mA_m \] se numește o combinație liniară de coloane \(A_1,A_2,...,A_n\), numere \( c_1,c_2 ,...,c_n\) se numesc coeficienții acestei combinații liniare.

Definiție.

Fie date \(p\) coloane \(A_1, A_2, ..., A_p\). Dacă există numere \(c_1,c_2,...,c_p\) astfel încât

1. nu toate aceste numere sunt egale cu zero,

2. combinația liniară \(c_1A_1+c_2A_2+...+c_pA_p =\sum _(m=1)^pc_mA_m\) este egală cu coloana zero (adică o coloană ale cărei toate elementele sunt zero), atunci spunem că coloanele \( A_1, A_2, ..., A_p\) sunt dependente liniar. Dacă pentru acest set Nu există coloane cu astfel de numere \(c_1,c_2,...,c_n\), coloanele se numesc liniar independente.

Exemplu. Luați în considerare 2 coloane

\[ A_1=\left(\begin(array)(c) 1 \\ 0 \end(array) \right), A_2=\left(\begin(array)(c) 0 \\ 1 \end(array) \right), \] atunci pentru orice numere \(c_1,c_2\) avem: \[ c_1A_1+c_2A_2=c_1\left(\begin(array)(c) 1 \\ 0 \end(array) \right) + c_2\left(\begin(array)(c) 0 \\ 1 \end(array) \right)=\left(\begin(array)(c) c_1 \\ c_2 \end(array) \right). \]

Această combinație liniară este egală cu coloana zero dacă și numai dacă ambele numere \(c_1,c_2\) sunt egale cu zero. Astfel, aceste coloane sunt liniar independente.

Afirmație. Pentru ca coloanele să fie dependente liniar, este necesar și suficient ca unul dintre ele să fie o combinație liniară a celorlalte.

Fie coloanele \(A_1,A_2,...,A_m\) să fie dependente liniar, adică. pentru unele constante \(\lambda _1, \lambda _2,...,\lambda _m\), care nu sunt toate egale cu 0, este valabilă următoarele: \[ \sum _(k=1)^m\lambda _kA_k=0 \ ] (în partea dreaptă este coloana zero). Fie, de exemplu, \(\lambda _1 \neq 0\). Apoi \[ A_1=\sum _(k=2)^mc_kA_k, \quad c_k=-\lambda _k/\lambda _1, \quad \quad (15) \] i.e. prima coloană este o combinație liniară a celorlalte.

Teorema minoră a bazei

Teorema.

Pentru orice matrice diferită de zero \(A\) este adevărată următoarea:

1. Coloanele de bază sunt liniar independente.

2. Orice coloană matrice este o combinație liniară a coloanelor sale de bază.

(Același lucru este valabil și pentru șiruri).

Fie, pentru certitudine, \((m,n)\) tipul de matrice \(A\), \(rang(A)=r \leq n\) iar baza minoră este situată în primul \(r \) matrice de rânduri și coloane \(A\). Fie \(s\) orice număr între 1 și \(m\), \(k\) orice număr între 1 și \(n\). Să considerăm minor următorul tip: \[ D=\stânga| \begin(array)(ccccc) a_(11) & a_(12) & \ldots & a_(1r) & a_(1s) \\ a_(21) & a_(22) & \ldots & a_(2r) & a_(2s) \\ \dots &\ldots & \ldots & \ldots & \ldots \\ a_(r1) & a_(r2) & \ldots & a_(rr) & a_(rs) \\ a_(k1) & a_(k2) & \ldots & a_(kr) & a_(ks) \\ \end(array) \right| , \] adică Am atribuit \(s-\)-a coloană și \(k-\)-lea rând minorului de bază. Prin definiția rangului matricei, acest determinant este egal cu zero (dacă alegem \(s\leq r\) sau \(k \leq r\) , atunci în acest minor există 2 coloane identice sau 2 linii identice, dacă \(s>r\) și \(k>r\) - prin definiția rangului, un minor de mărime mai mare decât \(r\) devine zero). Să extindem acest determinant în ultima linie, obținem: \[ a_(k1)A_(k1)+a_(k2)A_(k2)+....+a_(kr)A_(kr)+a_(ks)A_(ks)=0. \quad \quad(16) \]

Aici numerele \(A_(kp)\) - adunări algebrice elementele din rândul de jos \(D\). Valorile lor nu depind de \(k\), deoarece sunt formate folosind elemente din primele \(r\) linii. În acest caz, valoarea \(A_(ks)\) este un minor de bază, diferit de 0. Să notăm \(A_(k1)=c_1,A_(k2)=c_2,...,A_(ks) =c_s \neq 0 \). Să rescriem (16) în notație nouă: \[ c_1a_(k1)+c_2a_(k2)+...+c_ra_(kr)+c_sa_(ks)=0, \] sau, împărțind la \(c_s\), \[ a_(ks)=\lambda_1a_(k1)+\lambda_2a_(k2)+...+\lambda_ra_(kr), \quad \lambda _p=-c_p/c_s. \] Această egalitate este valabilă pentru orice valoare a lui \(k\), deci \[ a_(1s)=\lambda_1a_(11)+\lambda_2a_(12)+...+\lambda_ra_(1r), \] \[ a_ (2s)=\lambda_1a_(21)+\lambda_2a_(22)+...+\lambda_ra_(2r), \] \[ ................... .. .................................... \] \[ a_(ms)=\lambda_1a_( m1) +\lambda_2a_(m2)+...+\lambda_ra_(mr). \] Deci, coloana \(s-\)-a este o combinație liniară a primelor coloane \(r\). Teorema a fost demonstrată.

