Găsirea rangului unei matrice folosind metoda Gaussiană. Rangul matricei. Transformări elementare ale rândurilor matriceale

Un număr r se numește rangul matricei A dacă:
1) în matricea A există un minor de ordinul r, diferit de zero;
2) toți minorii de ordin (r+1) și mai mari, dacă există, sunt egali cu zero.
În caz contrar, rangul unei matrice este cel mai mare ordin minor, altul decât zero.
Denumiri: rangA, r A sau r.
Din definiție rezultă că r este un număr întreg pozitiv. Pentru o matrice nulă, rangul este considerat zero.

Scopul serviciului. Calculatorul online este conceput pentru a găsi rangul matricei. În acest caz, soluția este salvată în format Word și Excel. vezi exemplu de solutie.

Instrucțiuni. Selectați dimensiunea matricei, faceți clic pe Următorul.

Selectați dimensiunea matricei 3 4 5 6 7 x 3 4 5 6 7

Definiție . Fie dată o matrice de rang r. Orice minor al unei matrice care este diferit de zero și are ordinul r se numește de bază, iar rândurile și coloanele componentelor sale sunt numite rânduri și coloane de bază.
Conform acestei definiții, o matrice A poate avea mai multe minore de bază.

Rangul matricei de identitate E este n (numărul de rânduri).

Exemplul 1. Având în vedere două matrice, și minorii lor , . Care dintre ele poate fi considerată cea de bază?
Soluţie. Minor M 1 =0, deci nu poate fi o bază pentru niciuna dintre matrice. Minor M 2 =-9≠0 și are ordinul 2, ceea ce înseamnă că poate fi luat ca bază a matricelor A sau / și B, cu condiția ca acestea să aibă ranguri egale cu 2. Deoarece detB=0 (ca determinant cu două coloane proporționale), atunci rangB=2 și M 2 pot fi luate ca bază minoră a matricei B. Rangul matricei A este 3, datorită faptului că detA=-27≠ 0 și, prin urmare, ordinea bazei minore a acestei matrice trebuie să fie egală cu 3, adică M 2 nu este o bază pentru matricea A. Rețineți că matricea A are o singură bază minoră, egală cu determinantul matricei A.

Teoremă (despre baza minoră). Orice rând (coloană) al unei matrice este o combinație liniară a rândurilor (coloanelor) de bază.
Corolare din teoremă.

  1. Fiecare matrice (r+1) coloană (rând) de rang r este dependentă liniar.
  2. Dacă rangul unei matrice este mai mic decât numărul rândurilor (coloanelor) sale, atunci rândurile (coloanelor) sale sunt dependente liniar. Dacă rangA este egal cu numărul de rânduri (coloane) sale, atunci rândurile (coloanele) sunt liniar independente.
  3. Determinantul unei matrice A este egal cu zero dacă și numai dacă rândurile (coloanele) ale acesteia sunt dependente liniar.
  4. Dacă adăugați un alt rând (coloană) la un rând (coloană) al unei matrice, înmulțit cu orice număr, altul decât zero, atunci rangul matricei nu se va schimba.
  5. Dacă tăiați un rând (coloană) dintr-o matrice, care este o combinație liniară a altor rânduri (coloane), atunci rangul matricei nu se va schimba.
  6. Rangul unei matrice este egal cu numărul maxim de rânduri (coloane) liniar independente ale acesteia.
  7. Numărul maxim de rânduri liniar independente este același cu numărul maxim de coloane liniar independente.

Exemplul 2. Aflați rangul unei matrice .
Soluţie. Pe baza definiției rangului matricei, vom căuta un minor de ordinul cel mai înalt, diferit de zero. Mai întâi, să transformăm matricea într-o formă mai simplă. Pentru a face acest lucru, înmulțiți primul rând al matricei cu (-2) și adăugați-l la al doilea, apoi înmulțiți-l cu (-1) și adăugați-l la al treilea.

