Как работает тиристор. Тиристоры. Устройство, принцип работы, вольт-амперная характеристика. Типы данных электронных компонентов

Тиристор представляет собой электронный силовой частично управляемый ключ. Этот прибор, с помощью сигнала управления может находиться только в проводящем состоянии, то есть быть включенным. Для того, чтобы его выключить, нужно проводить специальные мероприятия, которые обеспечивают падение прямого тока до нулевого значения. Принцип работы тиристора заключается в односторонней проводимости, в закрытом состоянии может выдержать не только прямое, но и обратное напряжение.

Свойства тиристоров

По своим качествам, тиристоры относятся к полупроводниковым приборам. В их полупроводниковой пластине присутствуют смежные слои, обладающие различными типами проводимости. Таким образом, каждый тиристор представляет собой прибор, имеющий четырехслойную структуру р-п-р-п.

К крайней области р-структуры производится подключение положительного полюса источника напряжения. Поэтому, данная область получила название анода. Противоположная область п-типа, куда подключается отрицательный полюс, называется катодом. Вывод из внутренней области осуществляется с помощью р-управляющего электрода.

Классическая модель тиристора состоит из двух , имеющих разную степень проводимости. В соответствии с данной схемой, производится соединение базы и коллектора обоих транзисторов. В результате такого соединения, питание базы каждого транзистора осуществляется с помощью коллекторного тока другого транзистора. Таким образом, получается цепь с положительной обратной связью.

Если ток отсутствует в управляющем электроде, то транзисторы находятся в закрытом положении. Течение тока через нагрузку не происходит, и тиристор остается закрытым. При подаче тока выше определенного уровня, в действие вступает положительная обратная связь. Процесс становится лавинообразным, после чего происходит открытие обоих транзисторов. В конечном итоге, после открытия тиристора, наступает его стабильное состояние, даже в случае прекращения подачи тока.

Работа тиристора при постоянном токе

Рассматривая электронный тиристор принцип работы которого основан на одностороннем движении тока, следует отметить его работу при постоянном токе.

Обычный тиристор включается путем подачи импульса тока в цепь управления. Эта подача осуществляется со стороны положительной полярности, противоположной, относительно катода.

Во время включения, продолжительность переходного процесса обусловлена характером нагрузки, амплитудой и скоростью, с которой нарастает импульс тока управления. Кроме того, этот процесс зависит от температуры внутренней структуры тиристора, тока нагрузки и приложенного напряжения. В цепи, где установлен тиристор, не должно быть недопустимой скорости роста напряжения, которое может привести к его самопроизвольному включению.

Тиристоры

I. Назначение

Тиристорами называются полупроводниковые приборы с тремя (и более) р-п -переходами, предназначенными для использования в качестве электронных ключей в схемах переключения электрических токов. Они переключают электрические цепи, регулируют напряжение, преобразуют постоянный ток в переменный. По устройству и принципу работы он очень похож на полупроводниковый диод, но в отличие от него тиристор управляемый.

"Ключевой" характер действия тринистора позволяет использовать его для переключения электрических цепей там, где для этой цели до этого служили только электромагнитные реле. Полупроводниковые переключатели легче, компактнее и во много раз надежнее в работе, чем электромагнитные реле с механически замыкаемыми контактами. В отличие от таких реле они производят переключение с очень большой скоростью - сотни и тысячи раз в секунду, а если нужно - еще быстрее. Тринисторы используют в современной аппаратуре электрической связи, в быстродействующих системах дистанционного управления, в вычислительных машинах и в энергетических устройствах.

II. Классификация

В зависимости от конструктивных особенностей и свойств тиристоры делят на диодные и триодные. В диодных тиристорах различают:

    тиристоры, запираемые в обратном направлении;

    проводящие в обратном направлении;

    симметричные.

Триодные тиристоры подразделяют:

    на запираемые в обратном направлении с управлением по аноду или катоду;

    проводящие в обратном направлении с управлением по аноду или катоду;

    симметричные (двунаправленные).

