Уроки криптографии. Современные блочные шифры. Режим простой замены с зацеплением. Основные способы шифрования

Необходимость в шифровании переписки возникла еще в древнем мире, и появились шифры простой замены. Зашифрованные послания определяли судьбу множества битв и влияли на ход истории. Со временем люди изобретали все более совершенные способы шифрования.

Код и шифр - это, к слову, разные понятия. Первое означает замену каждого слова в сообщении кодовым словом. Второе же заключается в шифровании по определенному алгоритму каждого символа информации.

После того как кодированием информации занялась математика и была разработана теория криптографии, ученые обнаружили множество полезных свойств этой прикладной науки. Например, алгоритмы декодирования помогли разгадать мертвые языки, такие как древнеегипетский или латынь.

Стеганография

Стеганография старше кодирования и шифрования. Это искусство появилось очень давно. Оно буквально означает «скрытое письмо» или «тайнопись». Хоть стеганография не совсем соответствует определениям кода или шифра, но она предназначена для сокрытия информации от чужих глаз.

Стеганография является простейшим шифром. Типичными ее примерами являются проглоченные записки, покрытые ваксой, или сообщение на бритой голове, которое скрывается под выросшими волосами. Ярчайшим примером стеганографии является способ, описанный во множестве английских (и не только) детективных книг, когда сообщения передаются через газету, где малозаметным образом помечены буквы.

Главным минусом стеганографии является то, что внимательный посторонний человек может ее заметить. Поэтому, чтобы секретное послание не было легко читаемым, совместно со стеганографией используются методы шифрования и кодирования.

ROT1 и шифр Цезаря

Название этого шифра ROTate 1 letter forward, и он известен многим школьникам. Он представляет собой шифр простой замены. Его суть заключается в том, что каждая буква шифруется путем смещения по алфавиту на 1 букву вперед. А -> Б, Б -> В, ..., Я -> А. Например, зашифруем фразу «наша Настя громко плачет» и получим «общб Обтуа дспнлп рмбшеу».

Шифр ROT1 может быть обобщен на произвольное число смещений, тогда он называется ROTN, где N - это число, на которое следует смещать шифрование букв. В таком виде шифр известен с глубокой древности и носит название «шифр Цезаря».

Шифр Цезаря очень простой и быстрый, но он является шифром простой одинарной перестановки и поэтому легко взламывается. Имея подобный недостаток, он подходит только для детских шалостей.

Транспозиционные или перестановочные шифры

Данные виды шифра простой перестановки более серьезны и активно применялись не так давно. В Гражданскую войну в США и в Первую мировую его использовали для передачи сообщений. Его алгоритм заключается в перестановке букв местами - записать сообщение в обратном порядке или попарно переставить буквы. Например, зашифруем фразу «азбука Морзе - тоже шифр» -> «акубза езроМ - ежот рфиш».

С хорошим алгоритмом, который определял произвольные перестановки для каждого символа или их группы, шифр становился устойчивым к простому взлому. Но! Только в свое время. Так как шифр легко взламывается простым перебором или словарным соответствием, сегодня с его расшифровкой справится любой смартфон. Поэтому с появлением компьютеров этот шифр также перешел в разряд детских.

Азбука Морзе

Азбука является средством обмена информации и ее основная задача - сделать сообщения более простыми и понятными для передачи. Хотя это противоречит тому, для чего предназначено шифрование. Тем не менее она работает подобно простейшим шифрам. В системе Морзе каждая буква, цифра и знак препинания имеют свой код, составленный из группы тире и точек. При передаче сообщения с помощью телеграфа тире и точки означают длинные и короткие сигналы.

Телеграф и азбука был тем, кто первый запатентовал «свое» изобретение в 1840 году, хотя до него и в России, и в Англии были изобретены подобные аппараты. Но кого это теперь интересует... Телеграф и азбука Морзе оказали очень большое влияние на мир, позволив почти мгновенно передавать сообщения на континентальные расстояния.

Моноалфавитная замена

Описанные выше ROTN и азбука Морзе являются представителями шрифтов моноалфавитной замены. Приставка «моно» означает, что при шифровании каждая буква изначального сообщения заменяется другой буквой или кодом из единственного алфавита шифрования.

Дешифрование шифров простой замены не составляет труда, и в этом их главный недостаток. Разгадываются они простым перебором или Например, известно, что самые используемые буквы русского языка - это «о», «а», «и». Таким образом, можно предположить, что в зашифрованном тексте буквы, которые встречаются чаще всего, означают либо «о», либо «а», либо «и». Исходя из таких соображений, послание можно расшифровать даже без перебора компьютером.

Известно, что Мария I, королева Шотландии с 1561 по 1567 г., использовала очень сложный шифр моноалфавитной замены с несколькими комбинациями. И все же ее враги смогли расшифровать послания, и информации хватило, чтобы приговорить королеву к смерти.

Шифр Гронсфельда, или полиалфавитная замена

Простые шифры криптографией признаны бесполезными. Поэтому множество из них было доработано. Шифр Гронсфельда — это модификация шифра Цезаря. Данный способ является значительно более стойким к взлому и заключается в том, что каждый символ кодируемой информации шифруется при помощи одного из разных алфавитов, которые циклически повторяются. Можно сказать, что это многомерное применение простейшего шифра замены. Фактически шифр Гронсфельда очень похож на рассмотренный ниже.