Cometariu.

Din teorema minoră de bază rezultă că rangul unei matrice este egal cu numărul coloanelor sale liniar independente (care este egal cu numărul de rânduri liniar independente).

Corolarul 1.

Dacă determinantul este zero, atunci are o coloană care este o combinație liniară a celorlalte coloane.

Corolarul 2.

Dacă rangul unei matrice este mai mic decât numărul de coloane, atunci coloanele matricei sunt dependente liniar.

Calcularea rangului unei matrice și găsirea bazei minore

Unele transformări de matrice nu își schimbă rangul. Astfel de transformări pot fi numite elementare. Faptele corespunzătoare pot fi ușor verificate folosind proprietățile determinanților și determinând rangul unei matrice.

1. Rearanjarea coloanelor.

2. Înmulțirea elementelor oricărei coloane cu un factor diferit de zero.

3. Adăugarea oricărei alte coloane la o coloană, înmulțită cu un număr arbitrar.

4. Trimiterea coloanei zero.

Același lucru este valabil și pentru șiruri.

Folosind aceste transformări, matricea poate fi transformată în așa-numita formă „trapezoidală” - o matrice cu doar zerouri sub diagonala principală. Pentru o matrice „trapezoidală”, rangul este numărul de elemente nenule de pe diagonala principală, iar baza minoră este minora a cărei diagonală coincide cu mulțimea elementelor nenule de pe diagonala principală a matricei transformate.

Exemplu. Luați în considerare matricea

\[ A=\left(\begin(array)(cccc) 2 &1 & 11 & 2 \\ 1 & 0 & 4 & -1 \\ 11 & 4 & 56 & 5 \\ 2 & -1 & 5 & - 6 \end(matrice) \right). \] Îl vom transforma folosind transformările de mai sus. \[ A=\left(\begin(array)(cccc) 2 &1 & 11 & 2 \\ 1 & 0 & 4 & -1 \\ 11 & 4 & 56 & 5 \\ 2 & -1 & 5 & - 6 \end(array) \right) \mapsto \left(\begin(array)(cccc) 1 & 0 & 4 & -1 \\ 2 & 1 & 11 & 2 \\ 11 & 4 & 56 & 5 \\ 2 & -1 & 5 & -6 \end(array) \right) \mapsto \left(\begin(array)(cccc) 1 & 0 & 4 & -1 \\ 0 & 1 & 3 & 4 \\ 0 & 4 & 12 & 16 \\ 0 & -1 & -3 & -4 \end(array) \right) \mapsto \] \[ \left(\begin(array)(cccc) 1 & 0 & 4 & - 1 \\ 0 & 1 & 3 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end(array) \right)\mapsto \left(\begin(array)(cccc) 1 & 0 & 4 & -1 \\ 0 & 1 & 3 & 4 \end(array)\right). \]

Aici facem în mod constant pasii urmatori: 1) rearanjați a doua linie în sus, 2) scădeți prima linie din restul cu un factor adecvat, 3) scădeți a doua linie din a treia de 4 ori, adăugați a doua linie la a patra, 4) tăiați zero linii - a treia și a patra. Matricea noastră finală a căpătat forma dorită: există numere diferite de zero pe diagonala principală și zerouri sub diagonala principală. După aceasta, procedura se oprește și numărul de elemente nenule de pe diagonala principală este egal cu rangul matricei. Minor de bazăîn acest caz - primele două rânduri și primele două coloane. La intersecția lor există o matrice de ordinul 2 cu un determinant diferit de zero. În același timp, revenind de-a lungul lanțului de transformări la reversul, puteți urmări de unde provine acest sau acel rând (acesta sau acea coloană) în matricea finală, adică. determinați rândurile și coloanele de bază din matricea originală. ÎN în acest caz, primele două rânduri și primele două coloane formează baza minoră.

Vom lua în considerare și ceea ce este important aplicație practică Subiecte: studiul unui sistem de ecuații liniare pentru consistență.

Care este rangul unei matrice?

Epigraful plin de umor a articolului conține o cantitate mare de adevăr. De obicei, asociem cuvântul „rank” cu un fel de ierarhie, cel mai adesea cu o scară de carieră. Cu cât o persoană are mai multe cunoștințe, experiență, abilități, conexiuni etc. – cu cât este mai mare poziția și gama de oportunități. În termeni de tineret, rang înseamnă grad general"răcoare".

