Кодирование. Простые шифры и их дешифровка

4.1. Основы шифрования

Сущность шифрования методом замены заключается в следующем . Пусть шифруются сообщения на русском языке и замене подлежит каждая буква этих сообщений. Тогда, букве А исходного алфавита сопоставляется некоторое множество символов (шифрозамен) М А, Б – М Б, …, Я – М Я . Шифрозамены выбираются таким образом, чтобы любые два множества (М I и М J , i ≠ j ) не содержали одинаковых элементов (М I ∩ М J = Ø ).

Таблица, приведенная на рис.4.1, является ключом шифра замены. Зная ее, можно осуществить как шифрование, так и расшифрование.

А Б ... Я
М А М Б ... М Я

Рис.4.1. Таблица шифрозамен

При шифровании каждая буква А открытого сообщения заменяется любым символом из множества М А . Если в сообщении содержится несколько букв А , то каждая из них заменяется на любой символ из М А . За счет этого с помощью одного ключа можно получить различные варианты шифрограммы для одного и того же открытого сообщения. Так как множества М А, М Б, ..., М Я попарно не пересекаются, то по каждому символу шифрограммы можно однозначно определить, какому множеству он принадлежит, и, следовательно, какую букву открытого сообщения он заменяет. Поэтому расшифрование возможно и открытое сообщение определяется единственным образом.

Приведенное выше описание сущности шифров замены относится ко всем их разновидностям за исключением , в которых для зашифрования разных символов исходного алфавита могут использоваться одинаковые шифрозамены (т.е. М I ∩ М J ≠ Ø , i ≠ j ).

Метод замены часто реализуется многими пользователями при работе на компьютере. Если по забывчивости не переключить на клавиатуре набор символов с латиницы на кириллицу, то вместо букв русского алфавита при вводе текста будут печататься буквы латинского алфавита («шифрозамены»).

Для записи исходных и зашифрованных сообщений используются строго определенные алфавиты. Алфавиты для записи исходных и зашифрованных сообщений могут отличаться. Символы обоих алфавитов могут быть представлены буквами, их сочетаниями, числами, рисунками, звуками, жестами и т.п. В качестве примера можно привести пляшущих человечков из рассказа А. Конан Дойла () и рукопись рунического письма () из романа Ж. Верна «Путешествие к центру Земли».

Шифры замены можно разделить на следующие подклассы (разновидности).

Рис.4.2. Классификация шифров замены

I. Регулярные шифры. Шифрозамены состоят из одинакового количества символов или отделяются друг от друга разделителем (пробелом, точкой, тире и т.п.).

Лозунговый шифр. Для данного шифра построение таблицы шифрозамен основано на лозунге (ключе) – легко запоминаемом слове. Вторая строка таблицы шифрозамен заполняется сначала словом-лозунгом (причем повторяющиеся буквы отбрасываются), а затем остальными буквами, не вошедшими в слово-лозунг, в алфавитном порядке. Например, если выбрано слово-лозунг «ДЯДИНА», то таблица имеет следующий вид.

А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я
Д Я И Н А Б В Г Е Ё Ж З Й К Л М О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю

Рис.4.4. Таблица шифрозамен для лозунгового шифра

При шифровании исходного сообщения «АБРАМОВ» по приведенному выше ключу шифрограмма будет выглядеть «ДЯПДКМИ».

Полибианский квадрат. Шифр изобретен греческим государственным деятелем, полководцем и историком Полибием (203-120 гг. до н.э.). Применительно к русскому алфавиту и индийским (арабским) цифрам суть шифрования заключалась в следующем. В квадрат 6х6 выписываются буквы (необязательно в алфавитном порядке).