Алгоритм шифрования ADFGX

Это самый известный шифр Первой мировой войны, используемый немцами. Свое имя шифр получил потому, что приводил все шифрограммы к чередованию этих букв. Выбор самих же букв был определен их удобством при передаче по телеграфным линиям. Каждая буква в шифре представляется двумя. Рассмотрим более интересную версию квадрата ADFGX, которая включает цифры и называется ADFGVX.

A D F G V X
A J Q A 5 H D
D 2 E R V 9 Z
F 8 Y I N K V
G U P B F 6 O
V 4 G X S 3 T
X W L Q 7 C 0

Алгоритм составления квадрата ADFGX следующий:

  1. Берем случайные n букв для обозначения столбцов и строк.
  2. Строим матрицу N x N.
  3. Вписываем в матрицу алфавит, цифры, знаки, случайным образом разбросанные по ячейкам.

Составим аналогичный квадрат для русского языка. Например, создадим квадрат АБВГД:

А Б В Г Д
А Е/Е Н Ь/Ъ А И/Й
Б Ч В/Ф Г/К З Д
В Ш/Щ Б Л Х Я
Г Р М О Ю П
Д Ж Т Ц Ы У

Данная матрица выглядит странно, так как ряд ячеек содержит по две буквы. Это допустимо, смысл послания при этом не теряется. Его легко можно восстановить. Зашифруем фразу «Компактный шифр» при помощи данной таблицы:

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Фраза К О М П А К Т Н Ы Й Ш И Ф Р
Шифр бв гв гб гд аг бв дб аб дг ад ва ад бб га

Таким образом, итоговое зашифрованное послание выглядит так: «бвгвгбгдагбвдбабдгвдваадббга». Разумеется, немцы проводили подобную строку еще через несколько шифров. И в итоге получалось очень устойчивое к взлому шифрованное послание.

Шифр Виженера

Данный шифр на порядок более устойчив к взлому, чем моноалфавитные, хотя представляет собой шифр простой замены текста. Однако благодаря устойчивому алгоритму долгое время считался невозможным для взлома. Первые его упоминания относятся к 16-му веку. Виженер (французский дипломат) ошибочно считается его изобретателем. Чтобы лучше разобраться, о чем идет речь, рассмотрим таблицу Виженера (квадрат Виженера, tabula recta) для русского языка.

Приступим к шифрованию фразы «Касперович смеется». Но, чтобы шифрование удалось, нужно ключевое слово — пусть им будет «пароль». Теперь начнем шифрование. Для этого запишем ключ столько раз, чтобы количество букв из него соответствовало количеству букв в шифруемой фразе, путем повтора ключа или обрезания:

Теперь по как по координатной плоскости, ищем ячейку, которая является пересечением пар букв, и получаем: К + П = Ъ, А + А = Б, С + Р = В и т. д.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Шифр: Ъ Б В Ю С Н Ю Г Щ Ж Э Й Х Ж Г А Л

Получаем, что "касперович смеется" = "ъбвюснюгщж эйхжгал".

Взломать шифр Виженера так сложно, потому что для работы частотного анализа необходимо знать длину ключевого слова. Поэтому взлом заключается в том, чтобы наугад бросать длину ключевого слова и пытаться взломать засекреченное послание.

Следует также упомянуть, что помимо абсолютно случайного ключа может быть использована совершенно разная таблица Виженера. В данном случае квадрат Виженера состоит из построчно записанного русского алфавита со смещением на единицу. Что отсылает нас к шифру ROT1. И точно так же, как и в шифре Цезаря, смещение может быть любым. Более того, порядок букв не должен быть алфавитным. В данном случае сама таблица может быть ключом, не зная которую невозможно будет прочесть сообщение, даже зная ключ.

Коды

Настоящие коды состоят из соответствий для каждого слова отдельного кода. Для работы с ними необходимы так называемые кодовые книги. Фактически это тот же словарь, только содержащий переводы слов в коды. Типичным и упрощенным примером кодов является таблица ASCII — международный шифр простых знаков.

Главным преимуществом кодов является то, что расшифровать их очень сложно. Частотный анализ почти не работает при их взломе. Слабость же кодов — это, собственно, сами книги. Во-первых, их подготовка — сложный и дорогостоящий процесс. Во-вторых, для врагов они превращаются в желанный объект и перехват даже части книги вынуждает менять все коды полностью.

В 20-м веке многие государства для передачи секретных данных использовали коды, меняя кодовую книгу по прошествии определенного периода. И они же активно охотились за книгами соседей и противников.

"Энигма"

Всем известно, что "Энигма" — это главная шифровальная машина нацистов во время II мировой войны. Строение "Энигмы" включает комбинацию электрических и механических схем. То, каким получится шифр, зависит от начальной конфигурации "Энигмы". В то же время "Энигма" автоматически меняет свою конфигурацию во время работы, шифруя одно сообщение несколькими способами на всем его протяжении.

В противовес самым простым шифрам "Энигма" давала триллионы возможных комбинаций, что делало взлом зашифрованной информации почти невозможным. В свою очередь, у нацистов на каждый день была заготовлена определенная комбинация, которую они использовали в конкретный день для передачи сообщений. Поэтому даже если "Энигма" попадала в руки противника, она никак не способствовала расшифровке сообщений без введения нужной конфигурации каждый день.

