Интересные факты и полезные советы. Быть или не быть лазерным сетям

Оптические волокна и лазерная связь

Со времен античности свет использовался для передачи сообщений. В Китае, Египте, и в Греции использовали днем дым, а ночь огонь для передачи сигналов. Среди первых исторических свидетельств оптической связи мы можем вспомнить осаду Трои. В своей трагедии «Агамемнон», Эсхил дает детальное описание цепочки сигнальных огней на вершинах гор Ида, Антос. Масисто, Египланто и Аракнея, а также на утесах Лемно и Кифара, для передачи в Арго весть о захвате Трои ахейцами.

В более поздние, но в античные времена, римский император Тиберий, находясь на Капри, использовал световые сигналы для связи с побережьем.

На Капри до сих пор можно видеть руины античного «Фаро» (свет) вблизи виллы императора Тиберия на Тиберио Маунт.

В Северной Америке одна из первых оптических систем связи была установлена около 300 лет назад в колонии Новая Франция (ныне провинция Квебек в Канаде). Региональное правительство, опасаясь возможности нападения английского флота, установило ряд позиций для сигнальных огней во многих деревнях вдоль реки Святого Лаврентия. В этой цепи, которая начиналась с Иль Верте, на расстоянии около 200 км от Квебека ниже по течению, было не менее 13 пунктов. С начала 1700-х гг. в каждой из этих деревень, каждую ночь периода навигации, был караульный, задачей которого было наблюдать за сигналом, посылаемым из деревни ниже по течению, и передавать его далее. С помощью такой системы сообщение о британской атаке в 1759 г. достигло Квебека прежде, чем было слишком поздно.

В 1790 г. французский инженер, Клод Шапп, изобрел семафоры (оптический телеграф), располагаемые на башнях, установленных в пределах видимости одна от другой, что позволяло посылать сообщения от одной башни к другой. В 1880 г. Александр Грэхем Белл (1847-1922) получил патент на «фотофон» устройство, в котором использовался отраженный солнечный свет для передачи звука к приемнику. Отраженный свет модулировался по интенсивности путем колебаний отражающей мембраны, помещенной в конце трубки, в которую Белл говорил. Свет проходил расстояние около 200 м и попадал на селеновую ячейку (фотоприемник), связанную с телефоном. Хотя Белл рассматривал фотофон как наиболее важное свое изобретение, его применение ограничивалось погодными условиями. Однако это обстоятельство не помешало Беллу написать отцу:

«Я услышал разборчивую речь, произведенную солнечным светом!... Можно вообразить, что этому изобретению обеспечено будущее!... Мы сможем разговаривать с помощью света на любом расстоянии в пределах видимости без каких бы то ни было проводов...В условиях войны такую связь нельзя прервать или перехватить».

Изобретение лазера стимулировало возросший интерес к оптической связи. Однако, вскоре было продемонстрировано, что атмосфера Земли нежелательным образом искажает распространение лазерного света. Рассматривались различные системы, такие, как трубки с газовыми линзами и диэлектрические волноводы, но все они были оставлены в конце 1960-х гг., когда были разработаны оптические волокна с малыми потерями.

Понимание, что тонкие стеклянные волокна могут проводить свет за счет полного внутреннего отражения, было старой идеей, известной с XIX в. благодаря английскому физику Джону Тиндалю (1820-1893) и использованной в инструментах и для освещения. Однако в 1960-х гг. даже лучшие стекла обладали большим ослаблением света, пропускаемого через волокно, что сильно ограничивало длину распространения. В то время типичным значением ослабления был один децибел на метр, означающим, что после прохода 1 м пропущенная мощность уменьшается до 80%. Поэтому было возможным лишь распространение по волокну длиной несколько десятков метров, и единственным применением была медицина, например эндоскопы. В 1966 г. Чарльз Као и Джордж Хокхэм из Standard Telecommunications Laboratory (Великобритания) опубликовали фундаментальную работу, в которой показали, что если в плавленом кварце тщательно устранить примеси, а волокно окружить оболочкой с меньшим показателем преломления, то можно добиться уменьшения ослабления до -20 дБ/км. Это означает, что при прохождении длины 1 км мощность пучка ослабляется до одной сотой входной мощности. Хотя это и очень малое значение, оно приемлемо для ряда применений.

Как часто бывает в таких ситуациях, в Великобритании, Японии и США начались интенсивные усилия с целью получить волокна с улучшенными характеристиками. Первый успех был достигнут в 1970 г. Е. П. Капроном, Дональдом Кеком и Робертом Майером их Компании Корнинг Глас. Они изготовили волокна, которые имели потери 20 дБ/км на длине волны 6328 А° (длина волны He-Ne-лазера). В том же году И. Хаяши с сотрудниками сообщили о лазерном диоде, работающем при комнатной температуре.