1 2 3 4 5 6
1 А Б В Г Д Е
2 Ё Ж З И Й К
3 Л М Н О П Р
4 С Т У Ф Х Ц
5 Ч Ш Щ Ъ Ы Ь
6 Э Ю Я - - -

Рис.4.5. Таблица шифрозамен для полибианского квадрата

Шифруемая буква заменяется на координаты квадрата (строка-столбец), в котором она записана. Например, если исходное сообщение «АБРАМОВ», то шифрограмма – «11 12 36 11 32 34 13». В Древней Греции сообщения передавались с помощью оптического телеграфа (с помощью факелов). Для каждой буквы сообщения вначале поднималось количество факелов, соответствующее номеру строки буквы, а затем номеру столбца.

Таблица 4.1. Частота появления букв русского языка в текстах

№ п/п Буква Частота, % № п/п Буква Частота, %
1 О 10.97 18 Ь 1.74
2 Е 8.45 19 Г 1.70
3 А 8.01 20 З 1.65
4 И 7.35 21 Б 1.59
5 Н 6.70 22 Ч 1.44
6 Т 6.26 23 Й 1.21
7 С 5.47 24 Х 0.97
8 Р 4.73 25 Ж 0.94
9 В 4.54 26 Ш 0.73
10 Л 4.40 27 Ю 0.64
11 К 3.49 28 Ц 0.48
12 М 3.21 29 Щ 0.36
13 Д 2.98 30 Э 0.32
14 П 2.81 31 Ф 0.26
15 У 2.62 32 Ъ 0.04
16 Я 2.01 33 Ё 0.04
17 Ы 1.90

Существуют подобные таблицы для пар букв (биграмм). Например, часто встречаемыми биграммами являются «то», «но», «ст», «по», «ен» и т.д. Другой прием вскрытия шифрограмм основан на исключении возможных сочетаний букв. Например, в текстах (если они написаны без орфографических ошибок) нельзя встретить сочетания «чя», «щы», «ьъ» и т.п.

Для усложнения задачи вскрытия шифров однозначной замены еще в древности перед шифрованием из исходных сообщений исключали пробелы и/или гласные буквы. Другим способом, затрудняющим вскрытие, является шифрование биграммами (парами букв).

4.3. Полиграммные шифры

Полиграммные шифры замены - это шифры, в которых одна шифрозамена соответствует сразу нескольким символам исходного текста.

Биграммный шифр Порты . Шифр Порты, представленный им в виде таблицы, является первым известным биграммным шифром. Размер его таблицы составлял 20 х 20 ячеек; наверху горизонтально и слева вертикально записывался стандартный алфавит (в нем не было букв J, К, U, W, X и Z). В ячейках таблицы могли быть записаны любые числа, буквы или символы - сам Джованни Порта пользовался символами - при условии, что содержимое ни одной из ячеек не повторялось. Применительно к русскому языку таблица шифрозамен может выглядеть следующим образом.


А Б В Г Д Е
(Ё)
Ж З И
(Й)
К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я
А 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031
Б 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062
В 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093
Г 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
Д 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
Е (Ё) 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
Ж 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
З 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
И (Й) 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
К 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
Л 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
М 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
Н 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
О 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
П 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
Р 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
С 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
Т 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
У 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
Ф 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
Х 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
Ц 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
Ч 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
Ш 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
Щ 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
Ъ 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
Ы 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
Ь 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
Э 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
Ю 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
Я 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961

Рис.4.10. Таблица шифрозамен для шифра Порты

Шифрование выполняется парами букв исходного сообщения. Первая буква пары указывает на строку шифрозамены, вторая - на столбец. В случае нечетного количества букв в исходном сообщении к нему добавляется вспомогательный символ («пустой знак»). Например, исходное сообщение «АБ РА МО В», зашифрованное – «002 466 355 093». В качестве вспомогательного символа использована буква «Я».

Шифр Playfair (англ. «Честная игра»). В начале 1850-х гг. Чарлз Уитстон придумал так называемый «прямоугольный шифр». Леон Плейфер, близкий друг Уитстона, рассказал об этом шифре во время официального обеда в 1854 г. министру внутренних дел лорду Пальмерстону и принцу Альберту. А поскольку Плейфер был хорошо известен в военных и дипломатических кругах, то за творением Уитстона навечно закрепилось название «шифр Плейфера».