Наиболее распространены динисторы - тиристоры с двумя выводами и тринисторы - приборы с тремя выводами. Кроме того, различают группу включаемых тиристоров.

Простейшие диодные тиристоры, запираемые в обратном направлении, обычно изготовляются из кремния и содержат четыре чередующихся р- и п- области (рис.2.2). Область р 1 , в которую попадает ток из внешней цепи, называют анодом , область п 2 – катодом ; области п 1 , р 2 – базами .

Рис.2.2. Структура тиристора .

III. Принцип действия

Если к аноду р 1 подключить плюс источника напряжения, а к катоду п 2 – минус, то переходы П 1 и П 3 окажутся открытыми, а переход П 2 – закрытым. Его называют коллекторным переходом.

Так как коллекторный р-п -переход смещен в обратном направлении, то до определенного значения напряжения почти все приложенное падает на нем. Такая структура легко может быть представлена в виде двух транзисторов разной электропроводности, соединенных между собой так, как показано на рис. 2.3, а,б.

а) б)

Рис. 2.3. Структура (а) и схема двухтранзисторного эквивалента тиристора (б).

Ток цепи определяется током коллекторного перехода П 2 . Он однозначно зависит от потока дырок
из эмиттера транзистора р-п -р - типа и потока электронов
из эмиттера транзистора п -р -п - типа, а также от обратного тока р-п -перехода.

Так как переходы П 1 и П 3 смещены в прямом направлении, из них в области баз инжектируются носители заряда: дырки из области р 1 , электроны – из области п 2 . Эти носители заряда, диффундируя в областях баз п 1 , р 2 , приближаются к коллекторному переходу и его полем перебрасываются через р-п -переход. Дырки, инжектированные из р 1 -области, и электроны из п 2 движутся через переход П 2 в противоположных направлениях, создавая общий ток I .

При малых значениях внешнего напряжения все оно практически падает на коллекторном переходе П 2 . Поэтому к переходам П 1 3 , имеющим малое сопротивление, приложена малая разность потенциалов и инжекция носителей заряда невелика. В этом случае ток I мал и равен обратному току через переход П . При увеличении внешнего напряжения ток в цепи сначала меняется незначительно. При дальнейшем возрастании напряжения, по мере увеличения ширины перехода П 2 , все большую роль начинают играть носители заряда, образовавшиеся вследствие ударной ионизации. При определенном напряжении носители заряда ускоряются настолько, что при столкновении с атомами в области р-п -перехода ионизируют их, вызывая лавинное размножение носителей заряда.

Образовавшиеся при этом дырки под влиянием электрического поля переходят в область р 2 , а электроны – в область п 1 . Ток через переход П 2 увеличивается, а его сопротивление и падение напряжения на нем уменьшаются. Это приводит к повышению напряжения, приложенного к переходам П 1 , П 3 , и увеличению инжекции через них, что вызывает дальнейший рост коллекторного тока и увеличение токов инжекции. Процесс протекает лавинообразно и сопротивление перехода П 2 становится малым.

Носители заряда, появившиеся в областях вследствие инжекции и лавинного размножения, приводят к уменьшению сопротивления всех областей тиристора, и падение напряжения на приборе становится незначительным. На ВАХ этому процессу соответствует участок 2 с отрицательным дифференциальным сопротивлением (рис.2.4). После переключения ВАХ аналогична ветви характеристики диода, смещенного в прямом направлении (участок 3). Участок 1 соответствует закрытому состоянию тиристора.

Выключение тиристора осуществляется за счет уменьшения напряжения внешнего источника до значения, при котором ток
меньше (участок 3).

Рис. 2.4. Вольтамперная характеристика динистора

Если параллельно с тиристором включить диод, который открывается при обратном напряжении, то получится тиристор, проводящий в обратном направлении.

Триодные тиристоры (рис. 2.5,а ) отличаются от диодных тем, что одна из баз имеет внешний вывод, который называют управляющим электродом .

Рис. 2.5. Триодный тиристор:

Изменяя ток можно менять напряжение, при котором происходит переключение тиристора, и тем самым управлять моментом его включения.