Determinarea rangului unei matrice

Considerăm o matrice \(A\) de tip \((m,n)\). Fie, pentru certitudine, \(m \leq n\). Să luăm \(m\) rânduri și să alegem \(m\) coloane ale matricei \(A\), la intersecția acestor rânduri și coloane obținem o matrice pătrată de ordinul \(m\), al cărei determinant se numește comanda minora \(m\) matrice \(A\). Dacă acest minor este diferit de 0, se numește minor de bază iar ei spun că rangul matricei \(A\) este egal cu \(m\). Daca acest determinant este egal cu 0, atunci se aleg alte coloane \(m\), la intersectia lor exista elemente care formeaza un alt minor de ordin \(m\). Dacă minorul este 0, continuăm procedura. Dacă dintre toate posibilele minore de ordin \(m\) nu există zerouri, selectăm \(m-1\) rânduri și coloane din matricea \(A\), la intersecția lor o matrice pătrată de ordin \(m- 1\) apare, determinantul său se numește minor de ordinul \(m-1\) al matricei originale. Continuând procedura, căutăm un minor non-zero, trecând prin toți minorii posibili, coborându-le ordinea.

Definiție.

Se numește minorul diferit de zero al unei matrice date de ordinul cel mai înalt minor de bază din matricea originală, ordinea acesteia se numește rang matricele \(A\), rândurile și coloanele, la intersecția cărora există o bază minoră, se numesc rânduri și coloane de bază. Rangul unei matrice este notat cu \(rang(A)\).

Din această definiție rezultă proprietăți simple ale rangului unei matrice: este un număr întreg, iar rangul unei matrice non-nule satisface inegalitățile: \(1 \leq rank(A) \leq \min(m,n)\ ).

Cum se va schimba rangul matricei dacă un rând este șters? Adăugați o linie?

Verifică răspunsul

1) Rangul poate scădea cu 1.

2) Rangul poate crește cu 1.

Dependența liniară și independența liniară a coloanelor matriceale

Fie \(A\) o matrice de tip \((m,n)\). Luați în considerare coloanele matricei \(A\) - acestea sunt coloane cu numere \(m\) fiecare. Să le notăm \(A_1,A_2,...,A_n\). Fie \(c_1,c_2,...,c_n\) niște numere.

Definiție.

Coloana \[ D=c_1A_1+c_2A_2+...+c_nA_n = \sum _(m=1)^nc_mA_m \] se numește o combinație liniară de coloane \(A_1,A_2,...,A_n\), numere \( c_1,c_2 ,...,c_n\) se numesc coeficienții acestei combinații liniare.

Definiție.

Fie date \(p\) coloane \(A_1, A_2, ..., A_p\). Dacă există numere \(c_1,c_2,...,c_p\) astfel încât

1. nu toate aceste numere sunt egale cu zero,

2. combinația liniară \(c_1A_1+c_2A_2+...+c_pA_p =\sum _(m=1)^pc_mA_m\) este egală cu coloana zero (adică o coloană ale cărei toate elementele sunt zero), atunci spunem că coloanele \( A_1, A_2, ..., A_p\) sunt dependente liniar. Dacă pentru un anumit set de coloane astfel de numere \(c_1,c_2,...,c_n\) nu există, coloanele se numesc liniar independente.

Exemplu. Luați în considerare 2 coloane

\[ A_1=\left(\begin(array)(c) 1 \\ 0 \end(array) \right), A_2=\left(\begin(array)(c) 0 \\ 1 \end(array) \right), \] atunci pentru orice numere \(c_1,c_2\) avem: \[ c_1A_1+c_2A_2=c_1\left(\begin(array)(c) 1 \\ 0 \end(array) \right) + c_2\left(\begin(array)(c) 0 \\ 1 \end(array) \right)=\left(\begin(array)(c) c_1 \\ c_2 \end(array) \right). \]

Această combinație liniară este egală cu coloana zero dacă și numai dacă ambele numere \(c_1,c_2\) sunt egale cu zero. Astfel, aceste coloane sunt liniar independente.

Afirmație. Pentru ca coloanele să fie dependente liniar, este necesar și suficient ca unul dintre ele să fie o combinație liniară a celorlalte.

Fie coloanele \(A_1,A_2,...,A_m\) să fie dependente liniar, adică. pentru unele constante \(\lambda _1, \lambda _2,...,\lambda _m\), care nu sunt toate egale cu 0, este valabilă următoarele: \[ \sum _(k=1)^m\lambda _kA_k=0 \ ] (în partea dreaptă este coloana zero). Fie, de exemplu, \(\lambda _1 \neq 0\). Apoi \[ A_1=\sum _(k=2)^mc_kA_k, \quad c_k=-\lambda _k/\lambda _1, \quad \quad (15) \] i.e. prima coloană este o combinație liniară a celorlalte.