Взломать "Энигму" активно пытались в течение всей военной кампании Гитлера. В Англии в 1936 г. для этого построили один из первых вычислительных аппаратов (машина Тьюринга), ставший прообразом компьютеров в будущем. Его задачей было моделирование работы нескольких десятков "Энигм" одновременно и прогон через них перехваченных сообщений нацистов. Но даже машине Тьюринга лишь иногда удавалось взламывать сообщение.

Шифрование методом публичного ключа

Самый популярный из алгоритмов шифрования, который используется повсеместно в технике и компьютерных системах. Его суть заключается, как правило, в наличии двух ключей, один из которых передается публично, а второй является секретным (приватным). Открытый ключ используется для шифровки сообщения, а секретный — для дешифровки.

В роли открытого ключа чаще всего выступает очень большое число, у которого существует только два делителя, не считая единицы и самого числа. Вместе эти два делителя образуют секретный ключ.

Рассмотрим простой пример. Пусть публичным ключом будет 905. Его делителями являются числа 1, 5, 181 и 905. Тогда секретным ключом будет, например, число 5*181. Вы скажете слишком просто? А что если в роли публичного числа будет число с 60 знаками? Математически сложно вычислить делители большого числа.

В качестве более живого примера представьте, что вы снимаете деньги в банкомате. При считывании карточки личные данные зашифровываются определенным открытым ключом, а на стороне банка происходит расшифровка информации секретным ключом. И этот открытый ключ можно менять для каждой операции. А способов быстро найти делители ключа при его перехвате — нет.

Стойкость шрифта

Криптографическая стойкость алгоритма шифрования — это способность противостоять взлому. Данный параметр является самым важным для любого шифрования. Очевидно, что шифр простой замены, расшифровку которого осилит любое электронное устройство, является одним из самых нестойких.

На сегодняшний день не существует единых стандартов, по которым можно было бы оценить стойкость шифра. Это трудоемкий и долгий процесс. Однако есть ряд комиссий, которые изготовили стандарты в этой области. Например, минимальные требования к алгоритму шифрования Advanced Encryption Standart или AES, разработанные в NIST США.

Для справки: самым стойким шифром к взлому признан шифр Вернама. При этом его плюсом является то, что по своему алгоритму он является простейшим шифром.

В XXI веке криптография играет серьезную роль в цифровой жизни современных людей. Кратко рассмотрим способы шифрования информации.

Криптография – не просто какая-то компьютерная штука

Скорее всего, вы уже сталкивались с простейшей криптографией и, возможно, знаете некоторые способы шифрования. Например Шифр Цезаря часто используется в развивающих детских играх.

ROT13 – еще один распространенный тип шифрования сообщений. В нём каждая буква алфавита сдвигается на 13 позиций, как показано на рисунке:

Как можно заметить, этот шифр не обеспечивает по-настоящему надежную защиту информации: он является простым и понятным примером всей идеи криптографии.

Сегодня мы говорим о криптографии чаще всего в контексте какой-то технологии. Как безопасно передается личная и финансовая информация, когда мы совершаем покупку в интернете или просматриваем банковские счета? Как можно безопасно хранить данные, чтобы никто не мог просто открыть компьютер, вытащить жесткий диск и иметь полный доступ ко всей информации на нём? Ответим на эти и другие вопросы в данной статье.

Определения и краткое руководство по кибербезопасности

В кибербезопасности есть ряд вещей, которые беспокоят пользователей, когда дело доходит до каких-либо данных. К ним относятся конфиденциальность, целостность и доступность информации.

Конфиденциальность – данные не могут быть получены или прочитаны неавторизованными пользователями.

Целостность информации – уверенность в том, что информация 100% останется нетронутой и не будет изменена злоумышленником.

Доступность информации – получение доступа к данным, когда это необходимо.

Также в статье рассмотрим различные формы цифровой криптографии и то, как они могут помочь достичь целей, перечисленных выше.

Основные способы шифрования:
  • Симметрично
  • Асимметричное
  • Хеширование
  • Цифровая подпись

Симметричное шифрование

Прежде чем мы начнем разбираться в теме, ответим на простой вопрос: что именно подразумевается под «шифрованием»? Шифрование – преобразование информации в целях сокрытия от неавторизованных лиц, но в то же время с предоставлением авторизованным пользователям доступа к ней.

Чтобы правильно зашифровать и расшифровать данные, нужны две вещи: данные и ключ для дешифровки. При использовании симметричного шифрования ключ для шифрования и расшифровки данных одинаковый. Возьмем строку и зашифруем ее с помощью Ruby и OpenSSL:

Ruby

require "openssl" require "pry" data_to_encrypt = "now you can read me!" cipher = OpenSSL::Cipher.new("aes256") cipher.encrypt key = cipher.random_key iv = cipher.random_iv data_to_encrypt = cipher.update(data_to_encrypt) + cipher.final binding.pry true

require "openssl"

require "pry"

cipher = OpenSSL :: Cipher . new ("aes256" )

cipher . encrypt

key = cipher . random _ key

iv = cipher . random _ iv

data_to_encrypt = cipher . update (data_to_encrypt ) + cipher . final

binding . pry

true

Вот что выведет программа:

Обратите внимание, что переменная data_to_encrypt , которая изначально была строкой “now you can read me!”, теперь куча непонятных символов. Обратим процесс, используя ключ, который изначально сохранили в переменной key .

