Вертикальное и горизонтальное масштабирование, scaling для web. Влияние архитектуры на доступность. Вопросы вертикального масштабирования

Каждый программист хочет стать лучшим, получать все более интересные и сложные задачи и решать их все более эффективными способами. В мире интернет-разработок к таким задачам можно отнести те, с которыми сталкиваются разработчики высоконагруженных систем.

Большая часть информации, опубликованная по теме высоких нагрузок в интернете, представляет собой всего лишь описания технических характеристик крупных систем. Мы же попробуем изложить принципы, по которым строятся архитектуры самых передовых и самых посещаемых интернет-проектов нашего времени.

  • Функциональное разделение
  • Классическое горизонтальное масштабирование
    • Концепции Shared Nothing и Stateless
    • Критика концепций Shared Nothing и Stateless
    • Связность кода и данных
  • Кеширование
    • Проблема инвалидации кеша
    • Проблема старта с непрогретым кешем

Начнем наш третий урок, посвященный бизнес-логике проекта. Это самая главная составляющая в обработке любого запроса. Для таких вычислений требуются бэкенды - тяжелые серверы с большими вычислительными мощностями. Если фронтенд не может отдать клиенту что-то самостоятельно (а как мы выяснили в прошлом номере, он без проблем можем сам отдать, к примеру, картинки), то он делает запрос бекенду. На бэкенде отрабатывается бизнес-логика, то есть формируются и обрабатываются данные, при этом данные хранятся в другом слое - сетевом хранилище, базе данных или файловой системе. Хранение данных - это тема следующего урока, а сегодня мы сосредоточимся на масштабировании бекенда.

Сразу предупредим: масштабирование вычисляющих бэкендов - одна из самых сложных тем, в которой существует множество мифов. Облачные вычисления решают проблему производительности - уверены многие. Однако это верно не до конца: для того чтобы вам действительно могли помочь облачные сервисы, вы должны правильно подготовить ваш программный код. Вы можете поднять сколько угодно серверов, скажем, в Amazon EC2, но какой с них толк, если код не умеет использовать мощности каждого из них. Итак, как масштабировать бэкенд?

Функциональное разделение

Самый первый и простой способ, с которым сталкиваются все, - это функциональное разбиение, при котором разные части системы, каждая из которых решает строго свою задачу, разносятся на отдельные физические серверы. Например, посещаемый форум выносится на один сервер, а все остальное работает на другом.

Несмотря на простоту, о подобном подходе многие забывают. Например, мы очень часто встречаем веб-проекты, где используется только одна база MySQL под совершенно различные типы данных. В одной базе лежат и статьи, и баннеры, и статистика, хотя по-хорошему это должны быть разные экземпляры MySQL. Если у вас есть функционально не связанные данные (как в этом примере), то их целесообразно разносить в разные экземпляры баз данных или даже физические серверы. Посмотрим на это с другой стороны. Если у вас есть в одном проекте и встроенная интегрированная баннерокрутилка, и сервис, который показывает посты пользователей, то разумное решение - сразу осознать, что эти данные никак не связаны между собой и поэтому должны жить в самом простом варианте в двух разных запущенных MySQL. Это относится и к вычисляющим бэкендам - они тоже могут быть разными. С совершенно разными настройками, с разными используемыми технологиями и написанные на разных языках программирования. Возвращаясь к примеру: для показа постов вы можете использовать в качестве бэкенда самый обычный PHP, а для баннерной системы вы можете запустить модуль к nginx’у. Соответственно, для постов вы можете выделить сервер с большим количеством памяти (ну PHP все-таки), при этом для баннерной системы память может быть не так важна, как процессорная емкость.

Сделаем выводы: функциональное разбиение бэкенда целесообразно использовать в качестве простейшего метода масштабирования. Группируйте сходные функции и запускайте их обработчики на разных физических серверах. Обратимся к следующему подходу.

От авторов

Основным направлением деятельности нашей компании является решение проблем, связанных с высокой нагрузкой, консультирование, проектирование масштабируемых архитектур, проведение нагрузочных тестирований и оптимизация сайтов. В число наших клиентов входят инвесторы из России и со всего мира, а также проекты «ВКонтакте», «Эльдорадо», «Имхонет», Photosight.ru и другие. Во время консультаций мы часто сталкиваемся с тем, что многие не знают самых основ - что такое масштабирование и каким оно бывает, какие инструменты и для чего используются. Эта публикация продолжает серию статей «Учебник по высоким нагрузкам». В этих статьях мы постараемся последовательно рассказать обо всех инструментах, которые используются при построении архитектуры высоконагруженных систем.

Классическое горизонтальное масштабирование

О том, что такое горизонтальное масштабирование, в принципе, мы уже знаем. Если вашей системе не хватает мощности, вы просто добавляете еще десять серверов, и они продолжают работать. Но не каждый проект позволит провернуть такое. Есть несколько классических парадигм, которые необходимо рассмотреть на раннем этапе проектирования, чтобы программный код можно было масштабировать при росте нагрузки.

Концепции Shared Nothing и Stateless

Рассмотрим две концепции - Shared Nothing и Stateless, которые могут обеспечить возможность горизонтального масштабирования.

Подход Shared Nothing означает, что каждый узел является независимым, самодостаточным и нет какой-то единой точки отказа. Это, конечно, не всегда возможно, но в любом случае количество таких точек находится под жестким контролем архитектора. Под точкой отказа мы понимаем некие данные или вычисления, которые являются общими для всех бэкендов. Например, какой-нибудь диспетчер состояний или идентификаторов. Другой пример - использование сетевых файловых систем. Это прямой путь получить на определенном этапе роста проекта узкое место в архитектуре. Если каждый узел является независимым, то мы легко можем добавить еще несколько - по росту нагрузки.

