Компьютерные историиистории в деталях о компьютерных деталях. Что такое мэйнфрейм - сервер или хранилище данных

В наше время производители компьютеров не всегда используют термин «мэйнфрейм» для обозначения больших электронно-вычислительных машин. Вместо этого большинство из них называют так компьютеры для коммерческого использования (большие или маленькие) либо серверы. Причем к мэйнфреймам относят самый большой тип сервера, использующийся сейчас. IBM, например, называет так свой сервер z9.

Что такое мэйнфрейм? Согласно одной из распространенных точек зрения, это компьютер, который может поддерживать тысячи приложений и устройств ввода/вывода, а также обслуживать одновременно тысячи пользователей.

Применение мэйнфреймов в качестве серверов и хранилищ данных

Что такое мэйнфрейм как сервер? Производство таких машин постоянно наращивается. Бизнес нуждается в больших комплектах серверов, включающих серверы транзакций, баз данных, электронной почты и веб-серверы. Большие комплекты иногда называются серверными фермами. Для реализации их функций могут применяться различные по объему средства: от кластеров смонтированных на стойке персональных компьютеров до самых мощных мэйнфреймов, производимых на данный момент.

Мэйнфрейм как хранилище данных

Что такое мэйнфрейм в системе корпорации? Это центральное хранилище данных в центре обработки данных. К нему подключаются пользователи с менее мощными устройствами, такими как рабочие станции или терминалы.

Централизованные и распределенные вычисления

Наличие мэйнфрейма в организации часто определяет централизованную форму вычислений в противовес распределенной форме. Централизация данных в одном хранилище мэйнфрейма ограждает пользователей от необходимости обновления более одной копии коммерческих данных. Это, в свою очередь, увеличивает вероятность того, что данные являются актуальными.

Разница между централизованными и распределенными вычислениями постепенно расплывается. По мере того как маленькие машины начинают увеличивать свои мощности обработки, мэйнфремы становятся более гибкими и универсальными.

Что такое мэйнфрейм в условиях современного рынка? Быстро меняющийся рынок постоянно требует от бизнеса переоценивать стратегии развития информационных технологий. В результате в большинстве случаев мэйнфреймы не используются в сочетании с сетями из небольших серверов. Способность динамически перераспределять аппаратные и программные ресурсы (процессоры, память и соединения), в то время как приложения продолжают функционировать, подчеркивает гибкий развивающийся характер современных мэйнфреймов.

Характеристики мэйнфреймов

К характеристикам относятся:

  • высокая надежность и безопасность;
  • большое количество средств ввода-вывода;
  • большие коэффициенты использования вычислительных и аппаратных средств, позволяющие обеспечить большую пропускную способность;
  • высокая стабильность, позволяющая мэйнфреймам устойчиво работать непрерывно на протяжении десятков лет;
  • высокая доступность, являющаяся одной из основных причин их долголетия, это объясняется тем, что они используются в приложениях, где простои нежелательны и даже катастрофичны.

Различие между мэйнфреймами и суперкомпьютерами

Суперкомпьютеры - это мощные компьютеры, предназначенные для обработки данных с максимально возможной скоростью. Например, анализ и предсказание прогнозов погоды осуществляются суперкомпьютерами. Данные компьютеры очень дорогие и потребляют очень много электроэнергии.

Назначение мэйнфрейма - проведение вычислений с применением больших объемов данных. Данные компьютеры в основном используются в больших организациях. Они предоставляют доступ к данным, хранящимся в больших базах данных.

Таким образом, основное отличие мэйнфреймов от суперкомпьютеров заключается в их назначении. Мэйнфреймы применяются, как правило, в качестве серверов, в то время как суперкомпьютеры используются для решения научных задач.

Мэйнфрейм (англ. Mainframe ) - данный термин имеет два основных значения:

  • Большая универсальная ЭВМ - высокопроизводительный компьютер со значительным объемом оперативной и внешней памяти, предназначенный для организации централизованных хранилищ данных большой емкости и выполнения интенсивных вычислительных работ.
  • Компьютер с архитектурой IBM System/360, 370, 390, zSeries.

История Мэйнфрейма (Mainframe )

Историю мейнфреймов принято отсчитывать с появления в 1964 году универсальной компьютерной системы IBM System/360, на разработку которой корпорация IBM затрачувала $ 5 млрд. Сам термин «мэйнфрейм» происходит от названия типовых процессорных стоек этой системы. В 1960-х - начале 1980-х годов System/360 была безоговорочным лидером на рынке. Ее клоны выпускались во многих странах, в том числе - в СССР (серия ЕС ЭВМ).

Мэйнфреймы IBM используются в более чем 25 000 организациях по всему миру (без учета клонов). Около 70% всех важных бизнес-данных хранятся на мэйнфреймах.

В начале 1990-х начался кризис рынка мейнфреймов, пик которого пришелся на 1993 год. Многие аналитики заговорили о полном вымирании мейнфреймов, о переходе от централизованной обработки информации к распределенной (с помощью персональных компьютеров, соединенных двухуровневой архитектурой «клиент-сервер»). Многие стали воспринимать мейнфреймы как вчерашний день вычислительной техники, считая Unix - и PC -серверы более современными и перспективными.

Важной причиной резкого уменьшения интереса к мейнфреймам в 80-х годах было бурное развитие PC и Unix-ориентированных машин, в которых благодаря применению новой технологии создания КМОП -микросхем удалось значительно уменьшить энергопотребление, а их размеры достигли размеров настольных станций. В то же время для установки мейнфреймов требовались огромные площади, а использование устаревших полупроводниковых технологий влекло за собой необходимость водяного охлаждения.Итак, несмотря на их вычислительную мощность, за дороговизны и сложности обслуживания мейнфреймы все меньше пользовались спросом на рынке вычислительных средств.

Еще один аргумент против мейнфреймов состоял в том, что в них не соблюдается основной принцип открытых систем, а именно - совместимость с другими платформами.Виднисшись к критике конструктивно, руководство компании IBM, основного производителя аппаратного и программного обеспечения мейнфреймов, выработало кардинально новую стратегию в отношении этой платформы с целью резко повысить производительность снизить стоимость владения, а также добиться высокой надежности и доступности систем. Достижению этих планов способствовали важные перемены в технологической сфере: на смену биполярной технологии изготовления процессоров для мейнфреймов пришла технология КМОП. Переход на новую элементную базу позволил значительно снизить уровень энергопотребления мейнфреймов и упростить требования к системе электропитания и охлаждения (водяное охлаждение было заменено воздушным). Мэйнфреймы на базе КМОП-микросхем быстро прибавляли в производительности и теряли в габаритах. Самым кардинальным же событием стал переход на 64-разрядную архитектуру zArchitecture. Современные мейнфреймы перестали быть закрытой платформой: они способны поддерживать на одной машине сотни серверов с различными ОС, включая Linux.

Согласно одному из прогнозов Gartner Group, последний мэйнфрейм предполагалось устранить в 1993 году. Срок этого прогноза давно закончился, а рынок мейнфреймов остается стабильным, и их продажи ежегодно растут.