Данный шифр стал первым буквенным биграммным шифром (в биграммной таблице Порты использовались символы, а не буквы). Он был предназначен для обеспечения секретности телеграфной связи и применялся британскими войсками в Англо-бурской и Первой мировой войнах. Им пользовалась также австралийская служба береговой охраны островов во время Второй мировой войны.

Шифр предусматривает шифрование пар символов (биграмм). Таким образом, этот шифр более устойчив к взлому по сравнению с шифром простой замены, так как затрудняется частотный анализ. Он может быть проведен, но не для 26 возможных символов (латинский алфавит), а для 26 х 26 = 676 возможных биграмм. Анализ частоты биграмм возможен, но является значительно более трудным и требует намного большего объема зашифрованного текста.

Для шифрования сообщения необходимо разбить его на биграммы (группы из двух символов), при этом, если в биграмме встретятся два одинаковых символа, то между ними добавляется заранее оговоренный вспомогательный символ (в оригинале – X , для русского алфавита - Я ). Например, «зашифрованное сообщение» становится «за ши фр ов ан но ес оЯ об ще ни еЯ ». Для формирования ключевой таблицы выбирается лозунг и далее она заполняется по правилам шифрующей системы Трисемуса. Например, для лозунга «ДЯДИНА» ключевая таблица выглядит следующим образом.

Д Я И Н А Б
В Г Е Ё Ж З
Й К Л М О П
Р С Т У Ф Х
Ц Ч Ш Щ Ъ Ы
Ь Э Ю - 1 2

Рис.4.11. Ключевая таблица для шифра Playfair

Затем, руководствуясь следующими правилами, выполняется зашифровывание пар символов исходного текста:

1. Если символы биграммы исходного текста встречаются в одной строке, то эти символы замещаются на символы, расположенные в ближайших столбцах справа от соответствующих символов. Если символ является последним в строке, то он заменяется на первый символ этой же строки.

2. Если символы биграммы исходного текста встречаются в одном столбце, то они преобразуются в символы того же столбца, находящимися непосредственно под ними. Если символ является нижним в столбце, то он заменяется на первый символ этого же столбца.

3. Если символы биграммы исходного текста находятся в разных столбцах и разных строках, то они заменяются на символы, находящиеся в тех же строках, но соответствующие другим углам прямоугольника.

Пример шифрования.

Биграмма «за» формирует прямоугольник – заменяется на «жб»;

Биграмма «ши» находятся в одном столбце – заменяется на «юе»;

Биграмма «фр» находятся в одной строке – заменяется на «хс»;

Биграмма «ов» формирует прямоугольник – заменяется на «йж»;

Биграмма «ан» находятся в одной строке – заменяется на «ба»;

Биграмма «но» формирует прямоугольник – заменяется на «ам»;

Биграмма «ес» формирует прямоугольник – заменяется на «гт»;

Биграмма «оя» формирует прямоугольник – заменяется на «ка»;

Биграмма «об» формирует прямоугольник – заменяется на «па»;

Биграмма «ще» формирует прямоугольник – заменяется на «шё»;

Биграмма «ни» формирует прямоугольник – заменяется на «ан»;

Биграмма «ея» формирует прямоугольник – заменяется на «ги».

Шифрограмма – «жб юе хс йж ба ам гт ка па шё ан ги».

Для расшифровки необходимо использовать инверсию этих правил, откидывая символы Я (или Х ), если они не несут смысла в исходном сообщении.

Он состоял из двух дисков – внешнего неподвижного и внутреннего подвижного дисков, на которые были нанесены буквы алфавита. Процесс шифрования заключался в нахождении буквы открытого текста на внешнем диске и замене ее на букву с внутреннего диска, стоящую под ней. После этого внутренний диск сдвигался на одну позицию и шифрование второй буквы производилось уже по новому шифралфавиту. Ключом данного шифра являлся порядок расположения букв на дисках и начальное положение внутреннего диска относительно внешнего.