Teorema minoră a bazei

Teorema.

Pentru orice matrice diferită de zero \(A\) este adevărată următoarea:

1. Coloanele de bază sunt liniar independente.

2. Orice coloană matrice este o combinație liniară a coloanelor sale de bază.

(Același lucru este valabil și pentru șiruri).

Fie, pentru certitudine, \((m,n)\) tipul de matrice \(A\), \(rang(A)=r \leq n\) iar baza minoră este situată în primul \(r \) matrice de rânduri și coloane \(A\). Fie \(s\) orice număr între 1 și \(m\), \(k\) orice număr între 1 și \(n\). Luați în considerare un minor de următoarea formă: \[ D=\left| \begin(array)(ccccc) a_(11) & a_(12) & \ldots & a_(1r) & a_(1s) \\ a_(21) & a_(22) & \ldots & a_(2r) & a_(2s) \\ \dots &\ldots & \ldots & \ldots & \ldots \\ a_(r1) & a_(r2) & \ldots & a_(rr) & a_(rs) \\ a_(k1) & a_(k2) & \ldots & a_(kr) & a_(ks) \\ \end(array) \right| , \] adică Am atribuit \(s-\)-a coloană și \(k-\)-lea rând minorului de bază. Prin definiția rangului unei matrice, acest determinant este egal cu zero (dacă alegem \(s\leq r\) sau \(k \leq r\), atunci acest minor are 2 coloane identice sau 2 rânduri identice, dacă \(s>r\) și \(k>r\) - prin definiția rangului, un minor de mărime mai mare decât \(r\) devine zero). Să extindem acest determinant de-a lungul ultimei linii, obținem: \[ a_(k1)A_(k1)+a_(k2)A_(k2)+....+a_(kr)A_(kr)+a_(ks) A_(ks)=0. \quad \quad(16) \]

Aici numerele \(A_(kp)\) sunt complementele algebrice ale elementelor din rândul de jos \(D\). Valorile lor nu depind de \(k\), deoarece sunt formate folosind elemente din primele \(r\) linii. În acest caz, valoarea \(A_(ks)\) este un minor de bază, diferit de 0. Să notăm \(A_(k1)=c_1,A_(k2)=c_2,...,A_(ks) =c_s \neq 0 \). Să rescriem (16) în notație nouă: \[ c_1a_(k1)+c_2a_(k2)+...+c_ra_(kr)+c_sa_(ks)=0, \] sau, împărțind la \(c_s\), \[ a_(ks)=\lambda_1a_(k1)+\lambda_2a_(k2)+...+\lambda_ra_(kr), \quad \lambda _p=-c_p/c_s. \] Această egalitate este valabilă pentru orice valoare a lui \(k\), deci \[ a_(1s)=\lambda_1a_(11)+\lambda_2a_(12)+...+\lambda_ra_(1r), \] \[ a_ (2s)=\lambda_1a_(21)+\lambda_2a_(22)+...+\lambda_ra_(2r), \] \[ ................... .. .................................... \] \[ a_(ms)=\lambda_1a_( m1) +\lambda_2a_(m2)+...+\lambda_ra_(mr). \] Deci, coloana \(s-\)-a este o combinație liniară a primelor coloane \(r\). Teorema a fost demonstrată.

Cometariu.

Din teorema minoră de bază rezultă că rangul unei matrice este egal cu numărul coloanelor sale liniar independente (care este egal cu numărul de rânduri liniar independente).

Corolarul 1.

Dacă determinantul este zero, atunci are o coloană care este o combinație liniară a celorlalte coloane.

Corolarul 2.

Dacă rangul unei matrice este mai mic decât numărul de coloane, atunci coloanele matricei sunt dependente liniar.

Calcularea rangului unei matrice și găsirea bazei minore

Unele transformări de matrice nu își schimbă rangul. Astfel de transformări pot fi numite elementare. Faptele corespunzătoare pot fi ușor verificate folosind proprietățile determinanților și determinând rangul unei matrice.

1. Rearanjarea coloanelor.

2. Înmulțirea elementelor oricărei coloane cu un factor diferit de zero.

3. Adăugarea oricărei alte coloane la o coloană, înmulțită cu un număr arbitrar.

4. Trimiterea coloanei zero.

Același lucru este valabil și pentru șiruri.