Для того, чтобы запереть тиристор, нужно либо уменьшить рабочий ток до значения
путем понижения питающего напряжения до значения , либо задать в цепи управляющего электрода импульс тока противоположной полярности.

Процесс включения и выключения тиристора поясняет рис.2.5,в . Если к нему через резистор R приложено напряжение U 1 и ток в цепи управляющего электрода равен нулю, то тиристор заперт. Рабочая точка находится в положении а . Пи увеличении тока управляющего электрода рабочая точка перемещается по линии нагрузки 1. Когда ток управляющего электрода достигнет значения I y 1 , тиристор включится, и рабочая точка его переместится в точку b . Для выключения (I y = 0) необходимо уменьшить напряжение питания до значения
. При этом рабочая точка из b 1 перейдет в а 2 и при восстановлении напряжения – в точку а .

Выключить тиристор можно также путем подачи на управляющий электрод напряжения противоположной полярности и создания в его цепи противоположно направленного тока.

Недостатком такого включения является большое значение обратного тока управляющего электрода, которое приближается к значению коммутируемого тока тиристора. Отношение амплитуды тока тиристора к амплитуде импульса выключающего тока управляющего электрода называется коэффициентом запирания :
. Он характеризует эффективность включения тиристора с помощью управляющего электрода. В ряде разработок

Тиристоры с повышенным коэффициентом запирания часто называют выключаемыми или запираемыми .

IV. Основные параметры тиристоров


Обозначения тиристоров в соответствии с ГОСТ 10862 – 72 состоят из шести элементов. Первый элемент – буква К, указывающая исходный материал полупроводника; второй – буква Н для диодных тиристоров и У для триодных; третий – цифра, определяющая назначение прибора; четвертый и пятый – порядковый номер разработки; шестой – буква, определяющая технологию изготовления, например КУ201А, КН102И и т.д.

Тиристоры выступают твердотельными электронными устройствами, обладающими высокой скоростью коммутации. Эти приборы допустимо использовать для управления всевозможными маломощными электронными компонентами. Однако наряду с маломощной электроникой, посредством тиристоров успешно управляется силовое оборудование. Рассмотрим классические схемы включения тиристора под управление достаточно высокими нагрузками, например, электролампами, электромоторами, электрическими нагревателями и т. п.

Включение полупроводника в открытое состояние возможно путём подачи импульса пускового тока небольшой величины на управляющий электрод У.

Когда тиристор пропускает ток нагрузки в прямом направлении, электрод анода A является положительным по отношению к электроду катода K, с точки зрения регенеративной фиксации.

Как правило, триггерный импульс для электрода У должен иметь длительность в несколько микросекунд. Однако чем длиннее импульс, тем быстрее происходит внутренний лавинный пробой. Также увеличивается время открывания перехода. Но максимальный ток затвора превышать не допускается.


Схема 1: КН1, КН2 — кнопки нажимные без фиксации; Л1 — нагрузка в виде лампы накаливания 100 Вт; R1, R2 — резисторы постоянные 470 Ом и 1 кОм

Эта простая схема включения/выключения применяется для управления лампой накаливания. Между тем схему вполне допустимо использовать в качестве коммутатора электродвигателя, нагревателя и любой другой нагрузки, рассчитанной на питание постоянным напряжением.

Здесь тиристор имеет прямое смещённое состояние перехода и включается в режим короткого замыкания нормально разомкнутой кнопкой КН1.

Эта кнопка соединяет управляющий электрод У с источником питания через резистор R1. Если значение R1 установить слишком высоким относительно питающего напряжения, устройство не сработает.

Стоит только нажать кнопку КН1, тиристор переключается в состояние прямого проводника и остаётся в этом состоянии независимо от дальнейшего положения кнопки КН1. При этом токовая составляющая нагрузки показывает большее значение, чем ток фиксации тиристора.

Преимущества и недостатки использования тиристора

Одним из основных преимуществ использования этих полупроводников в качестве переключателя видится очень высокий коэффициент усиления по току. Тиристор — это устройство, фактически управляемое током.