В 1971 г. И. Джакобс был назначен директором Лаборатории цифровой связи в AT&T Bell Laboratories (Холмдел, Нью-Джерси, США), и ему было поручено разработать системы с высокой скоростью передачи информации. Его начальники У. Даниельсон и Р. Компфнер перевели часть персонала в другую лабораторию, руководимую С. Миллером, чтобы «не спускать глаз» с того, что происходит в области оптических волокон. Тремя годами позднее Даниельсон и Компфнер поручили Джакобсу сформировать исследовательскую группу для изучения практической возможности связи с помощью волокон. Было ясно, что наиболее экономичным, первоначальным применением систем, использующих свет, является связь телефонных станций в крупных городах. Тогда для этого использовались кабели, а информация передавалась в цифровом виде, путем кодирования ее серией импульсов. Волокна, с их способностью передавать огромное количество информации, представлялись идеальной заменой электрических кабелей. Офисы и телефонные станции в больших городах расположены на расстояниях несколько километрах друг от друга, и их уже в то время можно было связать без проблем, даже используя волокна с относительно большими потерями.

Итак, предварительный эксперимент был сделан в середине 1976 г. в Атланте с оптическими волоконными кабелями, помещаемыми в трубы обычных кабелей. Первоначальный успех этих попыток привел к созданию системы, которая связала две телефонные станции в Чикаго. На основе этих первых результатов, осенью 1977 г., в Bell Labs было решено разработать оптическую систему для широкого пользования. В 1983 г. связь была установлена между Вашингтоном и Бостоном, хотя это и было связано с многими трудностями. Эта система связи работала со скоростью передачи 90 Мбит/с. В ней использовалось многомодовое волокно на длине волны 825 нм.

Между тем NTTC (японская телеграфная и телефонная компания) сумела вытягивать волокна с потерями лишь 0,5 дБ/км на длинах волн 1,3 и 1,5 мкм, а Линкольновская лаборатория в MIT продемонстрировала работу InGaAsP лазерного диода, способного непрерывно работать в диапазоне между 1,0 и 1,7 мкм при комнатной температуре. Использование волокон с малыми потерями на 1,3 мкм позволило создать более совершенные системы. Были построены системы с пропусканием 400 Мбит/с в Японии и 560 Мбит/с в Европе. Европейская система могла пропускать одновременно 8000 телефонных каналов. В США было произведено более 3,5 миллионов километров волокна. Единственной частью, которая все еще использует медный провод, является связь между домом и телефонной станцией. Эта «последняя миля», как ее стали называть, также становится объектом волоконной связи.

Первый трансатлантический телеграфный кабель был введен в действие в 1858 г. Почти сто лет спустя, в 1956 г., был проложен первый телефонный кабель, получивший название ТАТ-1. В 1988 г. начало действовать первое поколение трансатлантических кабелей на оптических волокнах (их стали называть ТАТ-8). Они работают на длине волны 1,3 мкм и связывают Европу, Северную Америку и Восточную часть Тихого океана. В 1991 г. началось установление второго поколения волоконно-оптической связи, ТАТ-9, которая работает на 1,3 мкм и связывает США и Канаду с Великобританией, Францией и Испанией. Другая линия работает между США и Канадой и Японией.

В мире имеется ряд других волоконно-оптических линий. Для примера, оптическая подводная линия между Англией и Японией покрывает 27 300 км в Атлантическом океане, Средиземном море, Красном море, Индийском океане, в Тихом океане, и имеет 120 000 промежуточных усилителей на пару волокон. Для сравнения, первый трансатлантический телефонный кабель 1956 г. использовал 36 преобразователей, а первый оптический кабель, проложенный через Атлантический океан, использовал 80 000.

Сегодня, после 30 лет исследований, оптические волокна достигли своих физических пределов. Кварцевые волокна могут пропускать инфракрасные импульсы на длине волны 1,5 мкм с минимальными потерями 5% на километр. Нельзя уменьшить эти потери из-за физических законов распространения света (законы Максвелла) и фундаментальной природы стекла.

Однако имеется одно достижение, которое может радикально улучшить ситуацию. Это возможность непосредственно усиливать оптические сигналы в волокне, т.е. без необходимости сперва извлекать их из волокон. Путем добавления в материал волокна примесей подходящих элементов, например эрбия, и возбуждения их с помощью подходящего света накачки, пропускаемого через само волокно, можно получить инверсную населенность между двумя уровнями эрбия с переходом, который точно соответствует 1,5 мкм. В результате можно получить усиление импульса света на этой длине волны при его распространении через волокно. Кусок такого активного волокна помещается между двумя концами волокон, через которые распространяется сигнал. С помощью оптического ответвителя в этот кусок направляется и излучение накачки. На выходе остаток излучения накачки выходит наружу, а усиленный сигнал продолжает распространение в волокне. С помощью такого подхода можно исключить промежуточные электронные усилители. В старых системах электронных усилителей свет выходил из волокна, регистрировался фотоэлектрическим приемником, сигнал усиливался и преобразовывался в свет, который продолжал распространяться в следующей секции волокна.