Концепция Stateless означает, что процесс программы не хранит свое состояние. Пользователь пришел и попал на этот конкретный сервер, и нет никакой разницы, попал пользователь на этот сервер или на другой. После того как запрос будет обработан, этот сервер полностью забудет информацию об этом пользователе. Пользователь вовсе не обязан все свои следующие запросы отправлять на этот же сервер, не должен второй раз приходить на него же. Таким образом, мы можем динамически менять количество серверов и не заботиться о том, чтобы роутить пользователя на нужный сервак. Наверное, это одна из серьезных причин, почему веб так быстро развивается. В нем гораздо проще делать приложения, чем писать классические офлайновые программы. Концепция «ответ - запрос» и тот факт, что ваша программа живет 200 миллисекунд или максимум одну секунду (после чего она полностью уничтожается), привели к тому, что в таких распространенных языках программирования, как PHP, до сих пор нет сборщика мусора.

Описанный подход является классическим: он простой и надежный, как скала. Однако в последнее время нам все чаще и чаще приходится отказываться от него.

Критика концепций Shared Nothing и Stateless

Сегодня перед вебом возникают новые задачи, которые ставят новые проблемы. Когда мы говорим про Stateless, это означает, что каждые данные каждому пользователю мы заново тащим из хранилища, а это подчас бывает очень дорого. Возникает резонное желание положить какие-то данные в память, сделать не совсем Stateless. Это связано с тем, что сегодня веб становится все более и более интерактивным. Если вчера человек заходил в веб-почту и нажимал на кнопку «Reload», чтобы проверить новые сообщения, то сегодня этим уже занимается сервер. Он ему говорит: «О, чувак, пока ты сидел на этой страничке, тебе пришли новые сообщения».

Возникают новые задачи, которые приводят к тому, что подход с Shared Nothing и отсутствием состояния в памяти иногда не является обязательным. Мы уже сталкивались неоднократно с ситуациями наших клиентов, которым мы говорим: «От этого откажитесь, положите данные в память» и наоборот «Направляйте людей на один и тот же сервер». Например, когда возникает открытая чат-комната, людей имеет смысл роутить на один и тот же сервер, чтобы это все работало быстрее.

Расскажем про еще один случай, с которым сталкивались. Один наш знакомый разрабатывал на Ruby on Rails игрушку наподобие «Арены» (онлайн драки и бои). Вскоре после запуска он столкнулся с классической проблемой: если несколько человек находятся в рамках одного боя, каждый пользователь постоянно вытаскивает из БД данные, которые во время этого боя возникли. В итоге вся эта конструкция смогла дожить только до 30 тысяч зарегистрированных юзеров, а дальше она просто перестала работать.

Обратная ситуация сложилась у компании Vuga, которая занимается играми для Facebook. Правда, когда они столкнулись с похожей проблемой, у них были другие масштабы: несколько миллиардов SELECT’ов из PostgreSQL в день на одной системе. Они перешли полностью на подход Memory State: данные начали храниться и обслуживаться прямо в оперативной памяти. Итог: ребята практически отказались от базы данных, а пара сотен серверов оказались лишним. Их просто выключили: они стали не нужны.

В принципе, любое масштабирование (в том числе горизонтальное) достижимо на очень многих технологиях. Сейчас очень часто речь идет о том, чтобы при создании сервиса не пришлось платить слишком много за железо. Для этого важно знать, какая технология наиболее соответствует данному профилю нагрузки с минимальными затратами железа. При этом очень часто, когда начинают размышлять о масштабировании, то забывают про финансовый аспект того же горизонтального масштабирования. Некоторые думают, что горизонтальное масштабирование - это реально панацея. Разнесли данные, все разбросали на отдельные серверы - и все стало нормально. Однако эти люди забывают о накладных расходах (оверхедах) - как финансовых (покупка новых серверов), так эксплуатационных. Когда мы разносим все на компоненты, возникают накладные расходы на коммуникацию программных компонентов между собой. Грубо говоря, хопов становится больше. Вспомним уже знакомый тебе пример. Когда мы заходим на страничку Facebook, мощный JavaScript идет на сервер, который долго-долго думает и только через некоторое время начинает отдавать вам ваши данные. Все наблюдали подобную картину: хочется уже посмотреть и бежать дальше пить кофе, а оно все грузится, грузится и грузится. Надо бы хранить данные чуть-чуть «поближе», но у Facebook уже такой возможности нет.

Слоистость кода

Еще пара советов для упрощения горизонтального масштабирования. Первая рекомендация: программируйте так, чтобы ваш код состоял как бы из слоев и каждый слой отвечал за какой-то определенный процесс в цепочке обработки данных. Скажем, если у вас идет работа с базой данных, то она должна осуществляться в одном месте, а не быть разбросанной по всем скриптам. К примеру, мы строим страницу пользователя. Все начинается с того, что ядро запускает модуль бизнес-логики для построения страницы пользователя. Этот модуль запрашивает у нижележащего слоя хранения данных информацию об этом конкретном пользователе. Слою бизнес-логики ничего не известно о том, где лежат данные: закешированы ли они, зашардированы ли (шардинг - это разнесение данных на разные серверы хранения данных, о чем мы будем говорить в будущих уроках), или с ними сделали еще что-нибудь нехорошее. Модуль просто запрашивает информацию, вызывая соответствующую функцию. Функция чтения информации о пользователе расположена в слое хранения данных. В свою очередь, слой хранения данных по типу запроса определяет, в каком именно хранилище хранится пользователь. В кеше? В базе данных? В файловой системе? И далее вызывает соответствующую функцию нижележащего слоя.

Что дает такая слоистая схема? Она дает возможность переписывать, выкидывать или добавлять целые слои. Например, решили вы добавить кеширование для пользователей. Сделать это в слоистой схеме очень просто: надо допилить только одно место – слой хранения данных. Или вы добавляете шардирование, и теперь пользователи могут лежать в разных базах данных. В обычной схеме вам придется перелопатить весь сайт и везде вставить соответствующие проверки. В слоистой схеме нужно лишь исправить логику одного слоя, одного конкретного модуля.

Связность кода и данных

Следующая важная задача, которую необходимо решить, чтобы избежать проблем при горизонтальном масштабировании, - минимизировать связность как кода, так и данных. Например, если у вас в SQL-запросах используются JOIN’ы, у вас уже есть потенциальная проблема. Сделать JOIN в рамках одной базы данных можно. А в рамках двух баз данных, разнесенных по разным серверам, уже невозможно. Общая рекомендация: старайтесь общаться с хранилищем минимально простыми запросами, итерациями, шагами.