Iar frații noștri matematici trăiesc după aceleași principii. Să luăm câteva aleatorii la plimbare matrice zero:

Să ne gândim la asta, dacă în matrice toate zerourile, atunci despre ce rang putem vorbi? Toată lumea este familiarizată cu expresia informală „ zero complet" În societatea matricelor totul este exact la fel:

Rangul matricei zeroorice dimensiune este egală cu zero.

Notă : Matricea zero este desemnată cu litera greacă „theta”

Pentru a înțelege mai bine rangul matricei, în continuare voi folosi materiale pentru a ajuta geometrie analitică. Luați în considerare zero vector spațiul nostru tridimensional, care nu stabilește o direcție anume și este inutil pentru construcție bază afină. Din punct de vedere algebric, coordonatele acestui vector sunt scrise în matrice„unul câte trei” și logic (în sensul geometric indicat) să presupunem că rangul acestei matrice este zero.

Acum să ne uităm la câteva diferit de zero vectori coloanăȘi vectori rând:


Fiecare instanță are cel puțin un element diferit de zero și asta e ceva!

Rangul oricărui vector rând non-nul (vector coloană) egal cu unu

Și în general vorbind - dacă în matrice dimensiuni arbitrare există cel puțin un element diferit de zero, apoi rangul său nu mai puțin unitati.

Vectorii rând algebrici și vectorii coloană sunt într-o anumită măsură abstracti, așa că să revenim din nou la asocierea geometrică. Non-zero vector stabilește o direcție foarte definită în spațiu și este potrivit pentru construcție bază, prin urmare rangul matricei va fi considerat egal cu unu.

Informații teoretice : în algebra liniară, un vector este un element al unui spațiu vectorial (definit prin 8 axiome), care, în special, poate fi un rând (sau coloană) ordonat de numere reale cu operațiile de adunare și înmulțire cu definite pentru acestea. numar real. Cu mai mult informatii detaliate despre vectori puteți găsi în articol Transformări liniare.

dependent liniar(exprimate unul prin altul). Din punct de vedere geometric, a doua linie conține coordonatele vectorului coliniar , care nu a avansat deloc problema în clădire bază tridimensională, fiind în acest sens de prisos. Astfel, rangul acestei matrice este, de asemenea, egal cu unu.

Să rescriem coordonatele vectorilor în coloane ( transpune matricea):

Ce s-a schimbat în ceea ce privește rangul? Nimic. Coloanele sunt proporționale, ceea ce înseamnă că rangul este egal cu unu. Apropo, rețineți că toate cele trei linii sunt, de asemenea, proporționale. Ele pot fi identificate cu coordonatele Trei vectori coliniari ai planului, din care unul singur util pentru construirea unei baze „plate”. Și acest lucru este în întregime în concordanță cu simțul nostru geometric al rangului.

Din exemplul de mai sus rezultă o afirmație importantă:

Rangul matricei în rânduri este egal cu rangul matricei în coloane. Am menționat deja puțin acest lucru în lecția despre eficient metode de calcul a determinantului.

Notă : din dependența liniară a rândurilor rezultă dependență liniară coloane (și invers). Dar pentru a economisi timp și din obișnuință, aproape întotdeauna voi vorbi despre dependența liniară a șirurilor.

Să continuăm dresajul nostru iubit animal de companie. Să adăugăm coordonatele altui vector coliniar la matricea din al treilea rând :

Ne-a ajutat să construim o bază tridimensională? Desigur că nu. Toți cei trei vectori merg înainte și înapoi pe aceeași cale, iar rangul matricei este egal cu unul. Puteți lua oricât de mulți vectori coliniari doriți, să zicem 100, să le puneți coordonatele într-o matrice „o sută cu trei”, iar rangul unui astfel de zgârie-nori va rămâne unul.

Să ne familiarizăm cu matricea, ale cărei rânduri liniar independent. O pereche de vectori necoliniari este potrivită pentru construirea unei baze tridimensionale. Rangul acestei matrice este doi.

Care este rangul matricei? Liniile par să nu fie proporționale... deci, în teorie, sunt trei. Cu toate acestea, rangul acestei matrice este, de asemenea, doi. Am adăugat primele două rânduri și am scris rezultatul în partea de jos, adică. exprimată liniar a treia linie prin primele două. Geometric, rândurile matricei corespund coordonatele a trei vectori coplanari, iar printre acești trei sunt și o pereche de camarazi necoliniari.

După cum puteți vedea, dependență liniarăîn matricea considerată nu este evidentă, iar astăzi vom învăța cum să o scoatem la lumină.

Cred că mulți oameni pot ghici care este rangul unei matrice!

Luați în considerare o matrice ale cărei rânduri liniar independent. Se formează vectori bază afină, iar rangul acestei matrice este de trei.

După cum știți, orice al patrulea, al cincilea, al zecelea vector al spațiului tridimensional va fi exprimat liniar în termeni de vectori de bază. Prin urmare, dacă adăugați orice număr de rânduri la o matrice, atunci rangul acesteia va fi tot egal cu trei.

Raționament similar poate fi efectuat pentru matrice dimensiuni mai mari(desigur, fără nicio semnificație geometrică).