С 1994 года вновь начался рост интереса к мэйнфреймов. Дело в том, что, как показала практика, централизованная обработка на основе мейнфреймов решает многие задачи построения информационных систем масштаба предприятия проще и дешевле чем распределенная.

Характеристики Mainframe

  • Среднее время наработки на отказ оценивается в 12-15 лет. Надежность мейнфреймов - это результат почти 60-летнего их совершенствования. Мейнфреймы могут изолировать и исправлять большинство аппаратных и программных ошибок.
  • Дублирования . Резервные процессоры. Запасные микросхемы памяти. Альтернативные пути доступа к периферийным устройствам. Горячая замена всех элементов вплоть до каналов, плат памяти и центральных процессоров. Группа разработки VM / ESA затрачувала уже двадцать лет на удаление ошибок из операционной системы, и была в результате создана система, которую можно использовать в самых ответственных случаях.
  • Целостность данных . В мэйнфреймах используется память, исправляющая ошибки. Ошибки не приводят к разрушению данных в памяти, или данных, ожидающихустройства ввода-вывода. Дисковые подсистемы построены на основе RAID -массивов с горячей заменой и встроенных средств резервного копирования гарантируют от потери данных.
  • мейнфреймов может составлять 80% -95% от их пиковой производительности. Для UNIX-серверов, конечно, рабочая нагрузка не может превышать 20% -30% от пиковой загрузки. Серверы типа Unix или тем более Windows чтобы быть устойчивыми должны выполнять один приложение, то есть под каждый приложение типабазы данных, промежуточного ПО. или интернет-сервера должна быть выделена отдельная машина, тогда как S/390 тянуть все сразу, причем все приложения будут тесно сотрудничать и использовать общие куски ПО.
  • Пропускная способность подсистемы ввода-вывода мэйнфреймов разработана так, чтобы работать в среде с высоким рабочим нагрузкам на ввод-вывод. Ряд тестов показал что мэйнфрейм может обрабатывать на 400-500% более интенсивное ввода-вывода чем SUN E10000 или серверы HEWLETT-PACKARD класса T.
  • Масштабирование может быть как вертикальным так и горизонтальным. Вертикальное масштабирование обеспечивается линейкой процессоров с производительностью от 5 до 200 MIPS и наращиванием до 12 центральных процессоров в одном компьютере. Горизонтальное масштабирование реализуется объединением ЭВМ в ParallelSysplex - многомашинный кластер, выглядит с точки зрения пользователя единым компьютером. Всего в ParallelSysplex можно объединить до 32 машин. Географически распределенный ParallelSysplex называют GeoPlex. В случае использования ОС VM для совместной работы можно объединить любое количество компьютеров.Программное масштабирование - на одном мейнфреймов может быть сконфигурирован фактически безграничное количество различных серверов. Причем все серверы могут быть изолированы друг от друга так будто они выполняются на отдельных выделенных компьютерах и в тоже время совместно использовать аппаратные и программные ресурсы и данные.
  • Доступ к данным . Поскольку данные хранятся на одном сервере, прикладные программы не нуждаются сборе исходной информации из множества источников, не требуется дополнительное дисковое пространство для их временного хранения не возникают сомнения в их актуальности. Требуется небольшое количество необходимых физических серверов и значительно более простое программное обеспечение. Все это, в совокупности, ведет к повышению скорости и эффективности обработки.
  • Использование дискового пространства . Объем базы данных и его отношение к требующейся для размещения объема физического диска, пути доступа к дисковой подсистеме, пропускная способность ввода-вывода, достаточное для загрузки процессора.

Результаты тестирования специально настроенных под эталонные тесты систем, представленные на сайте TPC показывают, что в UNIX дисковое пространство используется на 20% -30%. Для S/390 к. п. д. для дисковых систем находится в диапазоне 65% -75%. Если мы примем размер базы данных 700 GB, типичный для большинства пользователей, мы увидим что для нее потребуется дисковая подсистема в 2.8 ТБ в случае UNIX и 1 ТБ для S/390. На самом деле требуется рассматривать два типа рабочей нагрузки: один организован и оптимизирован для OLTP и эффективной пакетной обработки, и второй - оптимизирован для систем добычи данных и бизнес- приложений. В этом случае требование к емкости дисковой подсистемы составит 5,6 ТБ для UNIX, против 2 ТБ для S/390.

  • Защита . Встроенные в аппаратуру возможности защиты, такие как криптографические устройства и Logical Partition, и средства защиты операционных систем дополнены программными продуктами RACF или VM: SECURE, обеспечивают совершенный защиту.
  • Сохранение инвестиций - использование данных и существующих приложений, не влечет дополнительных расходов по приобретению нового программного обеспечения для другой платформы, переобучению персонала, перенос данных. Пользовательский интерфейс всегда оставался наиболее слабо месту мэйнфреймов. Сейчас же стало возможно для приложений мэйнфреймов, в кратчайшие сроки и при минимальных затратах, обеспечить современный интернет-интерфейс.

Сейчас майнфреймы IBM занимают главное место на мировом рынке. Так же на рынке со своей продукцией присутствуют фирмы Hitachi, Amdahl и Fujitsu.

Олег Таковицкий

В сравнительно недолгой истории вычислительной техники мэйнфреймы обычно выступают как главные действующие лица. Действительно, эти компьютеры, иначе еще называемые большими ЭВМ, в эпоху 60-80-х гг. прошедшего столетия практически безраздельно господствовали на рынке информационных технологий. К началу 80-х деление компьютеров на большие, мини- и микромашины было простым и понятным. Оно определялось ценой, физическими размерами, производительностью, масштабом решаемых задач, используемым системным ПО (прежде всего операционной системой), а также архитектурой. Само понятие "мэйнфрейм" неразрывно связано с именем их первого производителя, корпорации IBM (http://www.ibm.com).

И все же мэйнфреймы - это нечто большее, чем просто мощные и дорогие машины. Она были и остаются основой обеспечения надежности, безопасности и целостности информационных систем. А главное - вот уже несколько десятилетий эти компьютеры служат форпостом централизации функций и данных, так и не павшим под натиском распределенных вычислений. В наши дни центробежные силы контроля и управления в архитектурных решениях начинают менять направление, превращаясь в центростремительные. Становится ясно, что без централизации ресурсов (иначе говоря, консолидации) решить многие серьезные бизнес-задачи практически невозможно.

В конце прошлого века с чьей-то легкой руки (говорят, это был один из топ-менеджеров Sun Microsystems) мэйнфреймы нарекли динозаврами. К тому же пресса и ведущие исследовательские агентства вольно или невольно способствовали созданию их негативного образа. Многие стали воспринимать мэйнфреймы как вчерашний день вычислительной техники, считая Unix- и ПК-серверы более современными и перспективными.