Что делать, если без JOIN’а не обойтись? Сделайте его сами: сделали два запроса, перемножили в PHP - в этом нет ничего страшного. Для примера рассмотрим классическую задачу построения френдленты. Вам нужно поднять всех друзей пользователя, для них запросить все последние записи, для всех записей собрать количество комментариев - вот где соблазн сделать это одним запросом (с некоторым количеством вложенных JOIN’ов) особенно велик. Всего один запрос - и вы получаете всю нужную вам информацию. Но что вы будете делать, когда пользователей и записей станет много и база данных перестанет справляться? По-хорошему надо бы расшардить пользователей (разнести равномерно на разные серверы баз данных). Понятно, что в этом случае выполнить операцию JOIN уже не получится: данные-то разделены по разным базам. Так что придется делать все вручную. Вывод очевиден: делайте это вручную с самого начала. Сначала запросите из базы данных всех друзей пользователя (первый запрос). Затем заберите последние записи этих пользователей (второй запрос или группа запросов). Затем в памяти произведите сортировку и выберите то, что вам нужно. Фактически вы выполняете операцию JOIN вручную. Да, возможно вы выполните ее не так эффективно, как это сделала бы база данных. Но зато вы никак не ограничены объемом этой базы данных в хранении информации. Вы можете разделять и разносить ваши данные на разные серверы или даже в разные СУБД! Все это совсем не так страшно, как может показаться. В правильно построенной слоистой системе большая часть этих запросов будет закеширована. Они простые и легко кешируются - в отличие от результатов выполнения операции JOIN. Еще один минус варианта с JOIN: при добавлении пользователем новой записи вам нужно сбросить кеши выборок всех его друзей! А при таком раскладе неизвестно, что на самом деле будет работать быстрее.

Кеширование

Следующий важный инструмент, с которым мы сегодня познакомимся, - кеширование. Что такое кеш? Кеш - это такое место, куда можно под каким-то ключом положить данные, которые долго вычисляют. Запомните один из ключевых моментов: кеш должен вам по этому ключу отдать данные быстрее, чем вычислить их заново. Мы неоднократно сталкивались с ситуацией, когда это было не так и люди бессмысленно теряли время. Иногда база данных работает достаточно быстро и проще сходить напрямую к ней. Второй ключевой момент: кеш должен быть единым для всех бэкендов.

Второй важный момент. Кеш - это скорее способ замазать проблему производительности, а не решить ее. Но, безусловно, бывают ситуации, когда решить проблему очень дорого. Поэтому вы говорите: «Хорошо, эту трещину в стене я замажу штукатуркой, и будем думать, что ее здесь нет». Иногда это работает - более того, это работает очень даже часто. Особенно когда вы попадаете в кеш и там уже лежат данные, которые вы хотели показать. Классический пример - счетчик количества друзей. Это счетчик в базе данных, и вместо того, чтобы перебирать всю базу данных в поисках ваших друзей, гораздо проще эти данные закешировать (и не пересчитывать каждый раз).

Для кеша есть критерий эффективности использования, то есть показатель того, что он работает, - он называется Hit Ratio. Это отношение количества запросов, для которых ответ нашелся в кеше, к общему числу запросов. Если он низкий (50–60%), значит, у вас есть лишние накладные расходы на поход к кешу. Это означает, что практически на каждой второй странице пользователь, вместо того чтобы получить данные из базы, еще и ходит к кешу: выясняет, что данных для него там нет, после чего идет напрямую к базе. А это лишние две, пять, десять, сорок миллисекунд.

Как обеспечивать хорошее Hit Ratio? В тех местах, где у вас база данных тормозит, и в тех местах, где данные можно перевычислять достаточно долго, там вы втыкаете Memcache, Redis или аналогичный инструмент, который будет выполнять функцию быстрого кеша, - и это начинает вас спасать. По крайней мере, временно.

Олег Бунин

Известный специалист по Highload-проектам. Его компания «Лаборатория Олега Бунина» специализируется на консалтинге, разработке и тестировании высоконагруженных веб-проектов. Сейчас является организатором конференции HighLoad++ (www.highload.ru). Это конференция, посвященная высоким нагрузкам, которая ежегодно собирает лучших в мире специалистов по разработке крупных проектов. Благодаря этой конференции знаком со всеми ведущими специалистами мира высоконагруженных систем.

Константин Осипов

Специалист по базам данных, который долгое время работал в MySQL, где отвечал как раз за высоконагруженный сектор. Быстрота MySQL - в большой степени заслуга именно Кости Осипова. В свое время он занимался масштабируемостью MySQL 5.5. Сейчас отвечает в Mail.Ru за кластерную NoSQL базу данных Tarantool, которая обслуживает 500–600 тысяч запросов в секунду. Использовать этот Open Source проект может любой желающий.

Максим Лапшин

Решения для организации видеотрансляции, которые существуют в мире на данный момент, можно пересчитать по пальцам. Макс разработал одно из них - Erlyvideo (erlyvideo.org). Это серверное приложение, которое занимается потоковым видео. При создании подобных инструментов возникает целая куча сложнейших проблем со скоростью. У Максима также есть некоторый опыт, связанный с масштабированием средних сайтов (не таких крупных, как Mail.Ru). Под средними мы подразумеваем такие сайты, количество обращений к которым достигает около 60 миллионов в сутки.

Константин Машуков

Бизнес-аналитик в компании Олега Бунина. Константин пришел из мира суперкомпьютеров, где долгое время «пилил» различные научные приложения, связанные с числодробилками. В качестве бизнес-аналитика участвует во всех консалтинговых проектах компании, будь то социальные сети, крупные интернет-магазины или системы электронных платежей.