После использования того же ключа, который мы установили для шифрования, дешифруем сообщение и получаем исходную строку.

Давайте рассмотрим и другие способы шифрования.

Асимметричное шифрование

Проблема симметричного шифрования заключается в следующем: предположим, необходимо отправить какие-то данные через Интернет. Если для шифрования и расшифровки данных требуется один и тот же ключ, то получается, что сначала нужно отправить ключ. Это означает, что отослать ключ надо будет через небезопасное соединение. Но так ключ может быть перехвачен и использован третьей стороной. Чтобы избежать такого исхода, изобрели асимметричное шифрование.

Дабы использовать асимметричное шифрование, необходимо сгенерировать два математически связанных ключа. Один – это приватный ключ, доступ к которому имеете только вы. Второй – открытый, который является общедоступным.

Рассмотрим пример общения с использованием асимметричного шифрования. В нём отправлять сообщения друг другу будут сервер и пользователь. У каждого из них есть по два ключа: приватный и публичный. Ранее было сказано, что ключи связные. Т.е. сообщение, зашифрованное приватным ключом можно расшифровать только с помощью смежного публичного ключа. Поэтому чтобы начать общение, нужно обменяться публичными ключами.

Но как понять, что открытый ключ сервера принадлежит именно этому серверу? Существует несколько способов решения этой проблемы. Наиболее распространенный метод (и тот, который используется в интернете) – использование инфраструктуры открытых ключей (PKI). В случае веб-сайтов существует Центр сертификации, у которого есть каталог всех сайтов, на которые были выданы сертификаты и открытые ключи. При подключении к веб-сайту его открытый ключ сначала проверяется центром сертификации.

Создадим пару открытого и закрытого ключей:

Ruby

require "openssl" require "pry" data_to_encrypt = "now you can read me!" key = OpenSSL::PKey::RSA.new(2048) binding.pry true

require "openssl"

require "pry"

data_to_encrypt = "now you can read me!"

key = OpenSSL :: PKey :: RSA . new (2048 )

binding . pry

true

Получится:

Обратите внимание, что приватный ключ и открытый ключ являются отдельными объектами с различными идентификаторами. Используя #private_encrypt , можно зашифровать строку с помощью закрытого ключа, а используя #public_decrypt – расшифровать сообщение:

Хеширование информации

Хеширование, в отличие от симметричного и асимметричного шифрования, является односторонней функцией. Можно создать хеш из некоторых данных, но нет никакого способа, чтобы обратить процесс. Это делает хеширование не очень удобным способом хранения данных, но подходящим для проверки целостности некоторых данных.

Функция в качестве входных данных принимает какую-то информацию и выводит, казалось бы, случайную строку, которая всегда будет одинаковой длины. Идеальная функция хеширования создает уникальные значения для различных входов. Одинаковый ввод всегда будет производить одинаковый хеш. Поэтому можно использовать хеширование для проверки целостности данных.

Введение

Проблема защиты информации путем ее преобразования, исключающего ее прочтение посторонним лицом волновала человеческий ум с давних времен. История криптографии - ровесница истории человеческого языка. Более того, первоначально письменность сама по себе была криптографической системой, так как в древних обществах ею владели только избранные.

Священные книги Древнего Египта, Древней Индии тому примеры.

С широким распространением письменности криптография стала формироваться как самостоятельная наука. Первые криптосистемы встречаются уже в начале нашей эры. Так, Цезарь в своей переписке использовал уже более менее систематический шифр, получивший его имя.

Бурное развитие криптографические системы получили в годы первой и второй мировых войн. Начиная с послевоенного времени и по нынешний день появление вычислительных средств ускорило разработку и совершенствование криптографических методов.

Почему проблема использования криптографических методов в информационных системах (ИС) стала в настоящий момент особо актуальна?

С одной стороны, расширилось использование компьютерных сетей, в частности глобальной сети Internet, по которым передаются большие объемы информации государственного, военного, коммерческого и частного характера, не допускающего возможность доступа к ней посторонних лиц.

С другой стороны, появление новых мощных компьютеров, технологий сетевых и нейронных вычислений сделало возможным дискредитацию криптографических систем еще недавно считавшихся практически не раскрываемыми.

В первой главе данной работы можно познакомиться с основными понятиями современной криптографии, требованиям к ним, возможностями ее практического применения.

Во второй главе работы с протоколами распределения криптографических ключей, понятием электронной подписи и протоколами электронной подписи..

Третья глава данной работы рассказывает о хэш-функциях и (методах) алгоритмах их построения.

В четвертой главе будет рассказано о модернизации электронной подписи Эль Гамаля и задаче дискретного логарифмирования.

Глава 1. Основные понятия современной криптографии

Проблемой защиты информации путем ее преобразования занимается криптология (kryptos - тайный, logos - наука). Криптология разделяется на два направления - криптографию и криптоанализ. Цели этих направлений прямо противоположны.

Криптография занимается поиском и исследованием математических методов преобразования информации.

Сфера интересов криптоанализа - исследование возможности расшифровывания информации без знания ключей.

В этой работе основное внимание будет уделено криптографическим методам.

Современная криптография включает в себя четыре крупных раздела:

Симметричные криптосистемы.

Криптосистемы с открытым ключом.

Системы электронной подписи.

Управление ключами.

Основные направления использования криптографических методов - передача конфиденциальной информации по каналам связи (например, электронная почта), установление подлинности передаваемых сообщений, хранение информации (документов, баз данных) на носителях в зашифрованном виде.