Definiție : rangul unei matrice este suma maxima rânduri liniar independente. Sau: Rangul unei matrice este numărul maxim de coloane liniar independente. Da, numărul lor este întotdeauna același.

Din cele de mai sus rezultă și un ghid practic important: rangul matricei nu depășește dimensiunea minimă a acesteia. De exemplu, în matrice patru rânduri și cinci coloane. Dimensiunea minimă este patru, prin urmare, rangul acestei matrice cu siguranță nu va depăși 4.

Denumiri: în teoria și practica lumii nu există un standard general acceptat pentru desemnarea rangului unei matrice; cel mai comun poate fi găsit: - după cum se spune, un englez scrie una, un german alta. Prin urmare, pe baza celebrei glume despre iadul american și rusesc, să notăm rangul matricei cu un cuvânt nativ. De exemplu: . Și dacă matricea este „nenumită”, dintre care sunt multe, atunci puteți scrie pur și simplu .

Cum să găsiți rangul unei matrice folosind minori?

Dacă bunica mea ar avea o a cincea coloană în matrice, atunci ar trebui să calculeze un alt minor de ordinul al 4-lea („albastru”, „zmeura” + coloana a 5-a).

Concluzie: comanda maxima minor non-zero este egal cu trei, ceea ce înseamnă .

Poate că nu toată lumea a înțeles pe deplin această frază: un minor de ordinul al 4-lea este egal cu zero, dar printre minorii de ordinul al 3-lea a existat unul diferit de zero - prin urmare, ordinul maxim diferit de zero minor și egal cu trei.

Apare întrebarea, de ce să nu calculăm imediat determinantul? Ei bine, în primul rând, în majoritatea sarcinilor matricea nu este pătrată și, în al doilea rând, chiar dacă obțineți o valoare diferită de zero, sarcina va fi cel mai probabil respinsă, deoarece de obicei implică soluție standard"jos sus". Și în exemplul luat în considerare, determinantul zero al ordinului al patrulea ne permite să afirmăm că rangul matricei este doar mai mic de patru.

Trebuie să recunosc, am venit cu problema pe care am analizat-o eu însumi pentru a explica mai bine metoda limitării minorilor. În practică, totul este mai simplu:

Exemplul 2

Găsiți rangul unei matrice utilizând metoda marginilor minore

Soluția și răspunsul sunt la sfârșitul lecției.

Când funcționează algoritmul cel mai rapid? Să revenim la aceeași matrice patru pe patru. . Evident, soluția va fi cea mai scurtă în cazul „bunului” minori de colt:

Și, dacă , atunci , altfel – .

Gândirea nu este deloc ipotetică - există multe exemple în care întreaga chestiune este limitată doar la minori unghiulari.

Cu toate acestea, în unele cazuri, o altă metodă este mai eficientă și de preferat:

Cum să găsiți rangul unei matrice folosind metoda Gaussiană?

Paragraful este destinat cititorilor care sunt deja familiarizați metoda gaussianași mai mult sau mai puțin au pus mâna pe ea.

Din punct de vedere tehnic, metoda nu este nouă:

1) folosind transformări elementare, reducem matricea la o formă în trepte;

2) rangul matricei este egal cu numărul de rânduri.

Este absolut clar că folosind metoda Gaussiană nu modifică rangul matricei, iar esența aici este extrem de simplă: conform algoritmului, în timpul transformărilor elementare, toate rândurile proporționale inutile (dependente liniar) sunt identificate și eliminate, rezultând un „reziduu uscat” - numărul maxim de rânduri liniar independente.

Să transformăm vechea matrice familiară cu coordonatele a trei vectori coliniari:

(1) Prima linie a fost adăugată la a doua linie, înmulțită cu –2. Prima linie a fost adăugată la a treia linie.

(2) Liniile zero sunt eliminate.

Astfel, a mai rămas o linie, deci . Inutil să spun că acest lucru este mult mai rapid decât calcularea a nouă zero minori de ordinul 2 și abia apoi tragerea unei concluzii.

Vă reamintesc că în sine matrice algebrică nimic nu poate fi schimbat, iar transformările sunt efectuate doar în scopul determinării rangului! Apropo, să ne oprim încă o dată la întrebarea, de ce nu? Matricea sursă transportă informații care sunt fundamental diferite de informațiile din matrice și rând. În unele modele matematice(fără exagerare) diferența dintr-un număr poate fi o chestiune de viață și de moarte. ...Mi-am amintit de profesori de matematică din clasele primare și gimnaziale care tăiau fără milă notele cu 1-2 puncte pentru cea mai mică inexactitate sau abatere de la algoritm. Și a fost teribil de dezamăgitor când, în loc de un „A” aparent garantat, a ieșit „bun” sau chiar mai rău. Înțelegerea a venit mult mai târziu - cum altfel să-i încredințezi unei persoane sateliți, focoase nucleare și centrale electrice? Dar nu vă faceți griji, nu lucrez în aceste domenii =)

Să trecem la sarcini mai semnificative, unde, printre altele, ne vom familiariza cu tehnici de calcul importante metoda Gauss:

Exemplul 3

Găsiți rangul unei matrice folosind transformări elementare

Soluţie: este dată o matrice „patru cu cinci”, ceea ce înseamnă că rangul său nu este cu siguranță mai mare de 4.