Проблема инвалидации кеша

Но с использованием кеша вы бонусом получаете проблему инвалидации кеша. В чем суть? Вы положили данные в кеш и берете их из кеша, однако к этому моменту оригинальные данные уже поменялись. Например, Машенька поменяла подпись под своей картинкой, а вы зачем-то положили одну строчку в кеш вместо того, чтобы тянуть каждый раз из базы данных. В результате вы показываете старые данные - это и есть проблема инвалидации кеша. В общем случае она не имеет решения, потому что эта проблема связана с использованием данных вашего бизнес-приложения. Основной вопрос: когда обновлять кеш? Ответить на него подчас непросто. Например, пользователь публикует в социальной сети новый пост - допустим, в этот момент мы пытаемся избавиться от всех инвалидных данных. Получается, нужно сбросить и обновить все кеши, которые имеют отношение к этому посту. В худшем случае, если человек делает пост, вы сбрасываете кеш с его ленты постов, сбрасываете все кеши с ленты постов его друзей, сбрасываете все кеши с ленты людей, у которых в друзьях есть те, кто в этом сообществе, и так далее. В итоге вы сбрасываете половину кешей в системе. Когда Цукерберг публикует пост для своих одиннадцати с половиной миллионов подписчиков, мы что - должны сбросить одиннадцать с половиной миллионов кешей френдлент у всех этих subscriber’ов? Как быть с такой ситуацией? Нет, мы пойдем другим путем и будем обновлять кеш при запросе на френдленту, где есть этот новый пост. Система обнаруживает, что кеша нет, идет и вычисляет заново. Подход простой и надежный, как скала. Однако есть и минусы: если сбросился кеш у популярной страницы, вы рискуете получить так называемые race-condition (состояние гонок), то есть ситуацию, когда этот самый кеш будет одновременно вычисляться несколькими процессами (несколько пользователей решили обратиться к новым данным). В итоге ваша система занимается довольно пустой деятельностью - одновременным вычислением n-го количества одинаковых данных.

Один из выходов - одновременное использование нескольких подходов. Вы не просто стираете устаревшее значение из кеша, а только помечаете его как устаревшее и одновременно ставите задачу в очередь на пересчет нового значения. Пока задание в очереди обрабатывается, пользователю отдается устаревшее значение. Это называется деградация функциональности: вы сознательно идете на то, что некоторые из пользователей получат не самые свежие данные. Большинство систем с продуманной бизнес-логикой имеют в арсенале подобный подход.

Проблема старта с непрогретым кешем

Еще одна проблема - старт с непрогретым (то есть незаполненным) кешем. Такая ситуация наглядно иллюстрирует утверждение о том, что кеш не может решить проблему медленной базы данных. Предположим, что вам нужно показать пользователям 20 самых хороших постов за какой-либо период. Эта информация была у вас в кеше, но к моменту запуска системы кеш был очищен. Соответственно, все пользователи обращаются к базе данных, которой для построения индекса нужно, скажем, 500 миллисекунд. В итоге все начинает медленно работать, и вы сами себе сделали DoS (Denial-of-service). Сайт не работает. Отсюда вывод: не занимайтесь кешированием, пока у вас не решены другие проблемы. Сделайте, чтобы база быстро работала, и вам не нужно будет вообще возиться с кешированием. Тем не менее даже у проблемы старта с незаполненным кешем есть решения:

  1. Использовать кеш-хранилище с записью на диск (теряем в скорости);
  2. Вручную заполнять кеш перед стартом (пользователи ждут и негодуют);
  3. Пускать пользователей на сайт партиями (пользователи все так же ждут и негодуют).

Как видите, любой способ плох, поэтому лишь повторимся: старайтесь сделать так, чтобы ваша система работала и без кеширования.

Масштабируемость - способность устройства увеличивать свои
возможности
путем наращивания числа функциональных блоков,
выполняющих одни и
те же задачи.
Глоссарий.ru

Обычно о масштабировании начинают думать тогда, когда один
сервер не справляется с возложенной на него работой. С чем именно он не
справляется? Работа любого web-сервера по большому счету сводится к основному
занятию компьютеров - обработке данных. Ответ на HTTP (или любой другой) запрос
подразумевает проведение некоторых операций над некими данными. Соответственно,
у нас есть две основные сущности - это данные (характеризуемые своим объемом) и
вычисления (характеризуемые сложностью). Сервер может не справляться со своей
работой по причине большого объема данных (они могут физически не помещаться на
сервере), либо по причине большой вычислительной нагрузки. Речь здесь идет,
конечно, о суммарной нагрузке - сложность обработки одного запроса может быть
невелика, но большое их количество может «завалить» сервер.

В основном мы будем говорить о масштабировании на примере
типичного растущего web-проекта, однако описанные здесь принципы подходят и для
других областей применения. Сначала мы рассмотрим архитектуру проекта и простое
распределение ее составных частей на несколько серверов, а затем поговорим о
масштабировании вычислений и данных.

Типичная архитектура сайта

Жизнь типичного сайта начинается с очень простой архитектуры
- это один web-сервер (обычно в его роли выступает Apache),
который занимается всей работой по обслуживанию HTTP-запросов,
поступающих от посетителей. Он отдает клиентам так называемую «статику», то
есть файлы, лежащие на диске сервера и не требующие обработки: картинки (gif,
jpg, png), листы стилей (css), клиентские скрипты (js, swf). Тот же сервер
отвечает на запросы, требующие вычислений - обычно это формирование
html-страниц, хотя иногда «на лету» создаются и изображения и другие документы.
Чаще всего ответы на такие запросы формируются скриптами, написанными на php,
perl или других языках.

Минус такой простой схемы работы в том, что разные по
характеру запросы (отдача файлов с диска и вычислительная работа скриптов)
обрабатываются одним и тем же web-сервером. Вычислительные запросы требуют
держать в памяти сервера много информации (интерпретатор скриптового языка,
сами скрипты, данные, с которыми они работают) и могут занимать много
вычислительных ресурсов. Выдача статики, наоборот, требует мало ресурсов
процессора, но может занимать продолжительное время, если у клиента низкая
скорость связи. Внутреннее устройство сервера Apache предполагает, что каждое
соединение обрабатывается отдельным процессом. Это удобно для работы скриптов,
однако неоптимально для обработки простых запросов. Получается, что тяжелые (от
скриптов и прочих данных) процессы Apache много времени проводят в ожидании (сначала при получении
запроса, затем при отправке ответа), впустую занимая память сервера.