Из книги Космоземные связи и НЛО автора Дмитриев Алексей Николаевич

Из книги Физическая химия: конспект лекций автора Березовчук А В

3. Первый закон термодинамики. Калорические коэффициенты. Связь между функциями CP и Cv Формулировки первого закона термодинамики.1. Общий запас энергии в изолированной системе остается постоянным.2. Разные формы энергии переходят друг в друга в строго эквивалентных

Из книги Откровения Николы Теслы автора Тесла Никола

Из книги Тайны пространства и времени автора Комаров Виктор

Из книги Нейтрино - призрачная частица атома автора Азимов Айзек

Глава 4. Связь массы и энергии Несохранение массы Новое представление о строении атома укрепило уверенность физиков в том, что законы сохранения применимы не только к окружающему нас повседневному миру, но и к тому огромному миру, который изучают астрономы. Но

Из книги Астрономия древнего Египта автора Куртик Геннадий Евсеевич

Наблюдения Сириуса и его связь с календарем. Наблюдения Сириуса играли особую роль в истории древнеегипетского календаря. Наиболее ранние свидетельства о них восходят ко времени I династии (начало III тыс. до н. э.). Сохранилась табличка из слоновой кости, датируемая этим

Из книги Эволюция физики автора Эйнштейн Альберт

Оптические спектры Мы уже знаем, что все вещество состоит из частиц, число разновидностей которых невелико. Электроны были теми элементарными частицами вещества, которые были открыты первыми. Но электроны являются также и элементарными квантами отрицательного

Из книги НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. автора Тесла Никола

II - СВЯЗЬ МЕЖДУ НЕПРОНИЦАЕМОСТЬ Ю И ПЛОТНОСТЬ Ю Рентген указывал на то, что непроницаемость тела для лучей тем выше, чем выше его плотность, что подтвердило последующее исследование. Это важное обстоятельство можно убедительно объяснить единственным и никаким иным

Из книги О чем рассказывает свет автора Суворов Сергей Георгиевич

РАЗВИТИЕ НОВОГО ПРИНЦИПА - ЭЛЕКТРИЧЕСКИЙ ОСЦИЛЛЯТОР - ПРОИЗВЕДЕНИЕ КОЛОССАЛЬНЫХ ЭЛЕКТРИЧЕСКИХ ДВИЖЕНИЙ - ЗЕМЛЯ ОТВЕЧАЕТ ЧЕЛОВЕКУ - МЕЖПЛАНЕТНАЯ СВЯЗЬ ТЕПЕРЬ СТАЛА ВОЗМОЖНОЙ Я решил сконцентрировать свои усилия на этой несколько рискованной задаче, хотя и сулившей

Из книги История лазера автора Бертолотти Марио

Электронно-оптические преобразователи света Опишем кратко один из способов преобразования инфракрасного света в видимый, с помощью так называемых электронно-оптических преобразователей.На рис. 43 дана простейшая схема такого преобразователя. Он представляет собой

Из книги Вечный двигатель - прежде и теперь. От утопии - к науке, от науки - к утопии автора Бродянский Виктор Михайлович

Оптические считыватели информации в торговле В настоящее время в каждом супермаркете и в большинстве магазинов используется система чтения универсального кода. Лазерная система читает код, записанный на товарах в виде системы линий (штрих-код). Преимущества этой

Из книги Астероидно-кометная опасность: вчера, сегодня, завтра автора Шустов Борис Михайлович

Из книги Новый ум короля [О компьютерах, мышлении и законах физики] автора Пенроуз Роджер

2.3. Связь и различия между малыми телами Порой в великой книге тайн природы Мне удается кое-что прочесть. У. Шекспир. «Антоний и Клеопатра» Как было отмечено ранее, согласно общепринятой гипотезе, кометы являются остатками протопланетного вещества, не вошедшего в

Преимущества лазерного канала перед радиоканалом заключаются в том, что он, во – первых, не создаёт радиопомех; во – вторых, является более конфиденциальным; в – третьих, может применяться в условиях воздействия высокого уровня электромагнитных излучений.

Принципиальная схема передатчика представлена на Рис.1. Передатчик состоит из шифратора команд, выполненного на микроконтроллере ATtiny2313 (DD1), выходного блока – на транзисторах ВС847В (VT1, VT2) и интерфейса RS-232, который, в свою очередь, состоит из разъёма DB9-F (на кабель) (ХР1) и преобразователя уровней – на MAX3232 (DD3).

Цепь сброса микроконтроллера состоит из элементов DD2 (CD4011B), R2, C7. Выходной блок представляет собой электронный ключ, выполненный на транзисторе VT1, в коллекторную цепь которого через ограничитель тока на транзисторе VT2 включена лазерная указка. Питание передатчика осуществляется постоянным стабилизированным напряжением 9 – 12 В. Микросхемы DD1, DD2, DD3 питаются от напряжения 5В, которое определяется стабилизатором 78L05 (DA1).

Контроллер DD1 запрограммирован в среде BASCOM, что позволяет подавать ему команды с персонального компьютера (ПК) через интерфейс RS-232, с терминала Bascom, используя функцию «эхо».