Таблица Трисемуса. Одним из шифров, придуманных немецким аббатом Трисемусом, стал многоалфавитный шифр, основанный на так называемой «таблице Трисемуса» - таблице со стороной равной n , где n – количество символов в алфавите. В первой строке матрицы записываются буквы в порядке их очередности в алфавите, во второй – та же последовательность букв, но с циклическим сдвигом на одну позицию влево, в третьей – с циклическим сдвигом на две позиции влево и т.д.

А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я
Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я А
В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я А Б
Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я А Б В
Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я А Б В Г
Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я А Б В Г Д
Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я А Б В Г Д Е
Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я А Б В Г Д Е Ё
З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я А Б В Г Д Е Ё Ж
И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я А Б В Г Д Е Ё Ж З
Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я А Б В Г Д Е Ё Ж З И
К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я А Б В Г Д Е Ё Ж З И Й
Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я А Б В Г Д Е Ё Ж З И Й К
М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я А Б В Г Д Е Ё Ж З И Й К Л
Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я А Б В Г Д Е Ё Ж З И Й К Л М
О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я А Б В Г Д Е Ё Ж З И Й К Л М Н
П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я А Б В Г Д Е Ё Ж З И Й К Л М Н О
Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я А Б В Г Д Е Ё Ж З И Й К Л М Н О П
С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р
Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С
У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т
Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У
Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф
Ц Ч Ш Щ Ъ Ы Ь Э Ю Я А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х
Ч Ш Щ Ъ Ы Ь Э Ю Я А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц
Ш Щ Ъ Ы Ь Э Ю Я А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч
Щ Ъ Ы Ь Э Ю Я А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш
Ъ Ы Ь Э Ю Я А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ
Ы Ь Э Ю Я А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ
Ь Э Ю Я А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы
Э Ю Я А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь
Ю Я А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э
Я А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю

Рис.4.17. Таблица Трисемуса

Первая строка является одновременно и алфавитом для букв открытого текста. Первая буква текста шифруется по первой строке, вторая буква по второй и так далее. После использования последней строки вновь возвращаются к первой. Так сообщение «АБРАМОВ» приобретет вид «АВТГРУЗ».

Система шифрования Виженера. В 1586 г. французский дипломат Блез Виженер представил перед комиссией Генриха III описание простого, но довольно стойкого шифра, в основе которого лежит таблица Трисемуса.

Перед шифрованием выбирается ключ из символов алфавита. Сама процедура шифрования заключается в следующем. По i-ому символу открытого сообщения в первой строке определяется столбец, а по i-ому символу ключа в крайнем левом столбце – строка. На пересечении строки и столбца будет находиться i-ый символ, помещаемый в шифрограмму. Если длина ключа меньше сообщения, то он используется повторно. Например, исходное сообщение «АБРАМОВ», ключ – «ДЯДИНА», шифрограмма – «ДАФИЪОЁ».

Справедливости ради, следует отметить, что авторство данного шифра принадлежит итальянцу Джованни Батиста Беллазо, который описал его в 1553 г. История «проигнорировала важный факт и назвала шифр именем Виженера, несмотря на то, что он ничего не сделал для его создания» . Беллазо предложил называть секретное слово или фразу паролем (ит. password; фр. parole - слово).

В 1863 г. Фридрих Касиски опубликовал алгоритм атаки на этот шифр, хотя известны случаи его взлома шифра некоторыми опытными криптоаналитиками и ранее. В частности, в 1854 г. шифр был взломан изобретателем первой аналитической вычислительной машины Чарльзом Бэббиджем, хотя этот факт стал известен только в XX в., когда группа ученых разбирала вычисления и личные заметки Бэббиджа . Несмотря на это шифр Виженера имел репутацию исключительно стойкого к «ручному» взлому еще долгое время. Так, известный писатель и математик Чарльз Лютвидж Доджсон (Льюис Кэрролл) в своей статье «Алфавитный шифр», опубликованной в детском журнале в 1868 г., назвал шифр Виженера невзламываемым. В 1917 г. научно-популярный журнал «Scientific American» также отозвался о шифре Виженера, как о неподдающемся взлому .