Вообще говоря, одной из причин резкого уменьшения интереса к мэйнфреймам в 80-х годах было бурное развитие PC и Unix-ориентированных машин, в которых благодаря применению новой технологии создания КМОП-микросхем удалось значительно уменьшить энергопотребление, а их размеры достигли размеров настольных станций. В то же время для установки мэйнфреймов требовались огромные площади, а использование устаревших полупроводниковых технологий влекло за собой необходимость водяного охлаждения. Так что, несмотря на их вычислительную мощь, из-за дороговизны и сложности обслуживания мэйнфреймы все меньше пользовались спросом на рынке вычислительных средств.

Главный же аргумент против мэйнфреймов состоял в том, что в них не соблюдается основной принцип открытых систем, а именно совместимость с другими платформами.

Отнесясь к критике конструктивно, руководство компании IBM, основного производителя аппаратного и программного обеспечения мэйнфреймов, выработало кардинально новую стратегию в отношении этой платформы с целью резко повысить производительность, снизить стоимость владения, а также добиться высокой надежности и доступности систем. Достижению этих планов способствовали важные перемены в технологической сфере: на смену биполярной технологии изготовления процессоров для мэйнфреймов пришла наконец технология КМОП. Переход на новую элементную базу позволил значительно снизить уровень энергопотребления мэйнфреймов и упростить требования к системе электропитания и охлаждения (водяное охлаждение было заменено воздушным). Мэйнфреймы на базе КМОП-микросхем быстро прибавляли в производительности и теряли в габаритах. Наиболее же кардинальным событием стал переход на 64-разрядную архитектуру z/Architecture. Современные мэйнфреймы перестали быть закрытой платформой: они способны поддерживать на одной машине сотни серверов с различными ОС, включая Linux.

Среди базовых отличий мэйнфреймов от обычных серверов, как правило, отмечают то, что мэйнфреймы поддерживают высокий уровень надежности благодаря избыточности аппаратного обеспечения, а операционные системы для них оптимизированы в основном для пакетного режима работы и обработки транзакций. Тем не менее в IBM полагают, что одной из важнейших причин признания рынком систем zSeries стала поддержка ими таких нетипичных для мэйнфреймов задач, как приложения для Linux и Web.

Мэйнфреймы высоко ценят за их устойчивость по отношению к таким проблемам, как отказ центрального процессора. Они оснащаются специальным ПО, а их подсистемы памяти и передачи данных отличаются от тех, что используются в большинстве серверов. Способность мэйнфреймов обрабатывать гигантское количество транзакций в секунду обеспечила им широкое применение при решении таких задач, как управление сетями сбыта или ведение банковских счетов.

Слухи о смерти мэйнфреймов сильно преувеличены. Общие объемы поставок серверов zSeries, измеренные в единицах вычислительной мощности MIPS (миллионы команд в секунду), выросли в I квартале этого года на 3% по сравнению с аналогичным периодом прошлого года. На продажи мэйнфреймов пришлось 3 млрд долл. в общем обороте IBM за 2002 год, который составляет 81 млрд долл. Несмотря на пессимизм некоторых аналитиков, эти системы популярны и в XXI веке. Так, согласно одному из прогнозов Gartner Group, последний мэйнфрейм предполагалось выключить еще в 1993 году. Срок этого прогноза давно истек, а рынок мэйнфреймов остается стабильным.

Тут стоит напомнить, что, по одной из теорий, динозавры не вымерли, а превратились в птиц.

Мэйнфрейм IBM S/390.

Первые "ласточки"

В сердце информационной системы работают обычно компьютеры наивысшего уровня надежности и производительности, рассчитанные на то, чтобы выдерживать любые мыслимые уровни нагрузки, быть готовыми к различным сбоям и авариям. Это серия мощных, масштабируемых, удобных в управлении и надежных систем. Это больше, чем системы, - скорее, это решения, отвечающие требованиям корпоративных задач самого разного масштаба: от рабочих групп до крупных центров хранения данных.

Данные системы пригодны для решения практически любых задач - от научных и инженерных до деловых, требующих больших вычислительных мощностей. Они имеют хорошо сбалансированную многопроцессорную архитектуру, с возможностью загрузки нескольких независимых копий ОС. Масштабируемость архитектуры позволяет при увеличении количества процессоров и памяти получать расчетный, контролируемый прирост производительности. Большой объем оперативной памяти в таких системах создает новые, ранее недоступные возможности во многих прикладных областях - от ведения больших резидентных баз данных до сложных научных вычислений, в таких, например, областях, как исследование генома человека или морская нефтеразведка.

Когда в октябре 2000 г. в IBM приступили к ребрэндингу своих серверных систем, эти преобразования были представлены как реакция на растущие требования бизнеса в Интернете. Руководство корпорации объявило о своем намерении использовать на всех платформах открытые стандарты и продукты (TCP/IP, HTML, Java, XML, Apache) и желании поддерживать быстро приобретающую популярность ОС Linux. Именно тогда мэйнфреймы получили название eServer zSeries - оно указывает на нулевое (zero down time) время простоя этих систем.

Архитектура z/Architecture, на которой основаны системы zSeries, обеспечивает новый стандарт производительности и интеграции, выступающий как продолжение концепции сбалансированной системы в архитектуре S/390. Такие системы способны устранять узкие места, связанные с недостатком адресуемой памяти, предоставляя фактически неограниченные возможности 64-разрядной адресации и обеспечивая огромный запас для непредвиденных рабочих нагрузок и приложений растущего предприятия.

Процессоры для мэйнфреймов

Последние несколько лет IBM заимствовала у своих мэйнфреймов технологию для других семейств серверов. Теперь часто говорят, что этот процесс пошел вспять. Компания рассматривает проект существенной переработки архитектуры мэйнфреймов zSeries с тем, чтобы использовать в этих машинах те же процессоры Power и прочие технологии, что и в менее дорогих серверах pSeries и iSeries. Применяя одни и те же процессоры во всех семействах продуктов, IBM получает возможность существенно снизить стоимость и сократить время выхода мэйнфреймов на рынок, а также уменьшить расходы на их техническое обслуживание.

Однако для этого в новые процессоры должны быть внесены усовершенствования, приближающие их к процессорам мэйнфреймов. Например, процессор мэйнфрейма включает два процессорных ядра, которые одновременно выполняют одни и те же операции. Если результаты получаются разными, вычисление автоматически повторяется - возможно, несколько раз, и, если разница все равно сохраняется, задача передается другому процессору.

Переход на новые процессоры - задача не из легких, но у IBM уже есть подобный опыт. Компании удалось перевести семейство AS/400 на архитектуру Power, не потеряв своих заказчиков.

Кристаллы Blue Flame, объединенные в многокристальные процессорные модули, специально предназначены для высокоуровневых систем zSeries. 20% площади на Blue Flame отведено непосредственно для поддержки функций RAS (Reliability, Availability, Serviceability - надежность, готовность, обслуживаемость), чтобы наделить компьютерные системы возможностью без отключения реагировать на ошибки и выполнять техническое обслуживание. По словам представителей корпорации, наличие области RAS - одно из основных достоинств Blue Flame, дающее значительное преимущество перед альтернативными процессорами. Подобные аппаратные решения позволят IBM сосредоточиться не только на поиске ошибок в системах, но и на сборе информации, которая позволит защищаться от будущих сбоев.