Криптография дает возможность преобразовать информацию таким образом, что ее прочтение (восстановление) возможно только при знании ключа.

В качестве информации, подлежащей шифрованию и дешифрованию, будут рассматриваться тексты, построенные на некотором алфавите. Под этими терминами понимается следующее.

Алфавит - конечное множество используемых для кодирования информации знаков.

Текст - упорядоченный набор из элементов алфавита.

В качестве примеров алфавитов, используемых в современных ИС можно привести следующие:

алфавит Z33 - 32 буквы русского алфавита и пробел;

алфавит Z256 - символы, входящие в стандартные коды ASCII и КОИ-8;

бинарный алфавит - Z2 = {0,1};

восьмеричный алфавит или шестнадцатеричный алфавит;

Шифрование - преобразовательный процесс: исходный текст, который носит также название открытого текста, заменяется шифрованным текстом.

Дешифрование - обратный шифрованию процесс. На основе ключа шифрованный текст преобразуется в исходный.

Ключ - информация, необходимая для беспрепятственного шифрования и дешифрования текстов.

Криптографическая система представляет собой семейство T преобразований открытого текста. Члены этого семейства индексируются, или обозначаются символом k; параметр k является ключом. Пространство ключей K - это набор возможных значений ключа. Обычно ключ представляет собой последовательный ряд букв алфавита.

Криптосистемы разделяются на симметричные и с открытым ключом.

В симметричных криптосистемах и для шифрования, и для дешифрования используется один и тот же ключ.

В системах с открытым ключом используются два ключа - открытый и закрытый, которые математически связаны друг с другом. Информация шифруется с помощью открытого ключа, который доступен всем желающим, а расшифровывается с помощью закрытого ключа, известного только получателю сообщения. Термины распределение ключей и управление ключами относятся к процессам системы обработки информации, содержанием которых является составление и распределение ключей между пользователями.

Электронной (цифровой) подписью называется присоединяемое к тексту его криптографическое преобразование, которое позволяет при получении текста другим пользователем проверить авторство и подлинность сообщения.

Криптостойкостью называется характеристика шифра, определяющая его стойкость к дешифрованию без знания ключа (т.е. криптоанализу). Имеется несколько показателей криптостойкости, среди которых:

количество всех возможных ключей;

среднее время, необходимое для криптоанализа.

Преобразование Tk определяется соответствующим алгоритмом и значением параметра k. Эффективность шифрования с целью защиты информации зависит от сохранения тайны ключа и криптостойкости шифра.

Процесс криптографического закрытия данных может осуществляться как программно, так и аппаратно. Аппаратная реализация отличается существенно большей стоимостью, однако ей присущи и преимущества: высокая производительность, простота, защищенность и т.д. Программная реализация более практична, допускает известную гибкость в использовании.

Для современных криптографических систем защиты информации сформулированы следующие общепринятые требования:

зашифрованное сообщение должно поддаваться чтению только при наличии ключа;

число операций, необходимых для определения использованного ключа шифрования по фрагменту шифрованного сообщения и соответствующего ему открытого текста, должно быть не меньше общего числа возможных ключей;

число операций, необходимых для расшифровывания информации путем перебора всевозможных ключей должно иметь строгую нижнюю оценку и выходить за пределы возможностей современных компьютеров (с учетом возможности использования сетевых вычислений);

знание алгоритма шифрования не должно влиять на надежность защиты;

незначительное изменение ключа должно приводить к существенному изменению вида зашифрованного сообщения даже при использовании одного и того же ключа;

структурные элементы алгоритма шифрования должны быть неизменными;

дополнительные биты, вводимые в сообщение в процессе шифрования, должен быть полностью и надежно скрыты в шифрованном тексте;

длина шифрованного текста должна быть равной длине исходного текста;

не должно быть простых и легко устанавливаемых зависимостью между ключами, последовательно используемыми в процессе шифрования;

любой ключ из множества возможных должен обеспечивать надежную защиту информации;

алгоритм должен допускать как программную, так и аппаратную реализацию, при этом изменение длины ключа не должно вести к качественному ухудшению алгоритма шифрования.

Глава 2. Протоколы распределения криптографических ключей и протоколы электронной подписи.

Как бы ни были сложны и надежны криптографические системы - их слабое мест при практической реализации - проблема распределения ключей. Для того, чтобы был возможен обмен конфиденциальной информацией между двумя субъектами ИС, ключ должен быть сгенерирован одним из них, а затем каким-то образом опять же в конфиденциальном порядке передан другому. Т.е. в общем случае для передачи ключа опять же требуется использование какой-то криптосистемы.

Для решения этой проблемы на основе результатов, полученных классической и современной алгеброй, были предложены системы с открытым ключом.

Суть их состоит в том, что каждым адресатом ИС генерируются два ключа, связанные между собой по определенному правилу. Один ключ объявляется открытым, а другой закрытым. Открытый ключ публикуется и доступен любому, кто желает послать сообщение адресату. Секретный ключ сохраняется в тайне.

Исходный текст шифруется открытым ключом адресата и передается ему. Зашифрованный текст в принципе не может быть расшифрован тем же открытым


ключом. Дешифрование сообщение возможно только с использованием закрытого ключа, который известен только самому адресату.