Катодный резистор R2 обычно включается с целью уменьшения чувствительности электрода У и увеличения возможностей соотношения напряжение-ток, что предотвращает ложное срабатывание устройства.

Когда тиристор защелкнется и останется в состоянии «включено», сбросить это состояние возможно только прерыванием питания или уменьшения анодного тока до нижнего значения удержания.

Поэтому логично использовать нормально замкнутую кнопку КН2, чтобы разомкнуть цепь, уменьшая до нуля ток, протекающий через тиристор, заставляя прибор перейти в состояние «выключено».

Однако схема имеет также недостаток. Механический нормально замкнутый переключатель КН2 должен быть достаточно мощным — соответствовать мощности всей схемы.

В принципе, можно было бы просто заменить полупроводник мощным механическим выключателем. Один из способов преодолеть проблему с мощностью — подключить коммутатор параллельно тиристору.


Схема 2: КН1, КН2 — кнопки нажимные без фиксации; Л1 — лампа накаливания 100 Вт; R1, R2 — резисторы постоянные 470 Ом и 1 кОм

Доработка схемы — включение нормально разомкнутого переключателя малой мощности параллельно переходу А-К, даёт следующий эффект:

  • активация КН2 создаёт «КЗ» между электродами А и К,
  • уменьшается ток фиксации до минимального значения,
  • устройство переходит в состояние «выключено».

Тиристор в цепи переменного тока

При подключении к источнику переменного тока тиристор работает несколько иначе. Это связано с периодическим изменением полярности переменного напряжения.

Поэтому применение в схемах с питанием переменным напряжением автоматически будет приводить к состоянию обратного смещения перехода. То есть в течение половины каждого цикла прибор будет находиться в состоянии «отключено».

Для варианта с переменным напряжением схема тиристорного запуска аналогична схеме с питанием постоянным напряжением. Разница незначительная — отсутствие дополнительного переключателя КН2 и дополнение диода D1.

Благодаря диоду D1, предотвращается обратное смещение по отношению к управляющему электроду У.

Во время положительного полупериода синусоидальной формы сигнала, устройство смещено вперед, но при выключенном переключателе КН1, к тиристору подводится нулевой ток затвора и прибор остается «выключенным».

В отрицательном полупериоде устройство получает обратное смещение и также останется «выключенным», независимо от состояния переключателя КН1.


Схема 3: КН1 — переключатель с фиксацией; D1 — диод любой под высокое напряжение; R1, R2 -резисторы постоянные 180 Ом и 1 кОм, Л1 — лампа накаливания 100 Вт

Если переключатель КН1 замкнуть, вначале каждого положительного полупериода полупроводник останется полностью «выключенным».

Но в результате достижения достаточного положительного триггерного напряжения (возрастания тока управления) на электроде У, тиристор переключится в состояние «включено».

Фиксация состояния удержания остаётся стабильной при положительном полупериоде и автоматически сбрасывается, когда положительный полупериод заканчивается. Очевидно, т.к. здесь ток анода падает ниже текущего значения.

Во время следующего отрицательного полупериода, устройство будет полностью «отключено» до следующего положительного полупериода. Затем процесс вновь повторяется.

Получается, нагрузка имеет только половину доступной мощности источника питания. Тиристор действует как и проводит переменный ток лишь во время положительных полуциклов, когда переход смещен вперед.

Управление половинной волной

Фазовое управление тиристором является наиболее распространенной формой управления мощностью переменного тока.

Пример базовой схемы управления фазой показан ниже. Здесь напряжение затвора тиристора формируется цепочкой R1C1 через триггерный диод D1.

Во время положительного полупериода, когда переход смещен вперед, конденсатор C1 заряжается через резистор R1 от напряжения питания схемы.

Управляющий электрод У активируются только тогда, когда уровень напряжения в точке «x» вызывает срабатывание диода D1. Конденсатор C1 разряжается на управляющий электрод У, устанавливая прибор в состояние «включено».