Folosind aceste transformări, matricea poate fi transformată în așa-numita formă „trapezoidală” - o matrice cu doar zerouri sub diagonala principală. Pentru o matrice „trapezoidală”, rangul este numărul de elemente nenule de pe diagonala principală, iar baza minoră este minora a cărei diagonală coincide cu mulțimea elementelor nenule de pe diagonala principală a matricei transformate.

Exemplu. Luați în considerare matricea

\[ A=\left(\begin(array)(cccc) 2 &1 & 11 & 2 \\ 1 & 0 & 4 & -1 \\ 11 & 4 & 56 & 5 \\ 2 & -1 & 5 & - 6 \end(matrice) \right). \] Îl vom transforma folosind transformările de mai sus. \[ A=\left(\begin(array)(cccc) 2 &1 & 11 & 2 \\ 1 & 0 & 4 & -1 \\ 11 & 4 & 56 & 5 \\ 2 & -1 & 5 & - 6 \end(array) \right) \mapsto \left(\begin(array)(cccc) 1 & 0 & 4 & -1 \\ 2 & 1 & 11 & 2 \\ 11 & 4 & 56 & 5 \\ 2 & -1 & 5 & -6 \end(array) \right) \mapsto \left(\begin(array)(cccc) 1 & 0 & 4 & -1 \\ 0 & 1 & 3 & 4 \\ 0 & 4 & 12 & 16 \\ 0 & -1 & -3 & -4 \end(array) \right) \mapsto \] \[ \left(\begin(array)(cccc) 1 & 0 & 4 & - 1 \\ 0 & 1 & 3 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end(array) \right)\mapsto \left(\begin(array)(cccc) 1 & 0 & 4 & -1 \\ 0 & 1 & 3 & 4 \end(array)\right). \]

Aici facem secvențial următorii pași: 1) rearanjați a doua linie în partea de sus, 2) scădeți prima linie din restul cu un factor adecvat, 3) scădeți a doua linie din a treia de 4 ori, adăugați a doua linie la a patra, 4) tăiați liniile zero - a treia și a patra. Matricea noastră finală a căpătat forma dorită: există numere diferite de zero pe diagonala principală și zerouri sub diagonala principală. După aceasta, procedura se oprește și numărul de elemente nenule de pe diagonala principală este egal cu rangul matricei. Minorul de bază este primele două rânduri și primele două coloane. La intersecția lor există o matrice de ordinul 2 cu un determinant diferit de zero. În același timp, mergând înapoi de-a lungul lanțului de transformări, puteți urmări de unde provine acest sau acel rând (acesta sau acea coloană) din matricea finală, adică. determinați rândurile și coloanele de bază din matricea originală. În acest caz, primele două rânduri și primele două coloane formează baza minoră.

Să fie dată o matrice:

.

Să selectăm în această matrice șiruri arbitrare și coloane arbitrare
. Apoi determinantul ordinul al-lea, compus din elemente de matrice
, situat la intersecția rândurilor și coloanelor selectate, se numește minor matricea de ordinul al-lea
.

Definiția 1.13. Rangul matricei
este cel mai mare ordin al minorului diferit de zero al acestei matrice.

Pentru a calcula rangul unei matrice, trebuie să luăm în considerare toți minorii ei de ordinul cel mai mic și, dacă cel puțin unul dintre ei este diferit de zero, să trecem la luarea în considerare a minorilor de ordinul cel mai înalt. Această abordare pentru determinarea rangului unei matrice se numește metoda de limită (sau metoda de limită a minorilor).

Problema 1.4. Folosind metoda limitării minorilor, determinați rangul matricei
.

.

Luați în considerare marginile de ordinul întâi, de exemplu,
. Apoi trecem la considerarea unor margini de ordinul doi.

De exemplu,
.

În cele din urmă, să analizăm marginea de ordinul trei.

.

Deci, cel mai înalt ordin al unui minor diferit de zero este 2, prin urmare
.

Când rezolvați Problema 1.4, puteți observa că un număr de minori de ordinul doi sunt diferit de zero. În acest sens, se aplică următorul concept.

Definiția 1.14. O bază minoră a unei matrice este orice minoră diferită de zero a cărei ordine este egală cu rangul matricei.

Teorema 1.2.(Teorema de bază minoră). Rândurile de bază (coloanele de bază) sunt liniar independente.