Роторные машины. Идеи Альберти и Беллазо использовались при создании электромеханических роторных машин первой половины ХХ века. Некоторые из них использовались в разных странах вплоть до 1980-х годов. В большинстве из них использовались роторы (механические колеса), взаимное расположение которых определяло текущий алфавит шифрозамен, используемый для выполнения подстановки. Наиболее известной из роторных машин является немецкая машина времен Второй мировой войны «Энигма» .

Выходные штыри одного ротора соединены с входными штырями следующего ротора и при нажатии символа исходного сообщения на клавиатуре замыкали электрическую цепь, в результате чего загоралась лампочка с символом шифрозамены.

Рис.4.19. Роторная система Энигмы [www.cryptomuseum.com ]

Шифрующее действие «Энигмы» показано для двух последовательно нажатых клавиш - ток течёт через роторы, «отражается» от рефлектора, затем снова через роторы.

Рис.4.20. Схема шифрования

Примечание. Серыми линиями показаны другие возможные электрические цепи внутри каждого ротора. Буква A шифруется по-разному при последовательных нажатиях одной клавиши, сначала в G , затем в C . Сигнал идет по другому маршруту за счёт поворота одного из роторов после нажатия предыдущей буквы исходного сообщения.

3. Дайте характеристику разновидностям шифров замены.

Если вы тот, кто использует div теги для всего что есть на сайте, эта статья для вас. Мы сфокусируемся на том, как писать чистый семантический HTML код, используя валидную разметку. Вы увидите на практике, как можно минимизировать количество div тегов в вашем HTML коде. Вы научитесь семантической верстке не только в теории, но и на примерах. Написание правильных семантических шаблонов упрощает жизнь не только себе, но и команде в целом. Ну и проще для браузеров, которые интерпретируют код. Чем меньше кода, тем быстрее грузиться страница. Это также позволяет сохранить время и простоту понимания кода, при создании больших проектов. Другими словами, семантическая верстка - это необходимое условие создания качественного сайта.

Понятие семантической верстки

Семантика в HTML верстке - это соответствие тегов к информации находящейся внутри них. Семантика кода также достигается путем уменьшения количества тегов. Таким образом, мы создаем чистый, читабельный, валидный HTML код. Такая страница будет быстрее грузиться и ранжироваться поисковыми системами.

Как достигнуть семантики кода?

Это просто, главное делать все проще и стараться как можно больше все выносить в CSS стили, а JS код в отдельный файл. По классике, на одной HTML странице должен подключаться только один CSS файл и один JS файл. По поводу HTML, на каждом сайте своя ситуация. Ведь каждый из них уникален. Сейчас рассмотрим основные моменты, на которых претыкаются верстальщики:

  • Заголовки должны выделяться тегами H1, H2, H3, H4, но никак не B и STRONG.
  • При создании меню лучше всего использовать UL список, внутри которого будут лежать LI элементы меню. Этим мы показываем, что ссылки равносильные. Если имеются пункты второй вложенности, соответственно создаем внутри первичного LI элемента еще один UL список.
  • Все служебные картинки (иконки, стрелки, пульки…) должны быть прописаны в CSS коде. В HTML, тег IMG должен использоваться только для больших картинок. Большие, понятие растяжимое, скажем так, начиная с превьюшек 100 x 100 и выше.
  • Параграф блока текста создается с помощью P тега, но никак не DIV.
  • Не использовать атрибуты STYLE внутри HTML тега. Все стили выносить в отдельный CSS файл.
  • То же самое по поводу JavaScript.
  • Соблюдать иерархию и логику документа. Более важные элементы страницы должны стоять в начале HTML кода, менее в конце. С помощью CSS стилей и DIV блоков, этого достичь не сложно, при любой схеме шаблона.
  • Может быть, еще что-то забыл… если да, поправьте меня в комментариях к статье.