Длительность времени положительной половины цикла, когда открывается проводимость, контролируется постоянной времени цепочки R1C1, заданной переменным резистором R1.


Схема 4: КН1 — переключатель с фиксацией; R1 — переменный резистор 1 кОм; С1 — конденсатор 0,1 мкф; D1 — диод любой на высокое напряжение; Л1 — лампа накаливания 100 Вт; П — синусоида проводимости

Увеличение значения R1 приводит к задержке запускающего напряжения, подаваемого на тиристорный управляющий электрод, что, в свою очередь, вызывает отставание по времени проводимости устройства.

В результате доля полупериода, когда устройство проводит, может регулироваться в диапазоне 0 -180º. Это означает, что половинная мощность, рассеиваемая нагрузкой (лампой), поддаётся регулировке.

Существует масса способов достижения полноволнового управления тиристорами. Например, можно включить один полупроводник в схему диодного мостового выпрямителя. Этим методом легко преобразовать переменную составляющую в однонаправленный ток тиристора.

Однако более распространенным методом считается вариант использования двух тиристоров, соединенных инверсной параллелью.

Самым практичным подходом видится применение одного симистора. Этот полупроводник допускает переход в обоих направлениях, что делает симисторы более пригодными для схем переключения переменного тока.

Полный технический расклад тиристора

Появление четырехслойных p-n-p-n полупроводниковых элементов совершило настоящий прорыв в силовой электронике. Такие устройства получили название «тиристоров». Кремниевые управляемые вентили являются наиболее распространенным семейством тиристоров.

Данный вид полупроводниковых приборов имеет следующую структуру:

Как видим из структурной схемы тиристор имеет три вывода – катод, управляющий электрод и анод. Подключению к силовым цепям подлежат анод и катод, а управляющий электрод подключается к системе управления (слаботочные сети) для управляемого открытия тиристора.

На принципиальных схемах тиристор имеет такое обозначение:

Вольт-амперная характеристика показана ниже:

Давайте подробнее рассмотрим эту характеристику.

Обратная ветвь характеристики

В третьем квадранте характеристики диодов и тиристоров равны. Если к аноду приложить отрицательный потенциал относительно катода, то к J 1 и J 3 прикладывается обратное напряжение, а к J 2 — прямое, что вызовет протекание тока обратного (он очень мал, как правило несколько миллиампер). Когда же это напряжение увеличится до так называемого напряжения пробоя, произойдет лавинное нарастание тока между J 1 и J 3 . При этом, если данный ток не будет ограничен, то произойдет пробой перехода с последующим выходом из строя тиристора. При обратных же напряжениях, которые не превышают напряжения пробоя, тиристор будет вести себя как резистор с большим сопротивлением.

Зона низкой проводимости

В данной зоне все наоборот. Потенциал катода будет отрицательный по отношению к потенциалу анода. Поэтому к J 1 и J 3 будет приложено прямое, а к J 2 – обратное напряжение. Результатом чего станет весьма малый анодный ток.

Зона высокой проводимости

Если напряжение на участке анод – катод достигнет значения, так называемого напряжением переключения, то произойдет лавинный пробой перехода J 2 и тиристор будет переведен в состояние высокой проводимости. При этом U a снизится от нескольких сотен до 1 — 2 вольт. Оно будет зависеть от типа тиристора. В зоне высокой проводимости ток, протекающий через анод, будет зависеть от нагрузки внешней элемента, что дает возможность рассматривать его в этой зоне как замкнутый ключ.

Если пропустить ток через управляющий электрод, то напряжение включения тиристора уменьшится. Оно напрямую зависит от тока управляющего электрода и при достаточно большом его значении практически равно нулю. При выборе тиристора для работы в схеме, то его подбирают таким образом, чтоб напряжения обратное и прямое не превышали паспортных значений напряжений пробоя и переключения. Если эти условия выполнить трудно, или имеется большой разброс в параметрах элементов (например необходим тиристор на 6300 В, а его ближайшие значения 1200 В), то иногда применяют или включение элементов.