Решение этой проблемы - распределение работы по обработке
запросов между двумя разными программами - т.е. разделение на frontend и
backend. Легкий frontend-сервер выполняет задачи по отдаче статики, а остальные
запросы перенаправляет (проксирует) на backend, где выполняется формирование
страниц. Ожидание медленных клиентов также берет на себя frontend, и если он использует
мультиплексирование (когда один процесс обслуживает нескольких клиентов - так
работают, например, nginx или lighttpd), то ожидание практически ничего не
стоит.

Из других компонент сайта следует отметить базу данных, в
которой обычно хранятся основные данные системы - тут наиболее популярны
бесплатные СУБД MySQL и PostgreSQL. Часто отдельно выделяется хранилище
бинарных файлов, где содержатся картинки (например, иллюстрации к статьям
сайта, аватары и фотографии пользователей) или другие файлы.

Таким образом, мы получили схему архитектуры, состоящую из
нескольких компонент.

Обычно в начале жизни сайта все компоненты архитектуры
располагаются на одном сервере. Если он перестает справляться с нагрузкой, то
есть простое решение - вынести наиболее легко отделяемые части на другой
сервер. Проще всего начать с базы данных - перенести ее на отдельный сервер и
изменить реквизиты доступа в скриптах. Кстати, в этот момент мы сталкиваемся с
важностью правильной архитектуры программного кода. Если работа с базой данных
вынесена в отдельный модуль, общий для всего сайта - то исправить параметры
соединения будет просто.

Пути дальнейшего разделения компонент тоже понятны - например, можно вынести frontend на отдельный сервер. Но обычно frontend
требует мало системных ресурсов и на этом этапе его вынос не даст существенного
прироста производительности. Чаще всего сайт упирается в производительность
скриптов - формирование ответа (html-страницы) занимает слишком долгое время.
Поэтому следующим шагом обычно является масштабирование backend-сервера.

Распределение вычислений

Типичная ситуация для растущего сайта - база данных уже
вынесена на отдельную машину, разделение на frontend и backend выполнено,
однако посещаемость продолжает увеличиваться и backend не успевает обрабатывать
запросы. Это значит, что нам необходимо распределить вычисления на несколько
серверов. Сделать это просто - достаточно купить второй сервер и поставить на
него программы и скрипты, необходимые для работы backend.
После этого надо сделать так, чтобы запросы пользователей распределялись
(балансировались) между полученными серверами. О разных способах балансировки
будет сказано ниже, пока же отметим, что обычно этим занимается frontend,
который настраивают так, чтобы он равномерно распределял запросы между
серверами.

Важно, чтобы все backend-серверы были способны правильно
отвечать на запросы. Обычно для этого необходимо, чтобы каждый из них работал с
одним и тем же актуальным набором данных. Если мы храним всю информацию в единой
базе данных, то СУБД сама обеспечит совместный доступ и согласованность данных.
Если же некоторые данные хранятся локально на сервере (например, php-сессии
клиента), то стоит подумать о переносе их в общее хранилище, либо о более
сложном алгоритме распределения запросов.

Распределить по нескольким серверам можно не только работу
скриптов, но и вычисления, производимые базой данных. Если СУБД выполняет много
сложных запросов, занимая процессорное время сервера, можно создать несколько
копий базы данных на разных серверах. При этом возникает вопрос синхронизации
данных при изменениях, и здесь применимы несколько подходов.

  • Синхронизация на уровне приложения . В этом случае наши
    скрипты самостоятельно записывают изменения на все копии базы данных (и сами несут
    ответственность за правильность данных). Это не лучший вариант, поскольку он
    требует осторожности при реализации и весьма неустойчив к ошибкам.
  • Репликация - то есть автоматическое тиражирование
    изменений, сделанных на одном сервере, на все остальные сервера. Обычно при
    использовании репликации изменения записываются всегда на один и тот же сервер - его называют master, а остальные копии - slave. В большинстве СУБД есть
    встроенные или внешние средства для организации репликации. Различают
    синхронную репликацию - в этом случае запрос на изменение данных будет ожидать,
    пока данные будут скопированы на все сервера, и лишь потом завершится успешно - и асинхронную - в этом случае изменения копируются на slave-сервера с
    задержкой, зато запрос на запись завершается быстрее.
  • Multi-master репликация. Этот подход аналогичен
    предыдущему, однако тут мы можем производить изменение данных, обращаясь не к
    одному определенному серверу, а к любой копии базы. При этом изменения
    синхронно или асинхронно попадут на другие копии. Иногда такую схему называют
    термином «кластер базы данных».

Возможны разные варианты распределения системы по серверам.
Например, у нас может быть один сервер базы данных и несколько backend (весьма
типичная схема), или наоборот - один backend и несколько БД. А если мы масштабируем
и backend-сервера, и базу данных, то можно объединить backend и копию базы на
одной машине. В любом случае, как только у нас появляется несколько экземпляров
какого-либо сервера, возникает вопрос, как правильно распределить между ними
нагрузку.

Методы балансировки

Пусть мы создали несколько серверов (любого назначения - http, база данных и т.п.), каждый из которых может обрабатывать запросы. Перед
нами встает задача - как распределить между ними работу, как узнать, на какой
сервер отправлять запрос? Возможны два основных способа распределения запросов.

  • Балансирующий узел . В этом случае клиент шлет запрос на один
    фиксированный, известный ему сервер, а тот уже перенаправляет запрос на один из
    рабочих серверов. Типичный пример - сайт с одним frontend и несколькими
    backend-серверами, на которые проксируются запросы. Однако «клиент» может
    находиться и внутри нашей системы - например, скрипт может слать запрос к
    прокси-серверу базы данных, который передаст запрос одному из серверов СУБД.
    Сам балансирующий узел может работать как на отдельном сервере, так и на одном
    из рабочих серверов.