Микроконтроллер имеет тактовую частоту 4Мгц от внутреннего генератора. Пачки импульсов частотой около 1,3 Кгц с вывода ОС0А (РВ2) поступают на выходной блок. Количество импульсов в пачке определяется номером команды, поступившей с ПК.
Для ввода команды необходимо нажать на клавиатуре ПК любую клавишу, затем при появлении надписей «Write command» и «Enter №1…8» ввести цифру от 1 до 8 и нажать клавишу «Enter».

Программа для микроконтроллера передатчика «TXlaser» состоит из основного цикла (DO…LOOP) и двух подпрограмм обработки прерываний: по приёму (Urxc) и по переполнению таймера 0 (Timer0).

Для получения выходной частоты 1,3 КГц таймер сконфигурирован с коэффициентом деления частоты (Prescale) = 1024. Кроме того, счёт начинается с нижнего значения Z = 253 (при высоком уровне на РВ2) и доходит до 255. Происходит прерывание по переполнению таймера, при обработке которого осуществляется переключение вывода РВ2, а таймеру вновь задаётся значение Z = 253. Таким образом, на выходе РВ2 появляется сигнал частотой 1,3 КГц (см. Рис.2). В этой же подпрограмме количество импульсов на РВ2 сравнивается с заданным, и в случае их равенства таймер останавливается.

В подпрограмме обработки прерывания по приёму задаётся количество импульсов, которое необходимо передать (1 – 8). В случае, если это количество будет больше 8, в терминал выдаётся сообщение «ERROR».

Во время работы подпрограммы на выводе PD6 присутствует низкий уровень (светодиод HL1 выключен), а работа таймера остановлена.
В основном цикле на выводе PD6 – высокий уровень, и светодиод HL1 включён.
Текст программы «TXlaser»:

$regfile = "attiny2313a.dat"
$crystal = 1000000
$hwstack = 40
$swstack = 16
$framesize = 32

Config Pind.0 = Input "UART - RxD
Config Portd.1 = Output "UART - TxD
Config Portd.6 = Output "светодиод HL1
Config Portb.2 = Output "выход OC0A

"конфигурац.таймера0-коэфф.деления=1024:
Config Timer0 = Timer , Prescale = 1024
Stop Timer0 "останов таймера

Dim N As Byte "определение переменных "
Dim N0 As Byte

Const Z = 253 "нижниий предел счёта таймера для вых.частоты=1,3КГц
Timer0 = Z

On Urxc Rxd "подпрограмма обраб.прерывания по приёму
On Timer0 Pulse "подпрограмма обраб.прерывания по переполнению


Enable Urxc
Enable Timer0

Do "основной цикл
Set Portd.6 "включение светодиода HL1
Loop

Rxd: "подпрограмма обработки прер. по приёму
Stop Timer0
M1:
Print "Write commad"
Input "Enter № 1...8:" , N0 "ввод команды
If N0 > 8 Then "ограничение номера команд
Print "Error"
Goto M1
End If
N0 = N0 * 2
N0 = N0 - 1 "заданное значение кол-ва импульсов в пачке
Toggle Portb.2
Start Timer0 "запуск таймера
Return

Pulse: "подпрограмма обработки прерыв.по переполнению
Stop Timer0
Toggle Portb.2
Reset Portd.6 "выключение светодиода
Timer0 = Z
N = N + 1 "приращение кол-ва импульсов
If N = N0 Then "если число импульсов = заданному
N = 0
N0 = 0
Waitms 500 "задержка 0,5с
Else
Start Timer0 "иначе, продолжить счёт
End If
Return
End "end program

Передатчик выполнен на печатной плате размерами 46х62 мм (см. Рис.3). Все элементы, кроме микроконтроллера, SMD – типа. Микроконтроллер ATtiny2313 применён в корпусе типа DIP. Его рекомендуется располагать в панели для DIP микросхем TRS (SCS) – 20, чтобы иметь возможность «безболезненно» перепрограммировать.

Печатная плата передатчика TXD.PCB находится в папке «FILE PCAD» .
Принципиальная схема приёмника лазерного канала представлена на рис.4. На входе первого усилителя DA3.1 (LM358N) фильтр низкой частоты, образованный элементами СЕ3, R8, R9 и имеющий частоту среза 1КГц, ослабляет фоновые помехи 50 -100 КГц от осветительных приборов. Усилители DA3.2 и DA4.2 усиливают и увеличивают длительность принятых импульсов полезного сигнала. Компаратор на DA4.1 формирует выходной сигнал (единица), который поступает через инверторы микросхемы CD4011D (DD2) - DD2.1, DD2. Cигнал синхронно приходит на контакты микроконтроллера ATtiny2313 (DD1) – T0 (PB4) и РВ3. Таким образом, Timer0, работающий в режиме счёта внешних импульсов и Timer1, отмеряющий время этого счёта, запускаются синхронно. Контроллер DD1, выполняющий функцию дешифратора, отображает принятые команды 1…8 установкой лог.1 на выводах PORTB соответственно РВ0…РВ7, при этом приход последующей команды сбрасывает предыдущую. При приходе команды «8» на РВ7 появляется лог.1, которая с помощью электронного ключа на транзисторе VT1, включает реле К1.