În prima coloană, nu există 1 sau -1, prin urmare, este necesar acțiuni suplimentare care vizează obţinerea a cel puţin o unitate. De-a lungul existenței site-ului, mi s-a pus în mod repetat întrebarea: „Este posibil să rearanjam coloanele în timpul transformărilor elementare?” Aici, am rearanjat prima și a doua coloană și totul este în regulă! În majoritatea sarcinilor în care este utilizat metoda gaussiana, coloanele pot fi într-adevăr rearanjate. DAR NU ESTE NEVOIE. Iar ideea nu este nici măcar în posibilă confuzie cu variabile, ideea este că în cursul clasic de matematică superioară această acțiune nu este considerată în mod tradițional, așa că o astfel de reverență va fi privită FOARTE strâmb (sau chiar forțată să refacă totul).

Al doilea punct se referă la numere. Pe măsură ce iei decizia, este util să folosești următoarea regulă generală: transformările elementare ar trebui, dacă este posibil, să reducă numerele matriceale. La urma urmei, este mult mai ușor să lucrezi cu unu, doi, trei decât, de exemplu, cu 23, 45 și 97. Și prima acțiune vizează nu numai obținerea unuia în prima coloană, ci și eliminarea numerelor. 7 și 11.

La început solutie completa, apoi comenteaza:

(1) Prima linie a fost adăugată la a doua linie, înmulțită cu –2. Prima linie a fost adăugată la a treia linie, înmulțită cu –3. Și la grămadă: prima linie a fost adăugată la a patra linie, înmulțită cu –1.

(2) Ultimele trei rânduri sunt proporționale. Linia a 3-a și a 4-a au fost eliminate, a doua linie a fost mutată pe primul loc.

(3) Prima linie a fost adăugată la a doua linie, înmulțită cu –3.

Matricea redusă la formă eșalonată are două rânduri.

Răspuns:

Acum este rândul tău să torturezi matricea de patru câte patru:

Exemplul 4

Găsiți rangul unei matrice folosind metoda Gaussiană

iti amintesc ca metoda gaussiana nu implică o rigiditate clară, iar decizia dvs. va diferi cel mai probabil de decizia mea. Un scurt exemplu de sarcină la sfârșitul lecției.

Ce metodă ar trebui să folosesc pentru a găsi rangul unei matrice?

În practică, adesea nu se precizează deloc ce metodă ar trebui folosită pentru a găsi rangul. Într-o astfel de situație, condiția ar trebui analizată - pentru unele matrice este mai rațional să se rezolve prin minori, în timp ce pentru altele este mult mai profitabil să se aplice transformări elementare:

Exemplul 5

Aflați rangul unei matrice

Soluţie: prima metoda dispare cumva imediat =)

Puțin mai sus, am sfătuit să nu ating coloanele matricei, dar când există o coloană zero, sau coloane proporționale/coincidente, atunci tot merită amputat:

(1) A cincea coloană este zero, eliminați-o din matrice. Astfel, rangul matricei nu este mai mare de patru. Prima linie a fost înmulțită cu –1. Aceasta este o altă caracteristică caracteristică a metodei Gauss, care transformă următoarea acțiune într-o plimbare plăcută:

(2) La toate liniile, începând de la a doua, s-a adăugat primul rând.

(3) Prima linie a fost înmulțită cu –1, a treia linie a fost împărțită cu 2, a patra linie a fost împărțită cu 3. A doua linie a fost adăugată la a cincea linie, înmulțită cu –1.

(4) A treia linie a fost adăugată la a cincea linie, înmulțită cu –2.

(5) Ultimele două rânduri sunt proporționale, al cincilea se elimină.

Rezultatul sunt 4 rânduri.

Răspuns:

Clădire standard cu cinci etaje pentru studiu independent:

Exemplul 6

Aflați rangul unei matrice

Soluție rapidăși răspunsul la sfârșitul lecției.

Trebuie remarcat faptul că expresia „rangul matricei” nu este văzută atât de des în practică și, în majoritatea problemelor, puteți face fără ea cu totul. Dar există o sarcină în care conceptul în cauză este personajul principal și vom încheia articolul cu această aplicație practică:

Cum se studiază un sistem de ecuații liniare pentru consistență?

Adesea, pe lângă soluție sisteme de ecuații liniare conform condiției, se cere mai întâi să o examinăm pentru compatibilitate, adică să se dovedească că există vreo soluție. Rol cheie joacă într-un astfel de test Teorema Kronecker-Capelli, pe care o voi formula în formularul solicitat:

Dacă rang matrice de sistem egal cu rangul sistem de matrice extinsă, atunci sistemul este consistent, iar dacă număr dat coincide cu numărul de necunoscute, atunci soluția este unică.