    Преимущества этого подхода в том,
    что клиенту ничего не надо знать о внутреннем устройстве системы - о количестве
    серверов, об их адресах и особенностях - всю эту информацию знает только
    балансировщик. Однако недостаток в том, что балансирующий узел является единой
    точкой отказа системы - если он выйдет из строя, вся система окажется
    неработоспособна. Кроме того, при большой нагрузке балансировщик может просто перестать
    справляться со своей работой, поэтому такой подход применим не всегда.

  • Балансировка на стороне клиента . Если мы хотим избежать
    единой точки отказа, существует альтернативный вариант - поручить выбор сервера
    самому клиенту. В этом случае клиент должен знать о внутреннем устройстве нашей
    системы, чтобы уметь правильно выбирать, к какому серверу обращаться.
    Несомненным плюсом является отсутствие точки отказа - при отказе одного из
    серверов клиент сможет обратиться к другим. Однако платой за это является
    усложнение логики клиента и меньшая гибкость балансировки.


Разумеется, существуют и комбинации этих подходов. Например,
такой известный способ распределения нагрузки, как DNS-балансировка, основан на
том, что при определении IP-адреса сайта клиенту выдается
адрес одного из нескольких одинаковых серверов. Таким образом, DNS выступает в
роли балансирующего узла, от которого клиент получает «распределение». Однако
сама структура DNS-серверов предполагает отсутствие точки отказа за счет
дублирования - то есть сочетаются достоинства двух подходов. Конечно, у такого
способа балансировки есть и минусы - например, такую систему сложно динамически
перестраивать.

Работа с сайтом обычно не ограничивается одним запросом.
Поэтому при проектировании важно понять, могут ли последовательные запросы
клиента быть корректно обработаны разными серверами, или клиент должен быть
привязан к одному серверу на время работы с сайтом. Это особенно важно, если на
сайте сохраняется временная информация о сессии работы пользователя (в этом
случае тоже возможно свободное распределение - однако тогда необходимо хранить
сессии в общем для всех серверов хранилище). «Привязать» посетителя к
конкретному серверу можно по его IP-адресу (который, однако, может меняться),
или по cookie (в которую заранее записан идентификатор сервера), или даже
просто перенаправив его на нужный домен.

С другой стороны, вычислительные сервера могут быть и не равноправными.
В некоторых случаях выгодно поступить наоборот, выделить отдельный сервер для
обработки запросов какого-то одного типа - и получить вертикальное разделение
функций. Тогда клиент или балансирующий узел будут выбирать сервер в
зависимости от типа поступившего запроса. Такой подход позволяет отделить
важные (или наоборот, не критичные, но тяжелые) запросы от остальных.

Распределение данных

Мы научились распределять вычисления, поэтому большая
посещаемость для нас не проблема. Однако объемы данных продолжают расти,
хранить и обрабатывать их становится все сложнее - а значит, пора строить
распределенное хранилище данных. В этом случае у нас уже не будет одного или
нескольких серверов, содержащих полную копию базы данных. Вместо этого, данные
будут распределены по разным серверам. Какие возможны схемы распределения?

  • Вертикальное распределение (vertical partitioning) - в простейшем случае
    представляет собой вынесение отдельных таблиц базы данных на другой сервер. При
    этом нам потребуется изменить скрипты, чтобы обращаться к разным серверам за
    разными данными. В пределе мы можем хранить каждую таблицу на отдельном сервере
    (хотя на практике это вряд ли будет выгодно). Очевидно, что при таком
    распределении мы теряем возможность делать SQL-запросы, объединяющие данные из
    двух таблиц, находящихся на разных серверах. При необходимости можно реализовать
    логику объединения в приложении, но это будет не столь эффективно, как в СУБД.
    Поэтому при разбиении базы данных нужно проанализировать связи между таблицами,
    чтобы разносить максимально независимые таблицы.

    Более сложный случай
    вертикального распределения базы - это декомпозиция одной таблицы, когда часть
    ее столбцов оказывается на одном сервере, а часть - на другом. Такой прием
    встречается реже, но он может использоваться, например, для отделения маленьких
    и часто обновляемых данных от большого объема редко используемых.

  • Горизонтальное распределение (horizontal partitioning) - заключается в
    распределении данных одной таблицы по нескольким серверам. Фактически, на
    каждом сервере создается таблица такой же структуры, и в ней хранится
    определенная порция данных. Распределять данные по серверам можно по разным
    критериям: по диапазону (записи с id < 100000 идут на сервер А, остальные - на сервер Б), по списку значений (записи типа «ЗАО» и «ОАО» сохраняем на сервер
    А, остальные - на сервер Б) или по значению хэш-функции от некоторого поля
    записи. Горизонтальное разбиение данных позволяет хранить неограниченное
    количество записей, однако усложняет выборку. Наиболее эффективно можно выбирать
    записи только когда известно, на каком сервере они хранятся.

Для выбора правильной схемы распределения данных необходимо
внимательно проанализировать структуру базы. Существующие таблицы (и, возможно,
отдельные поля) можно классифицировать по частоте доступа к записям, по частоте
обновления и по взаимосвязям (необходимости делать выборки из нескольких
таблиц).

Как упоминалось выше, кроме базы данных сайту часто требуется
хранилище для бинарных файлов. Распределенные системы хранения файлов
(фактически, файловые системы) можно разделить на два класса.

  • Работающие на уровне операционной системы . При этом для
    приложения работа с файлами в такой системе не отличается от обычной работы с
    файлами. Обмен информацией между серверами берет на себя операционная система.
    В качестве примеров таких файловых систем можно привести давно известное
    семейство NFS или менее известную, но более современную систему Lustre.
  • Реализованные на уровне приложения распределенные
    хранилища подразумевают, что работу по обмену информацией производит само
    приложение. Обычно функции работы с хранилищем для удобства вынесены в
    отдельную библиотеку. Один из ярких примеров такого хранилища - MogileFS, разработанная
    создателями LiveJournal. Другой распространенный пример - использование
    протокола WebDAV и поддерживающего его хранилища.