Процессор Power.

Новым флагманом мэйнфреймов стала серия компьютеров IBM eServer zSeries 900, оптимизированная для задач электронного бизнеса. В ее состав входят 64-разрядные многопроцессорные системы с оперативной памятью 64 Гбайт и с пропускной способностью системы ввода-вывода и адаптеров сетевых каналов, составляющей 24 и 3 Гбайт/с соответственно. Производительность zSeries 900 превышает 2500 MIPS. Важнейший их компонент - 20-процессорный модуль MCM (Multi-Chip Module). Его 16 процессоров предназначены для исполнения прикладных задач в SMP-режиме, а остальные выполняют такие системные функции, как управление вводом-выводом, восстановление при возникновении ошибок, криптозащита.

Система zSeries 900.

Каждая система может работать автономно или в составе кластера Parallel Sysplex совместно с другими компьютерами zSeries и рядом систем IBM S/390. Кластер обеспечивает высокую масштабируемость и исключительный уровень готовности. До 32 систем zSeries 900 могут объединяться в кластеры на базе технологии Parallel Sysplex.

В 15 логических разделах zSeries 900 могут независимо друг от друга работать различные ОС (z/OS, z/VM и Linux for zSeries), обращаясь к общим системным ресурсам.

Полностью интегрированная с аппаратными средствами и микрокодами zSeries 900 64-разрядная z/OS с ядром MVS обеспечивает благодаря технологии Intelligent Resource Director (IRD) автоматическое распределение системных ресурсов между приложениями в соответствии с присвоенными им приоритетами. Вообще говоря, IRD семейства zSeries объединяет преимущества трех основных технологий: администратора нагрузки Workload Manager, логического создания разделов Logical Partitioning и параллельной кластеризации Parallel Sysplex.

Система способна динамически выделять процессорное время, каналы и взаимодействия канал - контроллер среди множества виртуальных серверов, чтобы обеспечить интеллектуальное обслуживание непредсказуемых нагрузок электронного бизнеса в соответствии с приоритетами бизнеса. Функция Sysplex Distributor операционной системы z/OS - еще одна возможность интеллектуальной балансировки TCP/IP-трафика через Parallel Sysplex. Поддержка динамической виртуальной IP-адресации (Dynamic Virtual Internet Protocol Addressing, VIPA) расширяет в TCP/IP-сети функции распределения рабочей нагрузки и готовности в Parallel Sysplex.

Технология Hyper Sockets позволяет формировать IP-соединения между логическими разделами и передавать информацию между ними с быстродействием оперативной памяти. Linux for zSeries поддерживает оригинальные приложения для этой ОС. При применении z/VM в одном логическом разделе можно исполнять сотни приложений, реализуя множество виртуальных серверов. Так, на одной системе можно параллельно запустить до 1000 виртуальных Linux-серверов, создав таким образом эффективную "сеть в одном корпусе".

Готовность

Системы семейства zSeries обеспечивают высокий уровень готовности приложений, необходимый в глобальной сетевой среде. Даже один сервер zSeries способен избегать сбоев и восстанавливаться после отказов, сокращая до минимума сбои бизнес-процесса.

Высокая надежность компонентов и особенности конструкции позволяют предотвращать отказы и обеспечивать устойчивость к сбоям, а также проводить горячее обслуживание и ремонт. Расширенное динамическое резервирование памяти (Enhanced Dynamic Memory Sparing), резервирование ESCON-портов, горячее обслуживание/модернизация Coupling Links, горячее обслуживание плат ввода-вывода (Concurrent Service for I/O Cards) и автоматическое переключение сервисных элементов (Auto-Switch over for Service Elements) - вот лишь некоторые встроенные функции, позволяющие сократить как плановые, так и внеплановые простои.

Для систем, где требуются более высокие уровни готовности, предназначены серверы zSeries с технологией кластеризации IBM Parallel Sysplex. Более быстрые подключения обеспечивают сбалансированную производительность мощного сервера zSeries 900 в Sysplex-кластере. ISC-связи обеспечивают скорости передачи до 2 Гбайт/с, а ICB-связи - до 1 Гбайт/с. При этом сохраняется обратная совместимость с аналогичными связями в системах S/390.

Еще один аспект готовности - это возможность непрерывного роста zSeries, обеспечиваемая функцией увеличения емкости системы хранения по требованию. Серверы zSeries 900 способны увеличивать объем системы хранения и создавать виртуальные серверы без перерыва в работе, а также устанавливать карты FICON, ESCON, OSA-Express ATM и Gigabit и Fast Ethernet и PCI-карты криптографического сопроцессора; кроме того, поддерживается инициация памяти без отключения системы.

Безопасность

Встроенные функции защиты архитектуры z/Architecture обеспечивают IBM лидирующие позиции по обеспечению безопасности электронного бизнеса. Криптографические КМОП-сопроцессоры соответствуют государственному информационному стандарту обработки информации США - FIPS 140-1 четвертого уровня (самому высокому уровню сертификации коммерческого средства безопасности, когда-либо присвоенному правительством США). Эти сопроцессоры конструктивно размещены в модуле с единым чипом. При этом каждый из них может обслуживаться независимо, что устраняет простои при ремонте криптографического кристалла.

Серверы zSeries 900 способны поддерживать до 16 PCICC-сопроцессоров, поставляемых по требованию, что позволяет им выполнять более двух тысяч SSL-операций в секунду. Благодаря комбинации двух типов сопроцессоров приложения могут использовать отраслевые криптографические стандарты DES, Triple DES и RSA для обеспечения масштабируемой безопасности и гибкости при быстром переходе на новые стандарты.

Самоуправляемость вычислительных систем

Компьютеры eServer zSeries спроектированы и построены с активным применением основных технологий из проекта eLiza, направленного на создание самоуправляемых систем. Цель проекта - создание интеллектуальной, самоуправляемой инфраструктуры ИТ, которая сведет к минимуму сложность управления ею.

Серверы серии IBM eServer предлагают широкий спектр новых решений, присущих самоуправляемым вычислительным системам и основанных на четырех основных принципах.

Автоматическая конфигурация (Self-configuring)

Важнейшие элементы системы автоматической конфигурации - это автоматическое определение новых аппаратных ресурсов и механизм динамического распределения ресурсов ОС. Аппаратные подсистемы и ресурсы могут автоматически изменять собственные параметры работы как на стадии загрузки системы, так и во время выполнения задач. Причинами для перераспределения ресурсов могут стать сбои в работе оборудования, ошибки во встроенном системном ПО или изменение текущих параметров оптимизации. Допускается также изменение конфигурации аппаратных ресурсов по требованию администраторов, обслуживающего персонала или программы, осуществляющей управление аппаратными ресурсами.

Автоматическое восстановление (Self-healing)

Механизм самовосстановления позволяет немедленно обнаружить и локализовать неполадки в работе оборудования или встроенного ПО, минимизируя возможные последствия сбоев, которые способны негативно повлиять на работу ОС и приложений.