Питание приёмника осуществляется постоянным напряжением 9 -12В. Аналоговая и цифровая части питаются от напряжений 5В, которые определяются стабилизаторами типа 78L05 DA5 и DA2.

В программе «RXlaser» Timer0 сконфигурирован, как счётчик внешних импульсов, а Timer1, как таймер, считающий период прохождения максимально возможного количества импульсов (команда 8).

В основном цикле (DO…LOOP) Timer1 включается при принятии первого импульса команды (К=0), происходит сброс условия разрешения включения таймера Z=1.
В подпрограмме обработки прерывания по совпадению cчёта Timer1 со значением максимально возможного счёта считывается и устанавливается в PORTB номер команды. Устанавливается так же условие разрешения включения Timer1- Z=0.
Текст программы «RXlaser»:

$regfile = "attiny2313a.dat"
$crystal = 4000000
$hwstack = 40
$swstack = 16
$framesize = 32

Ddrb = 255 "PORTB-все выхода
Portb = 0
Ddrd = 0 "PORTD-входа
Portd = 255 "подтяжка PORTD
Config Timer0 = Counter , Prescale = 1 , Edge = Falling "как счётчик импульсов
Config Timer1 = Timer , Prescale = 1024 , Clear Timer = 1 "как таймер
Stop Timer1
Timer1 = 0
Counter0 = 0

"определение переменных:
Dim X As Byte
Dim Comm As Byte
Dim Z As Bit
Dim K As Bit

X =80
Compare1a = X "кол-во имп. в регистре совпадения
Z = 0

On Compare1a Pulse "подпрограмма прерывания по совпадению

Enable Interrupts "разрешение прерываний
Enable Compare1a

Do "основной цикл
If Z = 0 Then "первое условие включения таймера
K = Portd.3
If K = 0 Then "второе условие включения таймера
Start Timer1
Z = 1
End If
End If
Loop

Pulse: "подпрограмма обраб.прерыв.по совпадению
Stop Timer1
Comm = Counter0 "считывание из счётчика внешних импульсов
Comm = Comm - 1 "определение номера бита в порту
Portb = 0 "обнуление порта
Set Portb.comm "установка бита,соответ.номеру команды
Z = 0
Counter0 = 0
Timer1 = 0
Return
End "end program

Программы «TXlaser» и «RXlaser» находятся в папке Lazer_prog .

Приёмник расположен на плате размерами 46х62 мм (см. Рис 5). Все компоненты – SMD типа, за исключением микроконтроллера, который необходимо разместить в панели для микросхем DIP типа TRS(SCS) – 20.

Настройка приёмника сводится к установке сквозного коэффициента передачи и порога срабатывания компаратора. Для решения первой задачи необходимо подключить осциллограф к выводу 7 DA4.2 и подбором величины R18 установить такой сквозной коэффициент передачи, при котором максимальная амплитуда шумовых выбросов, наблюдаемых на экране, не будет превышать 100 мВ. Затем осциллограф переключается на вывод 1 DA4.1 и подбором резистора (R21) устанавливается нулевой уровень компаратора. Включив передатчик и направив луч лазера на фотодиод, необходимо убедиться в появлении прямоугольных импульсов на выходе компаратора.
Печатная плата приёмника RXD.PCB находится также в папке FILE PCAD .

Повысить помехозащищённость лазерного канала возможно с помощью модуляции сигнала поднесущей частотой 30 – 36 КГц. Модуляция пачек импульсов происходит в передатчике, приёмник же содержит полосовой фильтр и амплитудный детектор.

Схема такого передатчика (передатчик 2) изображена на Рис.6. В отличии от рассмотренного выше передатчика 1 передатчик 2 имеет генератор поднесущей, настроенный на частоту 30 КГц и собранный на слотах DD2.1, DD2.4.. Генератор обеспечивает модулирование пачек положительных импульсов.

Приёмник лазерного канала с поднесущей частотой (приёмник 2) собран на отечественной микросхеме К1056УП1 (DA1). Схема приёмника изображена на Рис.7. Для выделения командных импульсов к выходу микросхемы DA1 10 подключены амплитудный детектор с фильтром низкой частоты и нормализатор импульсов, собранные на логических элементах DD3.1, DD3.2, диодной сборке DA3 и C9, R24. В остальном схема приёмника 2 совпадает со схемой приёмника 1.

В данной главе рассматривается технология лазерной сети связи, а так же её преимущества, такие как экономичность; низкие эксплуатационные расходы; высокая пропускная способность и качество цифровой связи, а так же быстрое развертывание и изменение конфигурации сети.