Надо отметить, что распределение данных решает не только
вопрос хранения, но и частично вопрос распределения нагрузки - на каждом
сервере становится меньше записей, и потому обрабатываются они быстрее.
Сочетание методов распределения вычислений и данных позволяет построить
потенциально неограниченно-масштабируемую архитектуру, способную работать с
любым количеством данных и любыми нагрузками.

Выводы

Подводя итог сказанному, сформулируем выводы в виде кратких тезисов.

  • Две основные (и связанные между собой) задачи масштабирования - это распределение вычислений и распределение данных
  • Типичная архитектура сайта подразумевает разделение ролей и
    включает frontend, backend, базу данных и иногда хранилище файлов
  • При небольших объемах данных и больших нагрузках применяют
    зеркалирование базы данных - синхронную или асинхронную репликацию
  • При больших объемах данных необходимо распределить базу данных - разделить
    ее вертикально или горизонтально
  • Бинарные файлы хранятся в распределенных файловых системах
    (реализованных на уровне ОС или в приложении)
  • Балансировка (распределение запросов) может быть равномерная или
    с разделением по функционалу; с балансирующим узлом, либо на стороне клиента
  • Правильное сочетание методов позволит держать любые нагрузки;)

Ссылки

Продолжить изучение этой темы можно на интересных англоязычных сайтах и блогах.

АЛЕКСАНДР КАЛЕНДАРЕВ , РБК Медиа, программист, [email protected]


Проблемы и пути решения

Рано или поздно популярный веб- или мобильный проект с серверной частью столкнется с проблемой производительности. Один из вариантов решения – это горизонтальное масштабирование базы данных. Рассказываем о подводных камнях и о возможных путях их обхода

Каждый растущий проект упирается в проблему повышения производительности. Поэтому если вы считаете, что ваш проект амбициозен и в скором покорит весь мир, то возможность масштабирования желательно закладывать уже на уровне начальной разработки архитектуры.

Уточним терминологию:

  • Производительность (performance) – способность приложения отвечать таким требованиям, как максимальное время реакции, пропускная способность.
  • Пропускная способность (capacity) – максимальная возможность приложения пропустить через себя определенное количество запросов в единицу времени или держать определенное число пользовательских сессий.
  • Масштабируемость (scalability) – это характеристика приложения, показывающая его способность сохранять производительность при увеличении пропускной способности. В свою очередь, масштабирование – это процесс обеспечения роста системы. Масштабирование может быть вертикальным или горизонтальным.
  • Вертикальное масштабирование – это увеличение производительности за счет наращивания мощности железа, объема оперативной памяти и т.д. Рано или поздно вертикальное масштабирование упрется в верхний предел.
  • Горизонтальное масштабирование – это увеличение производительности за счет разделения данных на множество серверов.

Функциональное разделение данных

Существует несколько вариантов горизонтального масштабирования. Например, очень часто используется разделение данных по функциональному признаку использования. Например, данные для фотоальбомов содержатся на одной группе серверов, данные профилей пользователей расположены в другой группе, а переписка пользователей – на третьей. На рис. 1 изображена схема горизонтального масштабирования по функциональному распределению.

Масштабирование с использованием репликации

Самый простой способ масштабирования, который часто используется для небольших и средних проектов, – использование репликации. Репликация – это механизм синхронизации нескольких копий объекта, таблиц базы данных (см. рис. 2). Master-slave-репликация – это синхронизация данных с основного master-сервера к подчиненным slave-серверам.

Так как в большинстве веб- и мобильных проектов операций чтения на порядок больше, чем операций записи, то операции записи мы можем производить на один master-сервер, а чтение данных осуществлять с множества slave-серверов. Между master- и slave-серверами должна быть настроена репликация.

Множество БД имеет встроенную репликацию, или, как говорят, «решение из коробки». Например, PostgreSQL-репликация может осуществляться следующими утилитами:

  • Slony-I – асинхронная (master to multiple slaves) репликация;
  • pgpool-I/II – синхронный мультимастер репликации;
  • Pgcluster – синхронный мультимастер репликации;
  • Bucardo;
  • Londiste;
  • RubyRep.
  • начиная с версии 9.0, встроенная потоковая репликация.

При масштабировании с использованием репликации необходимо применять разные соединения: одно с master-сервером, только для записи или обновления, и второе, только со slave-сервером, непосредственно для чтения. При этом если у нас используется несколько slave-серверов, то стратегия выбора может быть случайной либо за определенным веб-сервером закрепляют определенный сервер БД.

Статью целиком читайте в журнале «Системный администратор», №10 за 2014 г. на страницах 54-62.

PDF-версию данного номера можно приобрести в нашем магазине .


Вконтакте

Вертикальное масштабирование — scaling up — увеличение количества доступных для ПО ресурсов за счет увеличения мощности применяемых с серверов.

— scaling out — увеличение количества нод, объединенных в кластер серверов при нехватке CPU, памяти или дискового пространства.

И то и другое является инфраструктурными решениями, которые в разных ситуациях требуются когда веб проект растет.

Вертикальное и горизонтальное масштабирование, scaling для web

Для примера можно рассмотреть сервера баз данных. Для больших приложений это всегда самый нагруженный компонент системы.

Возможности для масштабирования для серверов баз данных определяются применяемыми программными решениями: чаще всего это реляционные базы данных (MySQL, Postgresql) или NoSQL ( , Cassandra и др).

Горизонтальное масштабирование для серверов баз данных при больших нагрузках значительно дешевле

Веб-проект обычно начинают на одном сервере, ресурсы которого при росте заканчиваются. В такой ситуации возможны 2 варианта:

  • перенести сайт на более мощный сервер
  • добавить еще один сервер небольшой мощности с объединить машины в кластер

MySQL является самой популярной RDBMS и, как и любая из них, требует для работы под нагрузкой много серверных ресурсов. Масштабирование возможно, в основном, вверх. Есть шардинг (для его настройки требуется вносить изменения в код) и , которая может быть сложной в поддержке.

Вертикальное масштабирование

NoSQL масштабируется легко и второй вариант с, например, MongoDB будет значительно выгоднее материально, при этом не потребует трудозатратных настроек и поддержки получившегося решения. Шардинг осуществляется автоматически.