Rețineți că rândurile (coloanele) unei matrice sunt dependente liniar dacă și numai dacă cel puțin una dintre ele poate fi reprezentată ca o combinație liniară a celorlalte.

Teorema 1.3. Numărul de rânduri de matrice liniar independente este egal cu numărul de coloane de matrice liniar independente și este egal cu rangul matricei.

Teorema 1.4.(Condiție necesară și suficientă pentru ca determinantul să fie egal cu zero). Pentru ca determinantul -a comanda a fost egal cu zero, este necesar și suficient ca rândurile (coloanele) să fie dependente liniar.

Calcularea rangului unei matrice pe baza definiției sale este prea greoaie. Acest lucru devine deosebit de important pentru matricele de ordin înalt. În acest sens, în practică, rangul unei matrice este calculat pe baza aplicării teoremelor 10.2 - 10.4, precum și a utilizării conceptelor de echivalență a matricei și transformări elementare.

Definiția 1.15. Două matrice
Și sunt numite echivalente dacă rangurile lor sunt egale, adică
.

Dacă matrice
Și sunt echivalente, apoi rețineți
.

Teorema 1.5. Rangul matricei nu se modifică din cauza transformărilor elementare.

Vom numi transformări matrice elementare
oricare dintre următoarele operații pe o matrice:

Înlocuirea rândurilor cu coloane și coloanelor cu rândurile corespunzătoare;

Rearanjarea rândurilor matricei;

Tăierea unei linii ale cărei elemente sunt toate zero;

Înmulțirea unui șir cu un număr diferit de zero;

Adăugarea elementelor unei linii a elementelor corespunzătoare unei alte linii înmulțite cu același număr
.

Corolarul teoremei 1.5. Dacă matricea
obtinut din matrice folosind un număr finit de transformări elementare, apoi matricea
Și sunt echivalente.

Când se calculează rangul unei matrice, aceasta ar trebui redusă la o formă trapezoidală folosind un număr finit de transformări elementare.

Definiția 1.16. Vom numi trapezoidală o formă de reprezentare matricială atunci când în marginea minoră de ordinul cel mai înalt non-zero, toate elementele de sub cele diagonale dispar. De exemplu:

.

Aici
, elemente de matrice
mergi la zero. Apoi forma de reprezentare a unei astfel de matrice va fi trapezoidală.

De regulă, matricele sunt reduse la o formă trapezoidală folosind algoritmul gaussian. Ideea algoritmului Gauss este că, prin înmulțirea elementelor primului rând al matricei cu factorii corespunzători, se realizează ca toate elementele primei coloane situate sub elementul
, s-ar transforma la zero. Apoi, înmulțind elementele coloanei a doua cu factorii corespunzători, ne asigurăm că toate elementele coloanei a doua situate sub elementul
, s-ar transforma la zero. Apoi procedați în același mod.

Problema 1.5. Determinați rangul unei matrice prin reducerea acesteia la o formă trapezoidală.

.

Pentru a facilita utilizarea algoritmului gaussian, puteți schimba prima și a treia linie.






.

Este evident că aici
. Cu toate acestea, pentru a aduce rezultatul într-o formă mai elegantă, puteți continua transformarea coloanelor.








.

Elementar Următoarele transformări de matrice se numesc:

1) permutarea oricăror două rânduri (sau coloane),

2) înmulțirea unui rând (sau coloană) cu un număr diferit de zero,

3) adăugarea la un rând (sau coloană) a unui alt rând (sau coloană), înmulțit cu un anumit număr.

Cele două matrici sunt numite echivalent, dacă una dintre ele este obținută de la cealaltă folosind o mulțime finită de transformări elementare.

Matricele echivalente nu sunt, în general, egale, dar rangurile lor sunt egale. Dacă matricele A și B sunt echivalente, atunci se scrie după cum urmează: A ~ B.

Canonic O matrice este o matrice în care la începutul diagonalei principale există mai multe pe rând (al căror număr poate fi zero), iar toate celelalte elemente sunt egale cu zero, de exemplu,

Folosind transformări elementare de rânduri și coloane, orice matrice poate fi redusă la canonică. Rangul unei matrice canonice este egal cu numărul celor de pe diagonala sa principală.

Exemplul 2 Aflați rangul unei matrice

A=

și să-l aducă la forma canonică.

Soluţie. Din a doua linie, scădeți prima și rearanjați aceste linii:

.