Для большей ясности сути вопроса, смотрите схему семантической разметки текста:

Семантическая верстка на практике - примеры HTML + CSS кода

Теперь закрепим все эти принципы семантической верстки на практике. Будем разбирать конкретные ситуации.

Удаляем ненужные div теги

Я видел, что многие люди создают div тег около form или ul. Зачем создавать дополнительный div, который вам не нужен? Вы можете достичь такого же результата, дописав несколько указаний в CSS файле.

Пример 1:

Пример ниже показывает, как вы можете убрать div тег и дописать тот же стиль к form селектору.

Пример 2:

Иногда мы обвертываем контент в div блок, чтобы создать отступы, как показано на примере слева. Но если каждый из блоков имеет заголовок h4, мы можем просто применить margin отступ к h4 селектору и убрать лишний div тег.

Используем семантическую разметку кода

Как упоминалось ранее, вы всегда должны использовать семантическую разметку для HTML кода. Но этого нельзя достичь без CSS файла стилей.

Пример:

Картинка ниже показывает разницу между div разметкой и семантической разметкой без css стилей.

Минимизируем использование div тегов

Может быть, вы видели шаблоны, где div теги везде… они меня бесят. Имели ли вы лишний закрывающий тег /div, или не закрытый div? Я уверен, каждый верстальщик сталкивался с подобной проблемой, когда рядом стоит 3-4 div тега. Чтобы не путаться, нужно минимизировать использование div, так будет проще отслеживать ошибки.

Пример 1:

Вместо использования div для создания навигационного пути, можно использовать p тег.

Или подстановки. Составляется таблица однозначного соответствия алфавита исходного текста и кодовых символов, и в соответствии с этой таблицей происходит кодирование один в один. Чтобы раскодировать, нужно знать кодовую таблицу.

Существует большое число кодов, применяемых в разных областях человеческой жизни. Общеизвестные коды применяются по большей части для удобства передачи информации тем или иным способом. Если же кодовая таблица известна только передающему и принимающему, то получается довольно примитивный шифр, который легко поддаётся частотному анализу. Но если человек далёк от теории кодирования и не знаком с частотным анализом текста, то разгадать ему такие шифры довольно проблематично.

A1Z26

Простейший шифр. Называется A1Z26 или в русском варианте А1Я33. Буквы алфавита заменяются на их порядковые номера.

«NoZDR» можно зашифровать как 14-15-26-4-18 или 1415260418.

Азбука Морзе

Буквам, цифрам и некоторым знакам сопоставляется набор точек и тире, которые можно передавать по радио, звуком, стуком, световым телеграфом и отмашкой флажками. Более подробно про морзянку можно прочитать на страничке .

Шрифт Брайля

Брайль – это система тактильного чтения для слепых, состоящая из шеститочечных знаков, называемых ячейками. Ячейка состоит из трёх точек в высоту и из двух точек в ширину.

Различные брайлевские знаки формируются путем помещения точек в различные положения внутри ячейки.

Для удобства точки описываются при чтении следующим образом: 1, 2, 3 слева сверху вниз и 4, 5, 6 справа сверху вниз.

При составлении текста придерживаются следующих правил:

    между словами пропускается одна ячейка (пробел);

    после запятой и точки с запятой ячейка не пропускается;

    тире пишется слитно с предыдущим словом;

    перед числом ставится цифровой знак.

Кодовые страницы

В компьютерных квестах и загадках можно кодировать буквы в соответствии с их кодами в различных кодовых страницах - таблицах, используемых на компьютерах. Для кириллических текстов лучше всего пользоваться самыми распространёнными кодировками: Windows-1251, KOI8, CP866, MacCyrillic. Хотя для сложных шифровок можно выбрать и что-то более экзотичное.