Таким образом с MySQL нужен будет сервер с большим количеством CPU и оперативной памяти, такие сервера имеют значительную стоимость.

Горизонтальное масштабирование
С MongoDB можно добавить еще один средний сервер и полученное решение будет стабильно работать давая дополнительно отказоустойчивость.


Scale-out или является закономерным этапом развития инфраструктуры. Любой сервер имеет ограничения и когда они достигнуты или когда стоимость более мощного сервера оказывается неоправданно высокой добавляются новые машины. Нагрузка распределяется между ними. Также это дает отказоустойчивость.

Добавлять средние сервера и настраивать кластеры нужно начинать когда возможности для увеличения ресурсов одной машины исчерпаны или когда приобретение сервера мощнее оказывается невыгодно

Приведенный пример с реляционными базами данных и NoSQL является ситуацией, которая имеет место чаще всего. Масштабируются также фронтэнд и бэкенд сервера.

Читайте про и балансер

|

Постоянно растущее количество посетителей сайта – всегда большое достижение для разработчиков и администраторов. Конечно, за исключением тех ситуаций, когда трафик увеличивается настолько, что выводит из строя веб-сервер или другое ПО. Постоянные перебои работы сайта всегда очень дорого обходятся компании.

Однако это поправимо. И если сейчас вы подумали о масштабировании – вы на правильном пути.

В двух словах, масштабируемость – это способность системы обрабатывать большой объем трафика и приспособляться к его росту, сохраняя при этом необходимый UX. Существует два метода масштабирования:

  • Вертикальное (также называется scaling up): увеличение системных ресурсов, например, добавление памяти и вычислительной мощности. Этот метод позволяет быстро устранить проблемы с обработкой трафика, но его ресурсы могут быстро себя исчерпать.
  • Горизонтальное (или scaling out): добавление серверов в кластер. Рассмотрим этот метод подробнее.

Что такое горизонтальное масштабирование?

Проще говоря, кластер – это группа серверов. Балансировщик нагрузки – это сервер, распределяющий рабочую нагрузку между серверами в кластере. В любой момент в существующий кластер можно добавить веб-сервер для обработки большего объёма трафика. В этом и есть суть горизонтального масштабирования.

Балансировщик нагрузки отвечает только за то, какой сервер из кластера будет обрабатывать полученный запрос. в основном, он работает как обратный прокси-сервер.

Горизонтальное масштабирование – несомненно, более надёжный метод увеличения производительности приложения, однако оно сложнее в настройке, чем вертикальное масштабирование. Главная и самая сложная задача в этом случае – постоянно поддерживать все ноды приложения обновленными и синхронизированными. Предположим, пользователь А отправляет запрос сайту mydomain.com, после чего балансировщик передаёт запрос на сервер 1. Тогда запрос пользователя Б будет обрабатываться сервером 2.

Что произойдёт, если пользователь А внесёт изменения в приложение (например, выгрузит какой-нибудь файл или обновит содержимое БД)? Как передать это изменение остальным серверам кластера?

Ответ на эти и другие вопросы можно найти в этой статье.

Разделение серверов

Подготовка системы к масштабированию требует разделения серверов; при этом очень важно, чтобы серверы с меньшим объёмом ресурсов имели меньше обязанностей, чем более объёмные серверы. Кроме того, разделение приложения на такие «части» позволит быстро определить его критические элементы.

Предположим, у вас есть PHP-приложение, позволяющее проходить аутентификацию и выкладывать фотографии. Приложение основано на стеке LAMP. Фотографии сохраняются на диске, а ссылки на них – в базе данных. Задача здесь заключается в поддержке синхронизации между несколькими серверами приложений, которые совместно используют эти данные (загруженные файлы и сессии пользователя).

Для масштабирования этого приложения нужно разделить веб-сервер и сервер БД. Таким образом в кластере появятся ноды, которые совместно используют сервер БД. Это увеличит производительность приложения, снизив нагрузку на веб-сервер.

В дальнейшем можно настроить балансировку нагрузки; об этом можно прочесть в руководстве « »

Сессионная согласованность

Разделив веб-сервер и базу данных, нужно сосредоточиться на обработке пользовательских сессий.

Реляционные базы данных и сетевые файловые системы

Данные сессий часто хранят в реляционных базах данных (таких как MySQL), потому что это такие базы легко настроить.

Однако это решение не самое надёжное, потому что в таком случае увеличивается нагрузка. Сервер должен вносить в БД каждую операцию чтения и записи для каждого отдельного запроса, и в случае резкого увеличения трафика база данных, как правило, отказывает раньше других компонентов.

Сетевые файловые системы – ещё один простой способ хранения данных; при этом не требуется вносить изменения в базу исходных текстов, однако сетевые системы очень медленно обрабатывают I/O операции, а это может оказать негативное влияние на производительность приложения.

Липкие сессии

Липкие сессии реализуются на балансировщике нагрузки и не требуют никаких изменений в нодах приложения. Это наиболее удобный метод обработки пользовательских сессий. Балансировщик нагрузки будет постоянно направлять пользователя на один и тот же сервер, что устраняет необходимость распространять данные о сессии между остальными нодами кластера.

Однако это решение тоже имеет один серьёзный недостаток. Теперь балансировщик не только распределяет нагрузку, у него появляется дополнительная задача. Это может повлиять на его производительность и привести к сбою.

Серверы Memcached и Redis

Также можно настроить один или несколько дополнительных серверов для обработки сессий. Это самый надёжный способ решения проблем, связанных с обработкой сессий.

Заключительные действия

Горизонтальное масштабирование приложения сначала кажется очень сложным и запутанным решением, однако оно помогает устранить серьёзные проблемы с трафиком. Главное – научиться работать с балансировщиком нагрузки, чтобы понимать, какие из компонентов требуют дополнительной настройки.

Масштабирование и производительность приложения очень тесно связаны между собой. Конечно, масштабирование нужно далеко не всем приложениям и сайтам. Однако лучше подумать об этом заранее, желательно ещё на стадии разработки приложения.

Tags: ,