Acum din a doua și a treia linie o scădem pe prima, înmulțită cu 2, respectiv 5:

;

scădeți primul din a treia linie; obținem o matrice

B = ,

care este echivalentă cu matricea A, deoarece se obține din ea folosind o mulțime finită de transformări elementare. În mod evident, rangul matricei B este 2 și, prin urmare, r(A)=2. Matricea B poate fi ușor redusă la canonică. Scăzând prima coloană, înmulțită cu numere potrivite, din toate cele ulterioare, întoarcem la zero toate elementele primului rând, cu excepția primului, iar elementele rândurilor rămase nu se modifică. Apoi, scăzând a doua coloană, înmulțită cu numerele potrivite, din toate cele ulterioare, trecem la zero toate elementele din al doilea rând, cu excepția celui de-al doilea, și obținem matricea canonică:

.

Kronecker - teorema Capelli- criteriul de compatibilitate pentru un sistem de ecuații algebrice liniare:

Pentru ca un sistem liniar să fie consistent, este necesar și suficient ca rangul matricei extinse a acestui sistem să fie egal cu rangul matricei sale principale.

Dovada (condiții de compatibilitate a sistemului)

Necesitate

Lăsa sistem comun Apoi, există numere astfel încât . Prin urmare, coloana este o combinație liniară a coloanelor matricei. Din faptul că rangul unei matrice nu se va schimba dacă un rând (coloană) este șters sau adăugat din sistemul rândurilor sale (coloanelor), care este o combinație liniară a altor rânduri (coloane), rezultă că .

Adecvarea

Lăsa . Să luăm unele minore de bază în matrice. Din moment ce, atunci va fi și baza minoră a matricei. Apoi, conform teoremei de bază minor, ultima coloană a matricei va fi o combinație liniară a coloanelor de bază, adică coloanele matricei. Prin urmare, coloana de termeni liberi ai sistemului este o combinație liniară a coloanelor matricei.

Consecințe

    Numărul de variabile principale sisteme egal cu rangul sistemului.

    Comun sistem va fi definit (soluția sa este unică) dacă rangul sistemului este egal cu numărul tuturor variabilelor sale.

Sistem omogen de ecuații

Oferi15 . 2 Sistem omogen de ecuații

este întotdeauna comună.

Dovada. Pentru acest sistem, mulțimea numerelor , , , este o soluție.

În această secțiune vom folosi notația matricială a sistemului: .

Oferi15 . 3 Suma soluțiilor unui sistem omogen de ecuații liniare este o soluție a acestui sistem. O soluție înmulțită cu un număr este, de asemenea, o soluție.

Dovada. Lăsați-le să servească drept soluții pentru sistem. Apoi și. Lăsa . Apoi

Din moment ce, atunci - soluția.

Fie un număr arbitrar, . Apoi

Din moment ce, atunci - soluția.

Consecinţă15 . 1 Dacă un sistem omogen de ecuații liniare are o soluție diferită de zero, atunci are infinite de soluții diferite.

Într-adevăr, înmulțind o soluție diferită de zero cu diverse numere, vom obține soluții diferite.

Definiție15 . 5 Vom spune că soluțiile forme de sisteme sistem fundamental de soluții, dacă coloane formează un sistem liniar independent și orice soluție a sistemului este o combinație liniară a acestor coloane.

Definiție. Rangul matricei este numărul maxim de rânduri liniar independente considerate ca vectori.

Teorema 1 asupra rangului matricei. Rangul matricei se numește ordinul maxim al unui minor diferit de zero al unei matrice.

Am discutat deja despre conceptul de minor în lecția despre determinanți, iar acum îl vom generaliza. Să luăm un anumit număr de rânduri și un anumit număr de coloane din matrice, iar acest „cât” ar trebui să fie mai mic decât numărul de rânduri și coloane ale matricei, iar pentru rânduri și coloane acest „cât” ar trebui să fie acelasi numar. Apoi, la intersecția câte rânduri și câte coloane va exista o matrice de ordin mai mic decât matricea noastră originală. Determinantul este o matrice și va fi un minor de ordinul k, dacă „unele” menționat (numărul de rânduri și coloane) este notat cu k.

Definiție. Minor ( r Ordinul +1), în care se află minorul ales r-allea ordin se numește margine pentru un anumit minor.