В нужный момент времени с помощью подачи импульса на управляющий электрод можно перевести тиристор с закрытого состояния в зону высокой проводимости. Ток УЭ, как правило, должен быть выше минимального тока открытия и он составляет порядка 20-200 мА.

Когда анодный ток достигнет определенного значения, при котором запирания тиристора невозможно (ток переключения), управляющий импульс может быть снят. Теперь тиристор сможет перейти обратно в закрытое состояние только при уменьшении тока ниже, чем ток удержания, или прикладыванием к нему напряжения обратной полярности.

Видео работы и графики переходных процессов

Тиристоры нашли широкое применение в полупроводниковых устройствах и преобразователях. Различные источники питания, частотные преобразователи, регуляторы, возбудительные устройства для синхронных двигателей и много других устройств строились на тиристорах, а в последнее время их вытесняют преобразователи на транзисторах. Основной задачей для тиристора является включение нагрузки в момент подачи управляющего сигнала. В этой статье мы рассмотрим, как управлять тиристорами и симисторами.

Определение

Тиристор (тринистор) - это полупроводниковый полууправляемый ключ. Полууправляемый - значит, что вы можете только включать тиристор, отключается он только при прерывании тока в цепи или если приложить к нему обратное напряжение.

Он, подобно диоду, проводит ток только в одном направлении. То есть для включения в цепь переменного тока для управления двумя полуволнами нужно два тиристора, для каждой по одному, хотя не всегда. Тиристор состоит из 4 областей полупроводника (p-n-p-n).

Другой подобный прибор называется - двунаправленный тиристор. Его основным отличием является то, что ток он может проводить в обе стороны. Фактически он представляет собой два тиристора соединённых параллельно навстречу друг другу.

Основные характеристики

Как и любых других электронных компонентов у тиристоров есть ряд характеристик:

    Падение напряжения при максимальном токе анода (VT или Uос).

    Прямое напряжение в закрытом состоянии (VD(RM) или Uзс).

    Обратное напряжение (VR(PM) или Uобр).

    Прямой ток (IT или Iпр) - это максимальный ток в открытом состоянии.

    Максимально допустимый прямой ток (ITSM) — это максимальный пиковый ток в открытом состоянии.

    Обратный ток (IR) — ток при определенном обратном напряжении.

    Постоянный ток в закрытом состоянии при определенном прямом напряжении (ID или Iзс).

    Постоянное отпирающее напряжение управления (VGT или UУ).

    Ток управления (IGT).

    Максимальный ток управления электрода IGM.

    Максимально допустимая рассеиваемая мощность на управляющем электроде (PG или Pу)

Принцип работы

Когда на тиристор подают напряжение он не проводит ток. Есть два способа включит его - подать напряжение между анодом и катодом достаточное для открытия, тогда его работа ничем не будет отличаться от динистора.

Другой способ - это подать кратковременный импульс на управляющий электрод. Ток открытия тиристора лежит в пределах 70-160 мА, хотя на практике эта величина, как и напряжение которое нужно приложить к тиристору зависит от конкретной модели и экземпляра полупроводникового прибора и даже от условий, в которых он работает, таких, например, как температура окружающей среды.

Кроме управляющего тока, есть такой параметр как ток удержания - это минимальный ток анода для удержания тиристора в открытом состоянии.

После открытия тиристора управляющий сигнал можно отключать, тиристор будет открыт до тех пор, пока через него протекает прямой ток и подано напряжение. То есть в цепи переменного тиристор будет открыт в течении той полуволны напряжение которой смещает тиристор в прямом направлении. Когда напряжение устремится к нулю, снизится и ток. Когда ток в цепи упадет ниже величины тока удержания тиристора - он закроется (выключится).

Полярность управляющего напряжения должна совпадать с полярностью напряжения между анодом и катодом, что вы наблюдаете на осциллограммах выше.

Управление симистором аналогично хоть и имеет некоторые особенности. Для управления симистором в цепи переменного тока нужно два импульса управляющего напряжения - на каждую полуволну синусоиды соответственно.