Лазерные устройства могут осуществлять передачу любого сетевого потока, который доставляется им при помощи оптоволокна или медного кабеля в прямом и обратном направлениях. Передатчик преобразует электрические сигналы в модулированное излучение лазера в инфракрасном диапазоне с длиной волны 820 нм и мощностью до 40 мВт. В качестве среды распространения лазерная связь использует атмосферу. Затем лазерный луч попадает в приемник, имеющий максимальную чувствительность в диапазоне длины волны излучения. Приемник производит преобразование излучения лазера, в сигналы используемого электрического или оптического интерфейса. Так осуществляется связь с помощью лазерных систем.

Оптический диапазон имеет много характерных особенностей и за счет малой длины волны позволяет достичь высокой направленности излучения, существенно уменьшить размеры антенных систем, сформировать чрезвычайно узкие лазерные пучки и получить высокую концентрацию электромагнитного излучения в пространстве.

При передаче информации модулированными электромагнитными колебаниями необходимо, чтобы частота модуляции была в 10…100 раз меньше несущей частоты. Кроме того, частоты модуляции занимают некоторую полосу частот, и ширина ее определяется объемом передаваемой в единицу времени информации. Например, для передачи телеграфного текста требуется полоса частот 10 Гц, а для телевизионного изображения – полоса частот 107 Гц и несущая частота не менее 108 Гц. Радиодиапазон занимает полосу частот 104…108 Гц и полностью освоен. Информационная емкость канала связи в СВЧ-диапазоне (109..1012 Гц) выше, но в силу особенностей распространения СВЧ-излучения в атмосфере связь между станциями СВЧ-диапазона возможна только на расстоянии прямой видимости. В оптическом диапазоне только видимая область занимает полосу частот от 41014 до 1015 Гц. С помощью лазерного луча теоретически можно обеспечить передачу 1015/107 = 108 телевизионных каналов, что на несколько порядков превышает современные потребности, или 1013 телефонных разговоров. Таким образом, одним из преимуществ оптических линий связи является возможность передачи больших объемов информации, обусловленная сверхширокой полосой частот. Освоение оптического диапазона: создание лазерных источников света, чувствительных полупроводниковых приемников оптического излучения и разработка волоконных светодиодов с малыми потерями, – открывает новые возможности для создания систем связи.

Оптический диапазон открывает возможности создания информационных и управляющих систем с характеристиками, которые принципиально не достижимы в радиодиапазоне. К настоящему времени разработаны разнообразные наземные, авиационные и космические системы оптической связи, лазерной локации, лазерные системы аэрокосмического мониторинга природной среды, системы воздушной разведки, системы предупреждения столкновений подвижных объектов, лазерные системы стыковки космических аппаратов, системы лазерного наведения и лазерного управления оружием.

Потенциальные возможности лазерных информационных систем, как и в целом оптических методов передачи и обработки информации, весьма велики. Во многих задачах предельно достижимые характеристики ограничиваются лишь квантовыми эффектами. Однако в действительности потенциальные возможности оптического диапазона далеко не всегда удается эффективно реализовать на практике. Существует множество тому причин.

Огромное влияние на рабочие характеристики реальных лазерных систем оказывают неизбежные флюктуации в источниках лазерного излучения, случайные изменения параметров информационных процессов, воздействия различных помех, вероятностный характер операции фото детектирования. Многие информационные системы оптического диапазона строятся с использованием открытого (чаще всего атмосферного) канала. Для лазерного излучения атмосферный канал представляет собой канал со случайно-неоднородной средой распространения. Эффекты поглощения оптического излучения атмосферными газами, молекулярное и аэрозольное рассеяние, искажения пространственно-временной структуры и нарушение когерентности лазерного излучения – все это оказывает заметное влияние на энергетический потенциал, принципы обработки информационных сигналов и дальность действия создаваемых систем. Все перечисленные особенности показывают, что анализ лазерных информационных систем, оценка их потенциальных и реально достижимых характеристик не может проводиться без вероятностного исследования структуры информационных сигналов и помех.

На сегодняшний момент накоплены многочисленные результаты по вероятностному анализу различных лазерных систем. Однако большинство таких результатов представляются весьма разрозненными, они не базируются на едином подходе и их достаточно сложно использовать в практических задачах. Необходимость дополнительных детальных исследований вероятностной структуры сигналов, помех и в целом информационных процессов в радиооптике связана с необходимостью совершенствования математических моделей, решением задач оптимизации структуры сигналов и систем, разработкой новых перспективных алгоритмов передачи, приема, преобразования и обработки информации в оптических информационных системах.

Лазерная связь является альтернативой радио, кабельной и волоконно-оптической связи. Лазерные системы позволяют создать канал связи между двумя зданиями, находящимися на расстоянии до 1,2 км друг от друга, и передавать по нему телефонный трафик (скорость от 2 до 34 Мбит/с), данные (скорость до 155 Мбит/с) или их комбинацию. В отличие от беспроводных радиосистем лазерные системы связи обеспечивают высокие помехозащищенность и секретность передачи, так как получить несанкционированный доступ к информации можно только непосредственно от приемопередатчика.