Автоматическая оптимизация (Self-optimizing)

Встроенный механизм оптимизации определяет текущую нагрузку на различные аппаратные ресурсы и автоматически изменяет конфигурацию аппаратных ресурсов, добиваясь максимальной производительности.

Самозащита (Self-protecting)

Этот механизм обеспечивает защиту вычислительной системы от внутренних и внешних атак, угрожающих целостности и конфиденциальности приложений и данных.

Проект eLiza

Этот проект реализует концепцию автономных вычислений. Он служит фундаментом для создания информационных систем с уменьшенной сложностью и стоимостью эксплуатации, использования, администрирования. Цели проекта eLiza сформулированы как самооптимизация, самоконфигурирование, самовосстановление и самозащита. Считается, что проект eLiza позволяет преодолеть такие трудности на пути электронного бизнеса по требованию, как сложность управления и эффективность использования ресурсов. По данным экспертных фирм процент эффективного использования ресурсов для мэйнфреймов в среднем составляет 40%. Эта цифра может показаться невысокой, но для Unix-машин она составляет всего 10%, а для Windows-машин - 5%.

Мэйнфреймы первыми столкнулись с проблемой эффективного использования ресурсов, и серверы zSeries и z/OS находятся на переднем крае реализации проекта eLiza. Однако результаты его немедленно переносятся и на другие платформы IBM. Так, сегодня все четыре серверные платформы IBM обеспечивают логическое разделение - возможность представления одного мощного сервера в виде нескольких отдельных виртуальных компьютеров, возможно, с разными операционными средами и разными производительными и функциональными возможностями, но с единым центром управления. Задачи автономизации вычислений, стоящие перед проектом eLiza, сочетаются с задачами Grid-вычислений, поэтому эти инициативы развиваются согласованно.

Эволюция концепции самоуправляемых информационных систем привела к возникновению новой стратегической инициативы компании IBM - Autonomic Computing. Примечательно, что это произошло в тот момент, когда IBM объявила о намерении возглавить движение по созданию нового поколения решений для электронного бизнеса, объединив усилия различных поставщиков решений, сообщества приверженцев открытых стандартов и пользователей. Помимо интеллектуальных функций самозащиты и самовосстановления, разрабатываемых в рамках проекта eLiza, новая инициатива IBM призвана обеспечить динамическую адаптацию вычислительных систем к условиям деловой активности предприятия. Новое название отражает более универсальный и глубинный характер концепции. Идеи самоуправления, положенные в основу проекта eLiza и имеющие множество верных сторонников, получают дальнейшее развитие, открывая перспективу совершенствования бизнеса без нарушения отлаженных процессов и деловых механизмов.

Компоненты проекта eLiza.

Маленький "хищник"

В прошлом году корпорация IBM анонсировала IBM zSeries 800 (ранее известную под кодовым названием Raptor - "хищник"), новую недорогую систему начального уровня, которая сумела радикально изменить ценовые характеристики рынка мэйнфреймов. Новая система выпускается в нескольких вариантах: восемь моделей общего назначения и единственный в своем роде мэйнфрейм под полным управлением Linux. Отличаются они прежде всего числом процессоров (от одного до четырех) и объемом оперативной памяти (от 8 до 32 Гбайт).

С выпуском zSeries 800 корпорация IBM смогла предложить надежность и производительность технологии zSeries заказчикам, которым мэйнфреймы раньше были не по средствам. Кроме того, IBM впервые реализовала современную технологию кластеризации Parallel Sysplex на мэйнфреймах начального уровня. Напомним, что данная технология обеспечивает практически нулевое время простоя, высокую доступность приложений и надежность бизнеса за счет объединения нескольких мэйнфреймов в сетевой кластер.

Заказчики, использующие мэйнфреймы, все чаще добавляют новые Web-приложения в существующие инфраструктуры для экономии энергии, пространства и расходов на управление. Система zSeries 800 предназначена для бизнес-партнеров IBM, которым требуются варианты объединения серверов для заказчиков со средним уровнем финансовых возможностей. Новая система позволяет отказаться от дорогостоящих и недозагруженных серверных пулов, составленных из Web-серверов, файловых серверов, серверов печати и электронной почты, за счет переноса всей нагрузки на один мэйнфрейм, и таким образом упростить администрирование и снизить затраты. Благодаря технологии виртуальных машин IBM z/VM система zSeries 800 может объединить от 20 до нескольких сотен серверов Sun или Intel на одной физической платформе.

В последние несколько лет ОС Linux завоевала устойчивые позиции в таких областях, как электронная коммерция, Web-сервис, почтовые службы, разработка и тестирование приложений и многое другое. Одно из главных преимуществ Linux - способность легко адаптироваться к множеству аппаратных платформ и работать с разнообразными программами в распределенных вычислительных средах. Таким образом, пользователям и разработчикам, имеющим дело с Linux, не обязательно изучать различные ОС. Linux предоставляет полную открытость и аппаратную независимость. По этим причинам она широко предлагается как надежная, базирующаяся на открытых стандартах, экономичная альтернатива другим ОС, таким, как Unix и Windows. Но Linux обычно работает на нескольких отдельных серверах, что не всегда обеспечивает нужные для центров обработки данных производительность, гибкость, функциональность, интеграцию и управляемость. Более того, аппаратная независимость Linux может в ряде случаев обернуться повышением стоимости технической поддержки.

Современная технология zSeries 800 предоставляет экономичную и гибкую среду для разработки, тестирования и эксплуатации приложений, переноса приложений с 32-разрядной на 64-разрядную платформу и новых рабочих нагрузок электронного бизнеса.

В системе zSeries 800 нашли применение технологии самовосстановления и самоуправления, реализованные в компьютерах IBM, включая резервные мощности, кластеры Parallel Sysplex, одновременный ввод-вывод и автоматическое обращение в IBM при обнаружении неисправности системы. Одновременно IBM анонсировала специальную версию 64-разрядной ОС z/OS.e, которая предназначается для исполнения приложений электронного бизнеса, в том числе сервера приложений WebSphere, баз данных DB2 и приложений MQSeries.

Университет штата Флорида (США) для проведения исследований в области сетевых вычислений приобрел в этом году мэйнфрейм zSeries 800, который оказался тысячной по счету системой Raptor, проданной IBM с марта 2002 г.

"Тиранозавр" на компьютерном рынке

В мае IBM представила свою самую мощную на сегодня систему масштаба предприятия - последнюю модель семейства zSeries. Новый мэйнфрейм официально называется IBM eServer zSeries 990, а его кодовое название - T-Rex, "Тиранозавр" (Tyrannosaurus Rex). Ну что ж, в юморе руководителям корпорации IBM не откажешь.