Кодировать можно шестнадцатеричными числами, а можно и переводить их в десятичные. Например, буква Ё в KOI8-R имеет код B3 (179), в CP866 - F0 (240), а в Windows-1251 - A8 (168). А можно буквам в правых таблицах искать соответствие в левых, тогда текст получится набранным «кракозябрами» типа èαᬫº∩íαδ (866→437) или Êðàêîçÿáðû (1251→Latin-1).

Вот здесь https://www.artlebedev.ru/tools/decoder/advanced/ есть неплохой раскодировщик таких зашифрованных текстов:)

Масонский шифр

Масонский шифр известен также под названием «пигпен» (Pigpen) или «крестики-нолики». Этот шифр представляет собой простой шифр замены, в котором каждой букве алфавита соответствует графический символ, вычисляемой по одной из приведённых ниже сеток.

Чтобы зашифровать определённую букву при помощи этого шифра, нужно сначала определить место, где эта буква находится в одной из четырёх сеток, а затем нарисовать ту часть сетки, которая окружает эту букву. То есть, как-то так:

Если знать ключ (то, как буквы расположены в сетках), то разгадать такую надпись довольно легко. А вот если буквы в сетках изначально расставлены по какому-то неизвестному правилу (с ключевым словом, поочерёдно или вообще случайно), то в этой ситуации всегда может помочь

Использование графических символов вместо букв не является большим препятствием для криптоанализа, и эта система идентична другим простым схемам моноалфавитного замещения. Благодаря своей простоте, данный шифр часто упоминается в детских книжках про шифрование, тайнопись и всякие другие шпионские штучки.

Точное время происхождения шифра неизвестно, но некоторые из найденных записей этой системы датируются XVIII веком. Вариации этого шифра были использованы орденом розенкрейцеров и масонами. Последние использовали его в своих тайных документах и переписках довольно часто, поэтому шифр и стали называть шифром масонов. Даже на надгробиях масонов можно увидеть надписи, использующие данный шифр. Похожая система шифрования использовалась во время гражданской войны в США армией Джорджа Вашингтона, а также заключенными в федеральных тюрьмах Конфедераций Штатов США.

Ниже приведены два (синий и красный) варианта заполнения сетки таких шифров. Буквы расположены парами, вторая буква из пары рисуется символом с точкой:

Авторские шифры

Шифров, где одному символу алфавита (букве, цифре, знаку препинания) соответствует один (реже больше) графический знак, придумано великое множество. Большинство из них придуманы для использования в фантастических фильмах, мультфильмах и компьютерных играх. Вот некоторые из них:

Пляшущие человечки

Один из самых известных авторских шифров подстановки - это « ». Его придумал и описал английский писатель Артур Конан Дойл в одном из своих произведений про Шерлока Холмса. Буквы алфавита заменяются символами, похожими на человечков в разных позах. В книге человечки были придуманы не для всех букв алфавита, поэтому фанаты творчески доработали и переработали символы, и получился вот такой шифр:

Алфавит Томаса Мора

А вот такой алфавит описал в своём трактате «Утопия» Томас Мор в 1516 году:

Шифр Билла Шифра из мультсериала "Гравити Фолз"

Джедайский алфавит из "Звёздных войн"

Инопланетянский алфавит из "Футурамы"

Криптонский алфавит Супермена

Алфавиты биониклов

И судя по тем рассуждениям, которые были в комментариях, мне бы хотелось прояснить один важный момент, который нужно понимать, прежде чем говорить о языке HTML и тегах, которые в нем используются.

Момент этот заключается в понимании такого важного понятия, как семантика кода . Давайте в этой заметке попытаемся разобраться с этим вопросом и зачем это все нужно.

Что такое семантика кода ?

Семантика (с лингвистической точки зрения) – это смысл, информационное содержание языка или отдельной его единицы.