Astfel, pentru a studia sistemul pentru compatibilitate este necesar să se verifice egalitatea , Unde - matricea sistemului(amintiți-vă terminologia din lecție metoda Gauss), A - matrice de sistem extinsă(adică o matrice cu coeficienți de variabile + o coloană de termeni liberi).


Rangul unei matrice este o caracteristică numerică importantă. Cea mai tipică problemă care necesită găsirea rangului unei matrice este verificarea consistenței unui sistem de ecuații algebrice liniare. În acest articol vom oferi conceptul de rang de matrice și vom lua în considerare metodele pentru a-l găsi. Pentru a înțelege mai bine materialul, vom analiza în detaliu soluțiile la mai multe exemple.

Navigare în pagină.

Determinarea rangului unei matrice și concepte suplimentare necesare.

Înainte de a exprima definiția rangului unei matrice, ar trebui să aveți o bună înțelegere a conceptului de minor, iar găsirea minorilor unei matrice implică capacitatea de a calcula determinantul. Deci, dacă este necesar, vă recomandăm să vă amintiți teoria articolului, metodele de găsire a determinantului unei matrice și proprietățile determinantului.

Să luăm o matrice A de ordin. Lasă k să fie niște numar natural, care nu depășește cel mai mic dintre numerele m și n, adică .

Definiție.

Ordine K-a minoră matricea A se numește determinant matrice pătrată ordine, compusă din elemente ale matricei A, care sunt situate în k rânduri și k coloane preselectate, iar locația elementelor matricei A se păstrează.

Cu alte cuvinte, dacă în matricea A ștergem (p–k) rânduri și (n–k) coloane, iar din elementele rămase creăm o matrice, păstrând aranjarea elementelor matricei A, atunci determinantul de matricea rezultată este un minor de ordinul k al matricei A.

Să ne uităm la definiția unei matrice minore folosind un exemplu.

Luați în considerare matricea .

Să notăm câteva minore de ordinul întâi ale acestei matrice. De exemplu, dacă alegem al treilea rând și a doua coloană a matricei A, atunci alegerea noastră corespunde unui minor de ordinul întâi. . Cu alte cuvinte, pentru a obține acest minor, am tăiat primul și al doilea rând, precum și prima, a treia și a patra coloană din matricea A și am format un determinant din elementul rămas. Dacă alegem primul rând și a treia coloană a matricei A, atunci obținem un minor .

Să ilustrăm procedura de obținere a minorilor considerați de ordinul I
Și .

Astfel, minorii de ordinul întâi ale unei matrice sunt elementele matricei în sine.

Să arătăm câțiva minori de ordinul doi. Selectați două rânduri și două coloane. De exemplu, luați primul și al doilea rând și a treia și a patra coloană. Cu această alegere avem un minor de ordinul doi . Acest minor ar putea fi compus și prin ștergerea celui de-al treilea rând, prima și a doua coloană din matricea A.

Un alt minor de ordinul doi al matricei A este .

Să ilustrăm construcția acestor minori de ordinul doi
Și .

În mod similar, pot fi găsiți minori de ordinul trei ai matricei A. Deoarece există doar trei rânduri în matricea A, le selectăm pe toate. Dacă selectăm primele trei coloane ale acestor rânduri, obținem un minor de ordinul trei

De asemenea, poate fi construit prin tăierea ultimei coloane a matricei A.

Un alt minor de ordinul trei este

obţinut prin ştergerea celei de-a treia coloane a matricei A.

Iată o imagine care arată construcția acestor minori de ordinul trei
Și .

Pentru o matrice dată A nu există minore de ordin mai mari de treime, deoarece .

Câte minore de ordinul k sunt ale unei matrice A de ordin?

Numărul de minori de ordinul k poate fi calculat ca , unde Și - numărul de combinații de la p la k și respectiv de la n la k.

Cum putem construi toate minorele de ordinul k ale matricei A de ordinul p prin n?

Vom avea nevoie de multe numere de rând matrice și de multe numere de coloane. Scriem totul combinații de p elemente prin k(vor corespunde rândurilor selectate ale matricei A când se construiește un minor de ordinul k). La fiecare combinație de numere de rând adăugăm succesiv toate combinațiile de n elemente ale k numere de coloană. Aceste seturi de combinații de numere de rând și numere de coloane ale matricei A vor ajuta la alcătuirea tuturor minorilor de ordinul k.

Să ne uităm la asta cu un exemplu.

Exemplu.

Găsiți toate minorii de ordinul doi ale matricei.

Soluţie.

Deoarece ordinea matricei originale este 3 cu 3, totalul minorilor de ordinul doi va fi .

Să notăm toate combinațiile de 3 până la 2 numere de rând ale matricei A: 1, 2; 1, 3 și 2, 3. Toate combinațiile de 3 până la 2 numere de coloane sunt 1, 2; 1, 3 și 2, 3.

Să luăm primul și al doilea rând al matricei A. Selectând prima și a doua coloană, prima și a treia coloană, a doua și a treia coloană pentru aceste rânduri, obținem minorele, respectiv

Pentru primul și al treilea rând, cu o alegere similară de coloane, avem

Rămâne să adăugați prima și a doua, prima și a treia, a doua și a treia coloană la al doilea și al treilea rând:

Deci, toți cei nouă minori de ordinul doi din matricea A au fost găsiți.