Подобные системы предназначены для компаний финансового сектора и других отраслей, где требуется максимальная отказоустойчивость, защита информации и хорошие вычислительные возможности. Стоимость нового IBM eServer zSeries 990 начинается с 1 млн долл. Новая система - результат четырех лет работы 1,2 тыс. разработчиков IBM. Инвестиции в разработку "Тиранозавра", по словам представителей IBM, составили около 1 млрд долл. Однако система стоит того.

"Тиранозавр" - zSeries 990.

zSeries 990 считается самым мощным и масштабируемым мэйнфреймом IBM за всю их 40-летнюю историю. Этот сервер обладает вдвое большими возможностями виртуализации и способностью выполнять примерно втрое больше работы, чем zSeries 900. Новый дизайн позволяет заказчикам наращивать мощность без отключения системы, а значительно упрощенная структура продукта уменьшает количество моделей мэйнфреймов с 42 до 4.

Система устанавливает новый стандарт корпоративных вычислительных систем в следующих областях.

Виртуализация. Архитектура zSeries 990 может поддерживать сотни или даже тысячи виртуальных Linux-серверов в едином корпусе. Это примерно эквивалентно целому вычислительному центру, размещенному в одном сервере размером с холодильник.

Автоматизация. zSeries 990 обладает технологией IRD, которая динамически распределяет системные ресурсы тем рабочим задачам, которые в них нуждаются, в соответствии с приоритетами и целями, установленными пользователем.

Масштабируемость. zSeries 990 предлагает широкие возможности как вертикального, так и горизонтального масштабирования. Она может масштабироваться до уровня, позволяющего обрабатывать 450 млн транзакций электронного бизнеса в день или управлять сотнями виртуальных Linux-серверов. Кластерная система zSeries 990 может справляться с 13 млрд транзакций в день, что превосходит средний еженедельный объем Нью-Йоркской фондовой биржи. Кроме того, в zSeries 990 есть возможность подключения и отключения дополнительных вычислительных мощностей, что позволяет заказчикам временно активизировать серверные процессоры в периоды пиковой нагрузки.

Безопасность. Мэйнфрейм IBM делает вторжение в систему практически невозможным, что превращает его в один из наиболее безопасных серверов на рынке. Система zSeries 990 с 16 процессорами может безопасно обрабатывать до 11 тыс. транзакций в секунду.

Надежность. Надежность мэйнфрейма измеряется не днями или неделями, а десятилетиями, причем уровень доступности кластерной системы zSeries достигает 99,999%, или менее 5 мин простоя в год.

Компаниям, которым лишь иногда нужны столь мощные вычислительные ресурсы, совсем не обязательно покупать целую машину. Новый мэйнфрейм будет служить основой для многоплатформенных центров, позволяющих заказчикам любого масштаба по-новому получать вычислительные мощности по требованию. IBM Global Services будет предлагать возможности использования мэйнфреймов по технологии Utility Management Infrastructure (UMI) - при этом заказчикам предоставляется полностью интегрированная инфраструктура, в которую входят процессоры, устройства хранения данных, сетевые средства и промежуточное ПО мэйнфрейма.

Впервые с помощью технологии On/Off Capacity on Demand (подключение и отключение вычислительных мощностей по требованию) пользователи мэйнфрейма могут при необходимости в течение нескольких секунд активизировать дополнительные мощности и отключать их, когда необходимость в них отпадает. Это обеспечивает высокую гибкость, помогает реагировать на ежедневные или сезонные всплески активности.

Скорость 32-процессорной системы zSeries 990 составляет 9000 MIPS. Эта модель содержит в два раза больше процессоров, и производительность ее втрое превышает показатели zSeries 900, так что заказчики могут масштабировать сервер от одного до 32 процессоров без отключения системы.

На zSeries 990 поддерживаются до 30 логических разделов (LPAR), что вдвое превышает возможности zSeries 900. С помощью версии z/VM 4.4 можно быстро создавать и эффективно управлять сотнями виртуальных Linux-серверов в одном физическом корпусе. Расширенные технологии виртуализации IBM делают zSeries 990 хорошей платформой для консолидации, когда необходимо сократить стоимость групп серверов и затраты на их управление.

Побивая свой собственный рекорд безопасности, новая 16-процессорная система zSeries 990 может обрабатывать11 тыс. транзакций в секунду, проводимых по протоколу Secure Sockets Layer (SSL) (это на 57% выше по сравнению с 16-процессорной системой zSeries 900). Квитирование установления связи по протоколу SSL (то, что вызывает появление в нижней панели браузеров пиктограммы запертого замка) очень важно для транзакций электронного бизнеса и позволяет компаниям более безопасно обрабатывать заказы в оперативном режиме. Возможность обработки большего количества транзакций SSL означает, что организации могут обслуживать больше заказчиков и за меньшее время добиваться большего объема продаж.

Для тех заказчиков, которым нужна большая способность к подключению для новых задач электронного бизнеса, которые выполняются на мэйнфрейме, новая система zSeries 990 предоставляет до 512 каналов ввода-вывода, что вдвое превышает возможности ее предшественника. Кроме того, теперь доступно до 16 HiperSocket, которые обеспечивают высокоскоростное соединение по протоколу TCP/IP между виртуальными серверами в пределах одной системы zSeries 990, что вчетверо превышает возможности zSeries 900. IBM также представила новую технологию под названием "логическая канальная подсистема", которая облегчит заказчикам консолидацию нескольких мэйнфреймов в единую систему zSeries 990.

Кроме того, zSeries 990 обладает вчетверо большим объемом памяти по сравнению с zSeries 900 - 256 Гбайт против 64 Гбайт.

Сердце zSeries 990 - многокристальный модуль MCM. Заново спроектированный модуль размером 3,7x3,7x0,75 дюйм, который умещается на ладони, содержит 16 кристаллов, смонтированных на 101 уровне керамического стекла и соединенных с более чем 5000 выводов посредством 500 м проводников. Новый MCM на 50% меньше и обеспечивает системе zSeries 990 почти втрое большую процессорную мощность по сравнению с zSeries 900 при одинаковой компактности. Модуль использует технологии медных межсоединений и "кремний на изоляторе". Он содержит свыше 3,2 млрд транзисторов. Эта технология предоставляет значительные преимущества в производительности, потреблении энергии и надежности. Кроме того, новая конструкция суперскалярного микропроцессора в zSeries 990 помогает достичь до 60% прироста быстродействия для Linux, приложений электронного бизнеса и традиционных задач.

Функции On/Off Capacity on Demand будут доступны в zSeries 990 в сентябре этого года. Криптография с безопасными ключами, поддержка 30 логических разделов и использование 512 каналов ввода-вывода в z/OS будут доступны в октябре.

Мэйнфрейм (Mainframe ) - это вымышленный персонаж, который появляется во вселенной Marvel Comics. Он появился в комиксе под названием A-Next #1 (октябрь 1998 год), а его создателями являются Том ДеФалько и Рон Френц. Мэйнфрейм представляет собой разумную компьютерную программу, которая основана на мозговых волнах Тони Старка, помимо этого, он являющаяся одним из основателей команды А-Некст.