Как мы знаем, структурными единицами языка HTML являются теги, они и являются теми самими отдельными единицами, которые несут смысл, информационное содержание.

Когда перед нами есть какая-то информация, которую нужно представить на веб-странице в Интернете, в первую очередь, мы должны объяснить компьютеру, какая часть этой информации, чем является. Не зная об этом, он просто не сможет правильно отобразить все содержимое.

Таким образом, когда мы создаем веб-страницу, с помощью языка HTML , мы объясняем компьютеру, какой элемент, какую роль должен играть на странице.

Мы должны понимать, что содержание каждого элемента веб-страницы должно быть заключено в теги, которые бы соответствовали их логическому и смысловому назначению.

Т.е. заголовки в тексте заключались бы в теги h 1-h 6, абзацы в теги p , списки в теги ul /ol (li ) и.т.д.

Код, который соответствует этим условиям, называют семантическим т.е. каждому элементу на веб-странице, соответствует правильное смысловое значение.

А теперь вопрос, можем ли мы заголовок на веб-странице, заключить в тег абзаца?
А почем нет? Конечно, можем. Многие скажут, но ведь при этом мы теряем оформление, которое имеют заголовки h 1-h 6. Но, на самом деле, оформление здесь никакой роли не играет. С помощью стилей CSS , мы можем присвоить любому абзацу точно такое же оформление, которое было у элемента h 1-h 6.

Вывод, который мы с вами должны сделать, исходя из этого, семантика кода и оформление это две разные вещи, которые не нужно путать между собой. Определенное оформление каждому тегу присваивается, но его можно легко изменить,а вот изменить семантическое значение этого тега уже нельзя.

Мы можем заключить заголовок в абзац, но при этом теряется семантичность кода и этот текст будет нести совершенно иной смысл.

Поэтому, прежде чем заключать элемент в какой-либо тег, желательно подумать, а какую функцию, смысл он несет на странице?

Возникает логичный вопрос, а зачем в таком случае вообще нужна семантика кода?

Зачем заголовки делать заголовками, абзацы делать абзацами, аббревиатуры делать аббревиатурами и.т.д.?

По моему мнению, есть несколько причин, которые помогут вам склониться в сторону семантического кода. Что нам дает семантическая разметка?

1) Информацию о том, как браузеру по умолчанию отображать тот или иной элемент на странице;

Например, мы знаем, что заголовок h 1, если не задавать ему никаких специальных стилей, отображается на странице размером 2em и жирным шрифтом. Но, по моему мнению это самая не существенная причина.

2) Семантический код лучше читается и воспринимается поисковыми системами;

Считается, что страница, которая имеет семантическую разметку, при прочих равных условиях, будет выдаваться выше в результатах выдачи поисковых систем, чем страница с несемантическим кодом.

2) Код более понятный для человека;

Согласитесь, что разобраться с кодом, где все четко прописано, что эта часть текста является абзацем, эта аббревиатурой, и.т.д. намного легче, чем с кодом, где вся информация идет одной сплошной структурой и не понятно, что хотел сказать автор.

3) Проще получить доступ к элементу и как следствие большая гибкость.

Делая код семантическим, вы сможете намного проще обращаться к этим элементам с помощью специальных средств, которые работают с элементами на веб-страницах, например, языки CSS , Javascript и др.

Если вы заключите все аббревиатуры на вашей странице в тег abbr , то в CSS , для того, чтобы все аббревиатуры на вашей странице стали красными достаточно будет просто прописать.

abbr {color :red ;}

Вместо того, чтобы в HTML выделять и прописывать это правило к каждой отдельно взятой аббревиатуре.

Это всего лишь один пример, которых можно привести массу.

По этим причинам нужно понимать, что семантический код просто дает нашему документу больше возможностей. Мы можем применять какие-то теги для улучшения семантики сайта и получать при этом большую функциональность, либо их не применять и не получать эти выгоды.

Дело ваше!

Вы должны сами для себя принять это решение.