Cele două metode cele mai frecvent utilizate sunt aflarea rangului matricei. Acest mod de a se învecina cu minoriiȘi metoda transformărilor elementare(metoda Gauss).

Când se folosește metoda minorilor limită, se folosește următoarea teoremă.

Teorema 2 asupra rangului matricei. Dacă un minor poate fi compus din elemente de matrice r de ordinul al-lea, nu este egal cu zero, atunci rangul matricei este egal cu r.

Când se utilizează metoda de transformare elementară, se utilizează următoarea proprietate:

Dacă prin transformări elementare se obține o matrice trapezoidală echivalentă cu cea originală, atunci rangul acestei matrice este numărul de linii din el, altele decât liniile formate în întregime din zerouri.

Găsirea rangului unei matrice folosind metoda limitării minorilor

Un minor care înglobează este un minor de ordin superior față de cel dat, dacă acest minor de ordin superior conține minorul dat.

De exemplu, având în vedere matricea

Să luăm un minor

Minorii limitrofe vor fi:

Algoritm pentru găsirea rangului unei matrice Următorul.

1. Găsiți minori de ordinul doi care nu sunt egali cu zero. Dacă toți minorii de ordinul doi sunt egali cu zero, atunci rangul matricei va fi egal cu unu ( r =1 ).

2. Dacă există cel puțin un minor de ordinul doi care nu este egal cu zero, atunci compunem minorii limitrofe de ordinul al treilea. Dacă toți minorii învecinați de ordinul al treilea sunt egali cu zero, atunci rangul matricei este egal cu doi ( r =2 ).

3. Dacă cel puțin unul dintre minorii învecinați de ordinul al treilea nu este egal cu zero, atunci compunem minorii învecinați. Dacă toți minorii învecinați de ordinul al patrulea sunt egali cu zero, atunci rangul matricei este egal cu trei ( r =2 ).

4. Continuați în acest fel atâta timp cât dimensiunea matricei o permite.

Exemplul 1. Aflați rangul unei matrice

.

Soluţie. Minor de ordinul doi .

Să o limităm. Vor fi patru minori în graniță:

,

,

Astfel, toți minorii învecinați de ordinul al treilea sunt egali cu zero, prin urmare, rangul acestei matrice este egal cu doi ( r =2 ).

Exemplul 2. Aflați rangul unei matrice

Soluţie. Rangul acestei matrice este egal cu 1, întrucât toți minorii de ordinul doi ai acestei matrice sunt egali cu zero (în aceasta, ca și în cazurile minorilor limitrofe din următoarele două exemple, dragi elevi sunt invitați să verifice pt. ei înșiși, poate folosind regulile de calcul al determinanților), iar printre minorii de ordinul întâi, adică printre elementele matricei, există și altele diferite de zero.

Exemplul 3. Aflați rangul unei matrice

Soluţie. Minorul de ordinul doi al acestei matrice este și toate minorii de ordinul trei ale acestei matrice sunt egale cu zero. Prin urmare, rangul acestei matrice este doi.

Exemplul 4. Aflați rangul unei matrice

Soluţie. Rangul acestei matrice este 3, deoarece singurul minor de ordinul trei al acestei matrice este 3.

Găsirea rangului unei matrice folosind metoda transformărilor elementare (metoda Gauss)

Deja în exemplul 1 este clar că sarcina de a determina rangul unei matrice folosind metoda minorilor învecinați necesită calcularea unui număr mare de determinanți. Există, totuși, o modalitate de a reduce cantitatea de calcul la minimum. Această metodă se bazează pe utilizarea transformărilor matriceale elementare și este numită și metoda Gauss.

Următoarele operații sunt înțelese ca transformări matrice elementare:

1) înmulțirea oricărui rând sau coloană a unei matrice cu un alt număr decât zero;

2) adăugarea la elementele oricărui rând sau coloană a matricei a elementelor corespunzătoare dintr-un alt rând sau coloană, înmulțite cu același număr;

3) schimbarea a două rânduri sau coloane ale matricei;

4) eliminarea rândurilor „nule”, adică a celor ale căror elemente sunt toate egale cu zero;

5) ștergerea tuturor liniilor proporționale cu excepția uneia.

Teorema.În timpul unei transformări elementare, rangul matricei nu se modifică. Cu alte cuvinte, dacă folosim transformări elementare din matrice A a mers la matrice B, Acea .