Компания, которая воспользуется лазерной связью для создания основного (резервного) канала ближней связи, избавится не только от необходимости прокладывать новые проводные коммуникации, но также и от необходимости получать разрешение на право пользования радиочастотой. Кроме того, невысокий уровень затрат на организацию высокопроизводительного канала связи, а также небольшое время его ввода в эксплуатацию обеспечат быструю окупаемость вложенных средств. Таким образом, широкий спектр возможностей и несомненные преимущества лазерного оборудования делают его использование лучшим решением проблемы организации надежного канала связи между двумя зданиями.

Е. Н. Чепусов, С. Г. Шаронин

Сегодня невозможно представить себе нашу жизнь без компьютеров и сетей на их основе. Человечество стоит на пороге нового мира, в котором будет создано единое информационное пространство. В этом мире осуществлению коммуникаций больше не будут препятствовать ни физические границы, ни время, ни расстояния.

Сейчас во всем мире существует огромное количество сетей, выполняющих различные функции и решающих множество разнообразных задач. Раньше или позже, но всегда наступает момент, когда пропускная способность сети бывает исчерпана и требуется проложить новые линии связи. Внутри здания это сделать относительно легко, но уже при соединении двух соседних зданий начинаются сложности. Требуются специальные разрешения, согласования, лицензии на проведение работ, а также выполнение целого ряда сложных технических требований и удовлетворение немалых финансовых запросов организаций, распоряжающихся землей или канализацией. Как правило, сразу же выясняется, что самый короткий путь между двумя зданиями - это не прямая. И совсем необязательно, что длина этого пути будет сопоставима с расстоянием между этими зданиями.

Конечно, всем известно беспроводное решение на основе различного радиооборудования (радиомодемов, малоканальных радиорелейных линий, микроволновых цифровых передатчиков). Но количество сложностей не уменьшается. Эфир перенасыщен и получить разрешение на использование радиооборудования весьма непросто, а иногда - даже невозможно. Да и пропускная способность этого оборудования существенно зависит от его стоимости.

Мы предлагаем воспользоваться новым экономичным видом беспроводной связи, который возник совсем недавно, - лазерной связью. Наибольшее развитие эта технология получила в США, где и была разработана. Лазерная связь обеспечивает экономичное решение проблемы надежной и высокоскоростной ближней связи (1,2 км), которая может возникнуть при объединении телекоммуникационных систем разных зданий. Ее использование позволит осуществить интеграцию локальных сетей с глобальными, интеграцию удаленных друг от друга локальных сетей, а также обеспечить нужды цифровой телефонии. Лазерная связь поддерживает все необходимые для этих целей интерфейсы - от RS-232 до АТМ.

Как осуществляется лазерная связь?

Лазерная связь в отличие от GSM связи позволяет осуществлять соединения типа "точка-точка" со скоростью передачи информации до 155 Мбит/с. В компьютерных и телефонных сетях лазерная связь обеспечивает обмен информацией в режиме полного дуплекса. Для приложений, не требующих высокой скорости передачи (например, для передачи видеосигнала и сигналов управления в системах технологического и охранного телевидения), имеется специальное экономичное решение с полудуплексным обменом. Когда требуется объединить не только компьютерные, но и телефонные сети, могут применяться модели лазерных устройств со встроенным мультиплексором для одновременной передачи трафика ЛВС и цифровых групповых потоков телефонии (Е1/ИКМ30).

Лазерные устройства могут осуществлять передачу любого сетевого потока, который доставляется им при помощи оптоволокна или медного кабеля в прямом и обратном направлениях. Передатчик преобразует электрические сигналы в модулированное излучение лазера в инфракрасном диапазоне с длиной волны 820 нм и мощностью до 40 мВт. В качестве среды распространения лазерная связь использует атмосферу. Затем лазерный луч попадает в приемник, имеющий максимальную чувствительность в диапазоне длины волны излучения. Приемник производит преобразование излучения лазера в сигналы используемого электрического или оптического интерфейса. Так осуществляется связь с помощью лазерных систем.

Семейства, модели и их особенности

В этом разделе мы хотим представить Вам три семейства наиболее популярных в США лазерных систем - LOO, OmniBeam 2000 и OmniBeam 4000 (таблица 1). Семейство LOO является базовым и позволяет осуществлять передачу данных и голосовых сообщений на расстояние до 1000 м. Семейство OmniBeam 2000 имеет аналогичные возможности, но действует на большее расстояние (до 1200 м) и может передавать видеоизображения и комбинацию данных и речи. Семейство OmniBeam 4000 может осуществлять высокоскоростную передачу данных: от 34 до 52 Мбит/с на расстояние до 1200 м и от 100 до 155 Мбит/с - до 1000 м. На рынке представлены и другие семейства лазерных систем, но они либо покрывают меньшее расстояние, либо поддерживают меньшее количество протоколов.

Таблица 1.