Криптографические системы с открытым ключом используют так называемые необратимые или односторонние функции, которые обладают следующим свойством: при заданном значении x относительно просто вычислить значение f(x), однако если y=f(x), то нет простого пути для вычисления значения x.

Множество классов необратимых функций и порождает все разнообразие систем с открытым ключом. Однако не всякая необратимая функция годится для использования в реальных ИС.

В прошлый раз ты познакомился с великими и ужасными отечественными шифрами. Это был очень непростой урок, ведь эти криптосистемы стоят на страже государственной тайны. Скажешь, куда уж замудреннее? А вот сюда, пожалуйста! На самом деле не стоит пугаться, в этот раз не будем так глубоко погружаться в математику и рассматривать режимы шифрования - их принципы ты уже усвоил (ну или не усвоил). Пройдемся по самым топовым зарубежным шифрам и посмотрим, как же их применяют на практике.

Roadmap

Это четвертый урок из цикла «Погружение в крипту». Все уроки цикла в хронологическом порядке:

  • Основы и исторические шифраторы. Как работают (и анализируются) шифры сдвига, замены, Рихарда Зорге, шифр Вернама и шифровальные машины
  • Что это такое, как выполняется распределение ключей и как выбрать криптостойкий ключ
  • Что такое сеть Фейстеля и какими бывают отечественные блочные шифры, используемые в современных протоколах, - ГОСТ 28147-89, «Кузнечик»
  • Урок 4. Современные зарубежные шифры. В чем разница между 3DES, AES, Blowfish, IDEA, Threefish от Брюса Шнайера и как они работают (ты здесь)
  • Виды электронных подписей, как они работают и как их использовать
  • Урок 6. Квантовая криптография. Что это такое, где используется и как помогает в распределении секретных ключей, генерации случайных чисел и электронной подписи

3DES

Итак, первым в ряду зарубежных шифров рассмотрим 3DES, а точнее его ближайшего родственника DES (Data Encryption Standard), который хоть уже и не используется как таковой, но является предком 3DES.

DES разработан командой математиков научной лаборатории IBM, в которую входил уже знакомый нам Фейстель. Первая версия шифра получила имя «Люцифер», но затем он был модифицирован и в результате принят как официальный алгоритм шифрования данных (DEA). На протяжении более двадцати лет он оставался мировым стандартом, прежде чем его сменил Triple DES.

Рассмотрим, как работает алгоритм шифрования DES. Для этого необходимо вспомнить работу сети Фейстеля. DES - это сеть Фейстеля из 16 раундов с симметричными ключами шифрования. Длина блока текста - 64 бита, длина раундового ключа - 48 бит. Итак, пройдем основные этапы шифрования DES, опуская суровую математическую сторону:

  1. Текст, как и при любом другом шифровании, разбивается на блоки по 64 бита.
  2. Из 56-битного ключа генерируется 16 48-битных раундовых ключиков.
  3. Каждый блок подвергается перестановке, то есть все биты входного блока перемешиваются согласно определенной таблице.
  4. Блок расщепляется на половинки и поступает в знакомую нам сеть Фейстеля, где прокручивается 16 раундов.
  5. Соединяем половинки.
  6. И еще одна перестановка.

Начальная и конечная перестановки не имеют никакого значения для криптографии в DES. Обе перестановки - без ключей, и таблицы для них заданы заранее. Причина, по которой они включены в DES, неясна, и проектировщики DES об этом ничего не сказали. Можно предположить, что алгоритм планировалось реализовать в аппаратных средствах (на чипах) и что эти две сложные перестановки должны были затруднить программное моделирование механизма шифрования.

Вот, собственно, все, что надо знать о работе алгоритма DES. Если углубляться в то, как работает функция, заданная в сети Фейстеля, то в ней все прекрасно. Она осуществляет и перестановку, и замену (S-боксы, как ты можешь помнить из предыдущей статьи), и сложение с раундовым ключом.

Но вернемся к тройному DES, или Triple DES. В нем возникла необходимость, так как 56-битный ключ DES был уязвим к брутфорсу и с ростом вычислительных мощностей эта проблема вставала все острее. Используя доступную сегодня технологию, можно проверить один миллион ключей в секунду. Это означает, что потребуется более чем две тысячи лет, чтобы перебором дешифровать DES, используя компьютер только с одним процессором.

Но если взять компьютер с одним миллионом процессорных ядер, которые будут параллельно обрабатывать ключи, мы сможем проверить все множество ключей приблизительно за 20 часов. Когда был введен DES, стоимость такого компьютера равнялась нескольким миллионам долларов, но она быстро снизилась. Специальный компьютер был создан в 1998 году - и нашел ключ за 112 часов.

Чтобы решить проблему быстрого поиска ключа, умные зарубежные криптографы предложили использовать два ключа и применять DES дважды. Однако двойной DES оказался уязвим к атаке «встреча посередине». Чтобы реализовать эту атаку, злоумышленнику необходимо иметь открытый и соответствующий ему зашифрованный текст. Злоумышленник шифрует открытый текст на всех возможных ключах, записывая результаты в таблицу 1. Затем расшифровывает зашифрованный текст со всеми возможными ключами и записывает результат в таблицу 2. Далее злоумышленник ищет в таблицах 1 и 2 совпадения.