После подачи управляющего импульса в первой полуволне (условно положительной) синусоидального напряжения ток через симистор будет протекать до начала второй полуволны, после чего он закроется, как и обычный тиристор. После этого нужно подать еще один управляющий импульс для открытия симистора на отрицательной полуволне. Это наглядно проиллюстрировано на следующих осциллограммах.

Полярность управляющего напряжения должна соответствовать полярности приложенного напряжения между анодом и катодом. Из-за этого возникают проблемы при управлении симисторами с помощью цифровых логических схем или от выходов микроконтроллера. Но это легко решается путем установки симисторного драйвера, о чем мы поговорим позже.

Распространенные схемы управления тиристорами или симисторами

Самой распространенной схемой является симисторный или тиристорный регулятор.

Здесь тиристор открывается после того как на конденсаторе будет достаточная величина для его открытия. Момент открытия регулируется с помощью потенциометра или переменного резистора. Чем больше его сопротивление - тем медленнее заряжается конденсатор. Резистор R2 ограничивает ток через управляющий электрод.

Эта схема регулирует оба полупериода, то есть вы получаете полную регулировку мощности почти от 0% и почти до 100%. Это удалось достичь, установив регулятор , таким образом регулируется одна из полуволн.

Упрощенная схема изображена ниже, здесь регулируется лишь половина периода, вторая полуволна проходит без изменения через диод VD1. Принцип работы аналогичен.

Симисторный регулятор без диодного моста позволяет управлять двумя полуволнами.

По принципу действия почти аналогична предыдущим, но построена на симисторе с её помощью регулируются уже обе полуволны. Отличия заключаются в том, что здесь импульс управления подаётся с помощью двунаправленного динистора DB3, после того как конденсатор зарядится до нужного напряжения, обычно это 28-36 Вольт. Скорость зарядки также регулируется переменным резистором или потенциометром. Такая схема реализована в большинстве .

Интересно:

Такие схемы регулировки напряжения называется СИФУ - система импульсного фазового управления.

На рисунке выше изображен вариант управления симистором с помощью микроконтроллера, на примере . Симисторный драйвер состоит из оптосимистора и светодиода. Так как в выходной цепи драйвера установлен оптосимистор на управляющий электрод всегда подаётся напряжение нужной полярности, но здесь есть некоторые нюансы.

Дело в том, что для регулировки напряжения с помощью симистора или тиристора нужно подавать управляющий сигнал в определенный момент времени, так чтобы срез фазы происходил до нужной величины. Если наугад стрелять управляющими импульсами - схема работать конечно будет, но регулировок добиться не выйдет, поэтому нужно определять момент перехода полуволны через ноль.

Так как для нас не имеет значения полярность полуволны в настоящий момент времени - достаточно просто отслеживать момент перехода через ноль. Такой узел в схеме называют детектор нуля или нуль-детектор, а в англоязычных источниках "zero crossing detector circuit" или ZCD. Вариант такой схемы с детектором перехода через ноль на транзисторной оптопаре выглядит следующим образом:

Оптодрайверов для управления симисторами есть множество, типовые - это линейка MOC304x, MOC305x, MOC306X, произведенные компанией Motorola и другими. Более того - эти драйверы обеспечивают гальваническую развязку, что убережет ваш микроконтроллер в случае пробоя полупроводникового ключа, что вполне возможно и вероятно. Также это повысит безопасность работы с цепями управления, полностью разделив цепь на «силовую» и «оперативную».

Заключение

Мы рассказали базовые сведения о тиристорах и симисторах, а также управлении ими в цепях с «переменкой». Стоит отметить, что мы не затрагивали тему запираемых тиристоров, если вас интересует этот вопрос - пишите комментарии и мы рассмотрим их подробнее. Также не были рассмотрены нюансы использования и управления тиристорами в силовых индуктивных цепях. Для управления «постоянкой» лучше использовать транзисторы, поскольку в этом случае вы решаете, когда ключ откроется, а когда он закроется, повинуясь управляющему сигналу…