Acum putem trece la determinarea rangului matricei.

Definiție.

Rangul matricei- Acest ordinul cel mai înalt matrice minoră, diferită de zero.

Rangul matricei A este notat cu Rank(A) . De asemenea, puteți găsi denumirile Rg(A) sau Rang(A) .

Din definițiile rangului matricei și ale matricei minore, putem concluziona că rangul unei matrice zero este egal cu zero, iar rangul unei matrice nenule nu este mai mic de unu.

Găsirea rangului unei matrice prin definiție.

Deci, prima metodă pentru găsirea rangului unei matrice este metoda de enumerare a minorilor. Această metodă se bazează pe determinarea rangului matricei.

Trebuie să găsim rangul unei matrice A de ordin.

Să descriem pe scurt algoritm rezolvarea acestei probleme prin enumerarea minorilor.

Dacă există cel puțin un element al matricei care este diferit de zero, atunci rangul matricei este cel puțin egal cu unu (deoarece există un minor de ordinul întâi care nu este egal cu zero).

În continuare, ne uităm la minorii de ordinul doi. Dacă toți minorii de ordinul doi sunt egali cu zero, atunci rangul matricei este egal cu unu. Dacă există cel puțin un minor diferit de zero de ordinul doi, atunci trecem la enumerarea minorilor de ordinul al treilea, iar rangul matricei este cel puțin egal cu doi.

În mod similar, dacă toți minorii de ordinul trei sunt zero, atunci rangul matricei este doi. Dacă există cel puțin un minor de ordinul al treilea, altul decât zero, atunci rangul matricei este de cel puțin trei și trecem la enumerarea minorilor de ordinul al patrulea.

Rețineți că rangul matricei nu poate depăși cel mai mic dintre numerele p și n.

Exemplu.

Aflați rangul matricei .

Soluţie.

Deoarece matricea este diferită de zero, rangul său nu este mai mic de unu.

Minor de ordinul doi este diferit de zero, prin urmare, rangul matricei A este de cel puțin doi. Trecem la enumerarea minorilor de ordinul trei. Total dintre ele lucruri.




Toți minorii de ordinul trei sunt egali cu zero. Prin urmare, rangul matricei este doi.

Răspuns:

Rang(A) = 2 .

Găsirea rangului unei matrice folosind metoda limitării minorilor.

Există și alte metode de găsire a rangului unei matrice care vă permit să obțineți rezultatul cu mai puțină muncă de calcul.

O astfel de metodă este metoda marginii minore.

Să ne ocupăm de conceptul de margine minoră.

Se spune că un M ok minor de ordinul (k+1) al matricei A mărginește un M minor de ordinul k al matricei A dacă matricea corespunzătoare minorului M ok „conține” matricea corespunzătoare minorului. M .

Cu alte cuvinte, matricea corespunzătoare minorului marginal M se obține din matricea corespunzătoare minorului marginal M ok prin ștergerea elementelor unui rând și unei coloane.

De exemplu, luați în considerare matricea și ia un minor de ordinul al doilea. Să notăm toți minorii de la graniță:

Metoda limitării minorilor este justificată de următoarea teoremă (prezentăm formularea ei fără dovezi).

Teorema.

Dacă toate minorele care mărginesc minorul de ordin k al unei matrice A de ordin p cu n sunt egale cu zero, atunci toate minorele de ordin (k+1) ale matricei A sunt egale cu zero.

Astfel, pentru a afla rangul unei matrice nu este necesar să parcurgeți toți minorii suficient de învecinați. Numărul de minore care mărginesc minorul de ordinul k al unei matrice A de ordin , se află prin formula . Rețineți că nu există mai multe minore care mărginesc minorul de ordin k al matricei A decât există (k + 1) minore ale matricei A. Prin urmare, în majoritatea cazurilor, folosirea metodei limitării minorilor este mai profitabilă decât simpla enumerare a tuturor minorilor.

Să trecem la găsirea rangului matricei folosind metoda limitării minorilor. Să descriem pe scurt algoritm aceasta metoda.

Dacă matricea A este diferită de zero, atunci ca minor de ordinul întâi luăm orice element al matricei A care este diferit de zero. Să ne uităm la minorii săi învecinați. Dacă toate sunt egale cu zero, atunci rangul matricei este egal cu unu. Dacă există cel puțin un minor învecinat diferit de zero (ordinea acestuia este de doi), atunci trecem să luăm în considerare minorii săi învecinați. Dacă toate sunt zero, atunci Rank(A) = 2. Dacă cel puțin un minor învecinat este diferit de zero (ordinea sa este de trei), atunci luăm în considerare minorii săi învecinați. Și așa mai departe. Ca rezultat, Rank(A) = k dacă toți minorii marginali de ordinul (k + 1) al matricei A sunt egali cu zero, sau Rank(A) = min(p, n) dacă există un non- zero minor mărginind un minor de ordin (min( p, n) – 1) .