Атака данного типа заключается в переборе ключей на стороне шифрованного и открытого текста и требует примерно в четыре раза больше вычислений, чем перебор обычного ключа DES, и довольно много памяти для хранения промежуточных результатов. Тем не менее на практике атака осуществима, что делает алгоритм Double DES непригодным.

Совсем иначе дела обстоят с Triple DES. Использование трех ключей и применение алгоритмов в указанной на схеме последовательности продлило DES жизнь еще на несколько лет.


Замечательный DES

Так что же в DES такого замечательного? Этот алгоритм шифрования был подвергнут тщательному анализу. DES обладал двумя очень важными качествами блочных шифров - лавинностью и полнотой. Настало время расширить свой криптографический словарик!
Лавинный эффект означает, что небольшие изменения в исходном тексте (или ключе) могут вызвать значительные изменения в зашифрованном тексте.

Было доказано, что DES имеет все признаки этого свойства.

Хотя два блока исходного текста не совпадают только самым правым битом, блоки зашифрованного текста отличаются на 29 бит. Это означает, что изменение приблизительно в 1,5% исходного текста вызывает изменение приблизительно 45% зашифрованного текста.

Эффект полноты заключается в том, что каждый бит зашифрованного текста должен зависеть от многих битов исходного текста. Как мы уже выяснили, в DES применяются и перестановки, и замены - все преобразования устанавливают зависимость каждого бита шифротекста от нескольких битов исходного текста.

Где же применяется DES? Да почти везде, его реализации присутствуют в большинстве программных библиотек. Однако кто знает, насколько использование DES безопасно в наше время? Хотя IBM утверждала, что работа алгоритма была результатом 17 человеко-лет интенсивного криптоанализа, некоторые люди опасались, не вставило ли NSA в алгоритм лазейку, которая позволяет агентству легко дешифровывать перехваченные сообщения. Комитет по разведке сената США тщательно изучал этот вопрос и, разумеется, ничего не обнаружил, обвинения с NSA были сняты, результаты исследования тем не менее засекречены. Одним словом, в Америке еще долго крутились слухи и домыслы насчет того, стоит доверять DES или нет. Но, как я считаю, здесь ситуация описывается поговоркой «Умный не скажет, дурак не поймет». В конце концов NSA признало, что не могло доверить IBM столь важную миссию и внесло несколько корректировок вроде задания S-боксов.

Все время существования DES он был мишенью для различных методов криптоанализа. Криптоаналитики не переставали мериться машинами для вскрытия DES - за какое время кто сможет дешифровать текст. В связи с этим появилось несчетное количество различных модификаций этого алгоритма, и 3DES далеко не самая изощренная из них.

Шифрование данных чрезвычайно важно для защиты конфиденциальности. В этой статье я расскажу о различных типах и методах шифрования, которые используются для защиты данных сегодня.

Знаете ли вы?
Еще во времена Римской империи, шифрование использовалось Юлием Цезарем для того, чтобы сделать письма и сообщения нечитаемыми для врага. Это играло важную роль как военная тактика, особенно во время войн.

Так как возможности Интернета продолжают расти, все больше и больше наших предприятий проводятся на работу онлайн. Среди этого наиболее важными являются, интернет банк, онлайн оплата, электронные письма, обмен частными и служебными сообщениями и др., которые предусматривают обмен конфиденциальными данными и информацией. Если эти данные попадут в чужие руки, это может нанести вред не только отдельному пользователю, но и всей онлайн системе бизнеса.

Чтобы этого не происходило, были приняты некоторые сетевые меры безопасности для защиты передачи личных данных. Главными среди них являются процессы шифрования и дешифрования данных, которые известны как криптография. Существуют три основные методы шифрования, используемых в большинстве систем сегодня: хеширование, симметричное и асимметричное шифрование. В следующих строках, я расскажу о каждом из этих типов шифрования более подробно.

Типы шифрования

Симметричное шифрование

При симметричном шифровании, нормальные читабельные данные, известные как обычный текст, кодируется (шифруется), так, что он становится нечитаемым. Это скремблирование данных производится с помощью ключа. Как только данные будут зашифрованы, их можно безопасно передавать на ресивер. У получателя, зашифрованные данные декодируются с помощью того же ключа, который использовался для кодирования.

Таким образом ясно что ключ является наиболее важной частью симметричного шифрования. Он должен быть скрыт от посторонних, так как каждый у кого есть к нему доступ сможет расшифровать приватные данные. Вот почему этот тип шифрования также известен как "секретный ключ".

В современных системах, ключ обычно представляет собой строку данных, которые получены из надежного пароля, или из совершенно случайного источника. Он подается в симметричное шифрование программного обеспечения, которое использует его, чтобы засекретить входные данные. Скремблирование данных достигается с помощью симметричного алгоритма шифрования, такие как Стандарт шифрования данных (DES), расширенный стандарт шифрования (AES), или международный алгоритм шифрования данных (IDEA).

Ограничения

Самым слабым звеном в этом типе шифрования является безопасность ключа, как в плане хранения, так и при передаче аутентифицированного пользователя. Если хакер способен достать этот ключ, он может легко расшифровать зашифрованные данные, уничтожая весь смысл шифрования.

Еще один недостаток объясняется тем, что программное обеспечение, которое обрабатывает данные не может работать с зашифрованными данными. Следовательно, для возможности использовать этого программного обеспечение, данные сначала должны быть декодированы. Если само программное обеспечение скомпрометировано, то злоумышленник сможет легко получить данные.