Биография

В альтернативной Вселенной известной как Земля-982, после последней провальной миссии Мстителей, уставший решил уйти из героев и окончательно отставить броню Железного человека. Тем не менее, он осознавал и боялся, что со временем может возникнуть новая угроза для Земли, поэтому, Тони решил подстраховаться на случай возникновения не предвиденных обстоятельств и создать то, чтобы может её предотвратить. Для этих целей, он сконструировал по образу брони Железного человека, андроида, которого назвал Мэйнфрейм. Старк также заложил в андроида отпечаток своих мозговых волн. Однако, когда он закончил работу над Мэйнфреймом, не было активной команды Мстителей, по этой причине, могущественный андроид оставался неактивным.

Спустя целых десять лет после создания андроида, произошла чрезвычайная ситуация, когда взрослый Кевин Мастерсон (сын покойного Эрика Мастерсона, также известный как Громобой, который был одним из Мстителей) прибыл в особняк Мстителей расположенный в Нью-Йорке. Который прибыл туда, чтобы забрать мистическое оружие, которое ему завещал его отец. Извлечение мистического оружия из хранилища привлекает внимание Локи, который желает его заполучить для себя. С этой целью, он направляет Троллей. В это время, в Особняке Мстителей присутствует Эдвин Джарвис, который является его смотрителем. Джарвис становится свидетелем нападения и посылает сигнал Мстителям. Данный сигнал также приводит к активации Мэйнфрейма, впервые за все время после его создания.

На данный сигнал отзываются (в настоящее время лидер команды Икс-Люди), Кассандры Лэнг (дочь Скотта Лэнга, бывшего ) известная под псевдонимом Жало и Хелен Такахама под псевдонимом Джолт. Поскольку Кевин пытаясь скрыться от Тролей бежит по улицам, он также привлекает внимание Спидбола и Джей2. В то время, когда Кевин загнан в угол, его в последнюю секунду спасает Мэйнфрейм. Но несмотря на то, что героям удаётся разобраться со всеми Троллями, все они были быстро пойманы Локи, который забирает всех героев в Асгард. Там он намеревался зарядить оружие "Громобой", после чего использовать его против своего брата , который теперь является правителем Асгарда. Когда Локи производит зарядку Громобоя, Кевин удаётся выбраться и завладеть оружием, а также освободить других героев. Между героями и вновь разгорается сражение, в котором он опять начинает одерживаться верх, однако, данная заварушка привлекает внимание Тора, в результате чего, злодей был вынужден бежать. Тор возвращает героев обратно на Землю, по прибытию Мэйнфрейм предполагает организовать новое воплощение Мстителей. В конечном счёте, Мэйнфрейм, Жало, Джей2 и Кевин (который становится новым Громобоем) объединяются и сформировывают команду получившая название, А-Некст.

После создания команды, Мэйнфрейм сразу же попытался стать её лидером. Он часто сталкивается с противодействием в лице Жало (которая не знала, что Мейнфрейм является андроидом). Но когда Мэйнфрейм был серьёзно поврежден, его тайна раскрывается, однако, Жало была одной из первых, кто хочет ему помочь починить его (с помощью своего отца). Со временем выясняется, что всякий раз, когда Мейнфрейм был серьёзно повреждён, он загружает свою личность и воспоминания в другое тело, собранное на орбитальном спутнике.

Вскоре Мэйнфрейм превратился в нечто большее, чем просто обычный высокотехнологичный героя для своих товарищей по команде, он стал их настоящим другом. Он также научился делиться своими обязанностями в качестве лидера со своей напарницей известной под псевдонимом Американская Мечта. Несмотря на это, его направленность на лидерство по-прежнему приводит его к разногласиям с Мстителями, в частности с Девушкой-Пауком.

Другии версии

Земля-691

Супергерой известный как Вижен (Земля-691) преобразовался в Мэйнфрейма. Он стал главной операционной системой целой планеты, под его контролем находилось буквально всё, начиная с климата заканчивая планетарной стабильности. Мэйнфрейм был хранителем щита Капитана Америки. Кроме этого, он хранил своё оригинальное тело на планете Нептун.

Способности

Мейнфрейм является высокотехнологичным андроидом, который способен мыслить и действовать самостоятельно. Оболочка его тела изготовлена из очень прочного сплава металлов, способный выдерживать удары огромной силы, как энергии так и других видов. Он обладает суперсилой и способен летать на сверхзвуковых скоростях. Мейнфрейм может испускать репульсорные лучи; лазерные, электрические и магнитные вспышки. Помимо этого, на его запястьях находятся выдвижные пулеметы, которые могут стрелять гранатами и ракетами. Он способен поглощать энергию радиоизлучения. Мейнфрейм обладает высоким интеллектом и обширными знаниями в различных областях науки и технологий.

Пожалуй самой главной особенностью Мейнфрейм является его способность переносить своё сознание (программу) из одного роботизированного тела в другое. Как правило, он пользуется данной особенностью, когда его тело было уничтожено или повреждено.

В СМИ

Мультсериалы

Мэйнфрейм появляется в мультсериале "Халк и агенты СМЭШ", персонажа озвучил Джеффри Комбс. Он появляется в качестве главного злодея в эпизоде под названием "Колеса ярости". Эта версия персонажа является продвинутым андроидом, который был создан Тони Старком, в качестве достойного для него противника, против которого он сможет играть в игры. После того как Мэйнфрейму надоедает проигрывать, он начинает подчинять себе различное оружие и оборудование в Старк Индастриз. Когда появляются Халки, Мэйнфрейм предлагает провести гонки на роликах, если они проиграют то он уничтожит город. После того как герои его обыгрывают, он решает отправиться изучить человечество поближе.

Фильмы

Мэйнфрейм (версия Вижена) появляется в фильме "Стражи Галактики. Часть 2", персонажа озвучила Майли Сайрус.


Начало и конец истории мейнфреймов связан с именем IBM, и это не удивительно. В далёкие 1930-е годы, когда "компьютером" фактически был ваш напарник с логарифмической линейкой, который производил за вас все вычисления, компания IBM была в основном известна своими перфорационными машинами. Но во многом благодаря дальновидному руководству, которое в то время было представлено Томасом Уотсоном (Thomas Watson), IBM трансформировалась из одного из многих продавцов офисной техники в компанию, которая позднее стала монополистом по производству компьютеров.

Harvard Mark I

Машина, получившая название Harvard Mark I, стала примером дальновидности Томаса Уотсона, хотя с практической точки зрения она не была технологической отправной точкой последующих открытий. И всё же стоит взглянуть на эту машину, ведь только так мы сможем увидеть, насколько далеко зашёл прогресс.

Всё началось в 1936 году, когда гарвардский математик Говард Айкен (Howard Aiken) пытался решить проблему, связанную с разработкой вакуумных трубок (ламп). Чтобы добиться прогресса, ему нужно было решить систему нелинейных уравнений, а под рукой не было ничего, что могло бы сделать это за него. Айкен предложил гарвардским учёным построить крупномасштабный калькулятор, который мог бы решать подобные задачи. Однако его предложение было встречено без энтузиазма.