Să ne uităm la metoda de margine a minorilor pentru a găsi rangul unei matrice folosind un exemplu.

Exemplu.

Aflați rangul matricei prin metoda limitării minorilor.

Soluţie.

Deoarece elementul a 1 1 al matricei A este diferit de zero, îl considerăm minor de ordinul întâi. Să începem să căutăm un minor învecinat care este diferit de zero:

Se găsește o muchie minoră de ordinul doi, diferită de zero. Să ne uităm la minorii săi învecinați (lor lucruri):

Toți minorii care se învecinează cu minorul de ordinul doi sunt egali cu zero, prin urmare, rangul matricei A este egal cu doi.

Răspuns:

Rang(A) = 2 .

Exemplu.

Aflați rangul matricei folosind minori învecinați.

Soluţie.

Ca minor non-zero de ordinul întâi, luăm elementul a 1 1 = 1 al matricei A. Minorul din jur de ordinul doi nu este egal cu zero. Acest minor este mărginit de un minor de ordinul trei
. Deoarece nu este egal cu zero și nu există un singur minor de margine pentru acesta, rangul matricei A este egal cu trei.

Răspuns:

Rang(A) = 3 .

Găsirea rangului folosind transformări matriceale elementare (metoda Gauss).

Să luăm în considerare o altă modalitate de a găsi rangul unei matrice.

Următoarele transformări matriceale sunt numite elementare:

  • rearanjarea rândurilor (sau coloanelor) ale unei matrice;
  • înmulțirea tuturor elementelor oricărui rând (coloană) a unei matrice cu un număr arbitrar k, diferit de zero;
  • adunând la elementele unui rând (coloană) elementele corespunzătoare unui alt rând (coloană) a matricei, înmulțite cu un număr arbitrar k.

Matricea B se numește echivalentă cu matricea A, dacă B se obține din A folosind un număr finit de transformări elementare. Echivalența matricelor se notează prin simbolul „~”, adică scris A ~ B.

Găsirea rangului unei matrice folosind transformări elementare de matrice se bazează pe afirmația: dacă matricea B este obținută din matricea A folosind un număr finit de transformări elementare, atunci Rank(A) = Rank(B) .

Valabilitatea acestei afirmații rezultă din proprietățile determinantului matricei:

  • Când rearanjați rândurile (sau coloanele) unei matrice, determinantul acesteia își schimbă semnul. Dacă este egal cu zero, atunci când rândurile (coloanele) sunt rearanjate, rămâne egal cu zero.
  • Când înmulțiți toate elementele oricărui rând (coloană) a unei matrice cu un număr arbitrar k, altul decât zero, determinantul matricei rezultate este egal cu determinantul matricei originale înmulțit cu k. Dacă determinantul matricei inițiale este egal cu zero, atunci după înmulțirea tuturor elementelor oricărei rânduri sau coloane cu numărul k, determinantul matricei rezultate va fi, de asemenea, egal cu zero.
  • Adăugarea elementelor unui anumit rând (coloană) a unei matrice a elementelor corespunzătoare dintr-un alt rând (coloană) a matricei, înmulțite cu un anumit număr k, nu modifică determinantul acestuia.

Esența metodei transformărilor elementare constă în reducerea matricei al cărei rang trebuie să-l găsim la una trapezoidală (într-un caz particular, la una triunghiulară superioară) folosind transformări elementare.

De ce se face asta? Rangul matricelor de acest tip este foarte ușor de găsit. Este egal cu numărul de linii care conțin cel puțin un element diferit de zero. Și, deoarece rangul matricei nu se schimbă atunci când se efectuează transformări elementare, valoarea rezultată va fi rangul matricei originale.

Oferim ilustrații ale matricelor, dintre care una ar trebui obținută după transformări. Aspectul lor depinde de ordinea matricei.


Aceste ilustrații sunt șabloane în care vom transforma matricea A.

Să descriem algoritmul metodei.

Trebuie să găsim rangul unei matrice A non-nule de ordin (p poate fi egal cu n).

Asa de, . Să înmulțim toate elementele primului rând al matricei A cu . În acest caz, obținem o matrice echivalentă, notând-o A (1):

La elementele celui de-al doilea rând din matricea rezultată A (1) adăugăm elementele corespunzătoare din primul rând, înmulțite cu . La elementele din a treia linie adăugăm elementele corespunzătoare din prima linie, înmulțite cu . Și așa mai departe până la linia p-a. Să obținem o matrice echivalentă, notăm-o A (2):

Dacă toate elementele matricei rezultate situate în rânduri de la a doua la p-a sunt egale cu zero, atunci rangul acestei matrice este egal cu unu și, în consecință, rangul matricei originale este egal catre unul.

Dacă în liniile de la a doua la p-a există cel puțin un element diferit de zero, atunci continuăm să efectuăm transformări. Mai mult, acționăm exact în același mod, dar numai cu partea din matricea A (2) marcată în figură.

Dacă , atunci rearanjam rândurile și (sau) coloanele matricei A (2) astfel încât elementul „nou” să devină diferit de zero.