Асимметричное шифрование

Асимметричный ключ шифрования работает аналогично симметричному ключу, в том, что он использует ключ для кодирования передаваемых сообщений. Однако, вместо того, чтобы использовать тот же ключ, для расшифровки этого сообщения он использует совершенно другой.

Ключ, используемый для кодирования доступен любому и всем пользователям сети. Как таковой он известен как «общественный» ключ. С другой стороны, ключ, используемый для расшифровки, хранится в тайне, и предназначен для использования в частном порядке самим пользователем. Следовательно, он известен как «частный» ключ. Асимметричное шифрование также известно, как шифрование с открытым ключом.

Поскольку, при таком способе, секретный ключ, необходимый для расшифровки сообщения не должен передаваться каждый раз, и он обычно известен только пользователю (приемнику), вероятность того, что хакер сможет расшифровать сообщение значительно ниже.

Diffie-Hellman и RSA являются примерами алгоритмов, использующих шифрование с открытым ключом.

Ограничения

Многие хакеры используют «человека в середине» как форму атаки, чтобы обойти этот тип шифрования. В асимметричном шифровании, вам выдается открытый ключ, который используется для безопасного обмена данными с другим человеком или услугой. Однако, хакеры используют сети обман, чтобы заставить вас общаться с ними, в то время как вас заставили поверить, что вы находитесь на безопасной линии.

Чтобы лучше понять этот тип взлома, рассмотрим две взаимодействующие стороны Сашу и Наташу, и хакера Сергея с умыслом на перехват их разговора. Во-первых, Саша отправляет сообщение по сети, предназначенное для Наташи, прося ее открытый ключ. Сергей перехватывает это сообщение и получает открытый ключ, связанный с ней, и использует его для шифрования и передачи ложного сообщения, Наташе, содержащего его открытый ключ вместо Сашиного.

Наташа, думая, что это сообщение пришло от Саши, теперь шифрует ее с помощью открытого ключа Сергея, и отправляет его обратно. Это сообщение снова перехватил Сергей, расшифровал, изменил (при желании), зашифровал еще раз с помощью открытого ключа, который Саша первоначально отправил, и отправил обратно к Саше.

Таким образом, когда Саша получает это сообщение, его заставили поверить, что оно пришло от Наташи, и продолжает не подозревать о нечестной игре.

Хеширование

Методика хеширования использует алгоритм, известный как хэш-функция для генерации специальной строки из приведенных данных, известных как хэш. Этот хэш имеет следующие свойства:

  • одни и те же данные всегда производит тот же самый хэш.
  • невозможно, генерировать исходные данные из хэша в одиночку.
  • Нецелесообразно пробовать разные комбинации входных данных, чтобы попытаться генерировать тот же самый хэш.

Таким образом, основное различие между хэшированием и двумя другими формами шифрования данных заключается в том, что, как только данные зашифрованы (хешированы), они не могут быть получены обратно в первозданном виде (расшифрованы). Этот факт гарантирует, что даже если хакер получает на руки хэш, это будет бесполезно для него, так как он не сможет расшифровать содержимое сообщения.

Message Digest 5 (MD5) и Secure Hashing Algorithm (SHA) являются двумя широко используемыми алгоритмами хеширования.

Ограничения

Как уже упоминалось ранее, почти невозможно расшифровать данные из заданного хеша. Впрочем, это справедливо, только если реализовано сильное хэширование. В случае слабой реализации техники хеширования, используя достаточное количество ресурсов и атаки грубой силой, настойчивый хакер может найти данные, которые совпадают с хэшем.

Сочетание методов шифрования

Как обсуждалось выше, каждый из этих трех методов шифрования страдает от некоторых недостатков. Однако, когда используется сочетание этих методов, они образуют надежную и высоко эффективную систему шифрования.

Чаще всего, методики секретного и открытого ключа комбинируются и используются вместе. Метод секретного ключа дает возможность быстрой расшифровки, в то время как метод открытого ключа предлагает более безопасный и более удобный способ для передачи секретного ключа. Эта комбинация методов известна как "цифровой конверт". Программа шифрования электронной почты PGP основана на технике "цифровой конверт".

Хеширования находит применение как средство проверки надежности пароля. Если система хранит хэш пароля, вместо самого пароля, он будет более безопасным, так как даже если хакеру попадет в руки этот хеш, он не сможет понять (прочитать) его. В ходе проверки, система проверит хэш входящего пароля, и увидит, если результат совпадает с тем, что хранится. Таким образом, фактический пароль будет виден только в краткие моменты, когда он должен быть изменен или проверен, что позволит существенно снизить вероятность его попадания в чужие руки.

Хеширование также используется для проверки подлинности данных с помощью секретного ключа. Хэш генерируется с использованием данных и этого ключа. Следовательно, видны только данные и хэш, а сам ключ не передается. Таким образом, если изменения будут сделаны либо с данными, либо с хэшем, они будут легко обнаружены.

В заключение можно сказать, что эти методы могут быть использованы для эффективного кодирования данных в нечитаемый формат, который может гарантировать, что они останутся безопасными. Большинство современных систем обычно используют комбинацию этих методов шифрования наряду с сильной реализацией алгоритмов для повышения безопасности. В дополнение к безопасности, эти системы также предоставляют множество дополнительных преимуществ, таких как проверка удостоверения пользователя, и обеспечение того, что полученные данные не могут быть подделаны.