Затем Айкен обратился в Monroe Calculating Company, но компания отвергла его предложение. Тогда Айкен пошёл в IBM. Предложение Айкена, по сути, представляло собой список требований, а не настоящий проект, поэтому компании IBM самой нужно было понять, как воплотить эти требования в жизнь. Начальная стоимость проекта была оценена в $15 000, но она быстро взлетела до $100 000 к тому моменту, когда в 1939 году предложение было принято официально. В итоге воплощение данной идеи в жизнь стоило IBM около $200 000.

Только в 1943 году пятитонный механический "монстр" длиной около 15 метров начал выполнять свои первые вычисления. Поскольку компьютеру нужна была механическая синхронизация между разными вычислительными блоками, по всей его длине располагался вал, приводимый в движение мотором мощностью в пять лошадиных сил. Компьютерная "программа" создавалась путём вставки проводков в штекерную панель. Данные считывались с помощью перфокарт, и результаты печатались на перфокартах или выводились с помощью электрических пишущих машин. Даже по тем временам этот "компьютер" работал медленно. Он мог делать только лишь три операции сложения или вычитания в секунду, а на одно умножение у машины уходило целых шесть секунд. Вычисление каждого логарифма и тригонометрические преобразования занимали более одной минуты.

Как уже говорилось выше, машина Harvard Mark I была технологически бесперспективной и не сделала ничего особо важного за все свои 15 лет использования. Тем не менее, она представляла собой первую в истории полностью автоматизированную вычислительную машину. Несмотря на то, что машина Mark I работала очень медленно, была механической, и ей не хватало таких важных операций, как условный переход, это всё же был компьютер, который был лишь маленьким намёком на то, чему ещё предстояло появиться.

ABC (Atanasoff-Berry Computer)


Первым электронным компьютером на самом деле была машина ABC (Atanasoff-Berry Computer), хотя этот факт был признан многими годами позднее. Словосочетание "электронный компьютер" может показаться странным, однако только что на примере Harvard Mark I мы видели, что действительно были компьютеры без электронных компонентов, которые использовали механические переключатели, регулируемые зубчатые колёса, реле и рукоятки. В отличие от таких машин, компьютер ABC все вычисления производил с помощью электроники, поэтому он является очень важным этапом в развитии вычислительной техники.

Несмотря на то, что компьютер ABC был электронным, его компоненты очень сильно отличались от тех, что используются сегодня. На самом деле, здесь потребовались бы транзисторы и интегральные микросхемы, но в 1939 году, когда Джон Атанасов (John Atanasoff) получил финансирование на сборку прототипа, таких компонентов ещё не было, поэтому он использовал то, что было доступно на тот момент: электровакуумные лампы. Электровакуумные лампы могли усиливать сигналы и работать как переключатели, а значит, они могли использоваться для создания логических схем. Впрочем, эти лампы потребляли много энергии, сильно нагревались и были очень ненадёжными. Такими вот недостатками обладали компьютеры, построенные на электровакуумных лампах, но с этим приходилось мириться.

Логические схемы, созданные Атанасовым с помощью электровакуумных ламп, работали быстро и могли выполнять по 30 операций сложения и вычитания в секунду. Сегодня это является нормой, но тогда компьютеры редко использовали двоичную систему счисления, поскольку в то время с ней были знакомы немногие. Ещё одной важной технологией было использование конденсаторов для памяти и "подпитка" их электричеством для сохранения "содержимого" (аналогично регенерации динамической памяти типа DRAM, используемой сегодня). Однако память не была по-настоящему "random" (не обладала произвольным доступом), поскольку она фактически находилась во вращающемся барабане, который совершал полный оборот за 1 секунду. Конкретные области памяти могли быть считаны только тогда, когда участок барабана, где они находились, оказывался над считывателем. Из-за этого возникали серьёзные задержки. Позднее Атанасов добавил перфорационную машину (в те времена перфокарты очень широко использовались организациями для хранения документов и выполнения расчётов), чтобы хранить данные, которые не могли поместиться в барабан памяти.

В ретроспективе, компьютер ABC был не так уж полезен. Его даже нельзя было запрограммировать. Но, по крайней мере, на концептуальном уровне он представлял собой очень важный этап в развитии компьютеров и стал прародителем компьютеров будущего. Работая над этой машиной, Атанасов пригласил Джона Мочли (John W. Mauchly) посмотреть на своё изобретение. Эта встреча оказалась знаковой. И вот почему.

ENIAC


Нажмите на картинку для увеличения.

7 декабря 1941 года Япония напала на Перл-Харбор, втянув Соединённые Штаты во Вторую мировую войну. Каждая воюющая страна столкнулась с проблемой создания баллистических таблиц стрельбы для всех производимых типов артиллерии. Это был очень длительный и утомительный процесс. Поэтому армия США предоставляла средства Электротехнической школе Мура при Университете штата Пенсильвания на разработку электронного компьютера, который смог бы облегчить процесс создания баллистических таблиц стрельбы. Вы уже, должно быть, догадались, что участие во всём этом принимал уже известный нам Джон Мочли, он взялся за проект вместе с талантливым аспирантом по имени Дж. Преспер Эккерт (J. Presper Eckert).

Но Вторая мировая война закончилась до того, как машина была готова. Работа над компьютером была завершена в 1946 году, и публике был представлен "монстр" весом в 30 тонн, состоящий из 15-метровых шкафов, 18 000 вакуумных ламп, 1500 реле, 70 000 резисторов, 10 000 конденсаторов и 6000 ручных переключателей и потребляющий 200 киловатт. Хотя разработка этого компьютера закончилась уже после войны, он всё же принёс пользу. Производительность машины была невероятно высокой: 5000 операций сложения, 357 умножений или 38 делений в секунду. Задачи, на которые у математика уходило 20 часов работы, ENIAC решал всего за 30 секунд.

Основная проблема этого компьютера, помимо ненадёжности, присущей всем машинам на вакуумных лампах, заключалась в том, что он не был программируемым в общепринятом смысле этого слова. "Программы" вводили сотрудницы лаборатории (так называемые "ENIAC girls") с помощью штекерных панелей и блоков переключателей. Этот процесс обычно занимал от нескольких часов до нескольких дней. Кроме того, в отличие от компьютера ABC, ENIAC работал с десятичными, а не с двоичными числами, и это был своего рода шаг назад.

Тем не менее, ENIAC на славу послужил Соединённым Штатам, особенно после дальнейшей модернизации, пока в 1955 году его не "отправили в отставку". За время своего существования ENIAC работал над самыми разными проблемами: прогнозы погоды, исследование случайных чисел, теплового воспламенения, аэродинамической трубы, расчёт траектории артиллерийских снарядов и даже разработка водородной бомбы. Подсчитали, что за свою "жизнь" ENIAC сделал больше расчётов, чем всё человечество вплоть до 1945 года.

Хотя история компьютера ENIAC заканчивается в 1955 году, Мочли и Эккерту предстоит ещё многое сделать.



СОДЕРЖАНИЕ