Семейство

Ethernet (10 Мбит/с)

Token Ring (416 Мбит/с)

E1 (2 Мбит/с)

Видеоизображение

Комбинация данных и речи

Высокоскоростная передача данных (34-155 Мбит/с)

Возможность модернизации

Каждое из семейств включает в себя набор моделей, поддерживающих различные коммуникационные протоколы (таблица 2). В семейство LOO входят экономичные модели, которые обеспечивают передачу на расстояние до 200 м (буква "S" в конце наименования).

Таблица 2.

Несомненным достоинством лазерных устройств связи является их совместимость с большинством телекоммуникационного оборудования различного назначения (концентраторов, маршрутизаторов, повторителей, мостов, мультиплексоров и АТС).

Установка лазерных систем

Немаловажным этапом создания системы является ее инсталляция. Собственно включение занимает ничтожно малое время по сравнению с монтажом и настройкой лазерного оборудования, которые продолжаются несколько часов при условии их выполнения хорошо обученными и оснащенными специалистами. При этом от качества выполнения этих операций будет зависеть и качество работы самой системы. Поэтому перед представлением типовых вариантов включения мы хотели бы уделить некоторое внимание этим вопросам.

При наружном размещении приемопередатчики могут устанавливаться на поверхности крыш или стен. Лазер монтируется на специальной жесткой опоре, обычно металлической которая крепится к стене здания. Опора также обеспечивает возможность регулировки угла наклона и азимута луча.

В этом случае для удобства монтажа и обслуживания системы ее подключение осуществляется через распределительные коробки (РК). В качестве соединительных кабелей обычно используют оптоволокно для цепей передачи данных и медный кабель для цепей питания и контроля. Если оборудование не имеет оптического интерфейса данных, то возможно использование модели с электрическим интерфейсом или внешнего оптического модема.

Блок питания (БП) приемопередатчика всегда устанавливается внутри помещения и может крепиться на стене или в стойке, которая используется для оборудования ЛВС или кросса структурированных кабельных систем. Рядом может быть установлен и монитор состояний, который служит для дистанционного контроля функционирования приемопередатчиков семейств ОВ2000 и ОВ4000. Его использование позволяет осуществлять диагностику лазерного канала, индикацию величины сигнала, а также закольцовывание сигнала для его проверки.

При внутреннем монтаже лазерных приемопередатчиков необходимо помнить о том, что мощность лазерного излучения падает при прохождении через стекло (не менее 4% на каждом стекле). Другая проблема - капли воды, стекающие по внешней стороне стекла во время дождя. Они играют роль линз и могут привести к рассеиванию луча. Чтобы уменьшить этот эффект, рекомендуется устанавливать оборудование вблизи верхней части стекла.

Для обеспечения качественной связи необходимо учесть некоторые основные требования.

Самым главным из них, без выполнения которого связь будет невозможна, является то, что здания должны находится в пределах прямой видимости, при этом не должно быть непрозрачных препятствий на пути распространения луча. Кроме того, поскольку лазерный луч в области приемника имеет диаметр 2 м, необходимо, чтобы приемопередатчики находились над пешеходами и потоком транспорта на высоте не ниже 5 м. Это связано с обеспечением правил безопасности. Транспорт также является источником газов и пыли, которые влияют на надежность и качество передачи. Луч не должен распространяться в непосредственной близости от линий электропередач или пересекать их. Необходимо учесть возможный рост деревьев, движения их крон при порывах ветра, а также влияние атмосферных осадков и возможные сбои в работе из-за пролетающих птиц.

Правильный выбор приемопередатчика гарантирует устойчивую работу канала во всем диапазоне климатических условий России. Например, при большом диаметре луча уменьшается вероятность сбоев, связанных с атмосферными осадками.

Лазерное оборудование не является источником электромагнитного излучения (ЭМИ). Однако если разместить его вблизи приборов с ЭМИ, то электронное оборудование лазера будет улавливать это излучение, что может вызвать изменение сигнала как в приемнике, так и в передатчике. Это повлияет на качество связи, поэтому не рекомендуется размещать лазерное оборудование вблизи таких источников ЭМИ, как мощные радиостанции, антенны и т.п.

При установке лазера желательно избегать ориентации лазерных приемопередатчиков в направлении восток-запад, так как несколько дней в году солнечные лучи могут на несколько минут перекрыть лазерное излучение, и передача станет невозможной, даже при наличии специальных оптических фильтров в приемнике. Зная, как движется солнце по небосклону в конкретном районе, можно легко решить эту проблему.

Вибрация может вызвать сдвиг лазерного приемопередатчика. Во избежание этого не рекомендуется устанавливать лазерные системы вблизи моторов, компрессоров и т.п.

Рисунок 1. Размещение и подключение лазерных приемопередатчиков.

Несколько типовых способов включения

Лазерная связь поможет решить проблему ближней связи при соединении типа "точка-точка". В качестве примеров рассмотрим несколько типовых вариантов или способов включения. Итак, у вас есть центральный офис (ЦО) и филиал (Ф), в каждом из которых функционирует компьютерная сеть.

На рисунке 2 представлен вариант организации канала связи для случая, в котором требуется объединить Ф и ЦО, использующие в качестве сетевого протокола Ethernet, а в качестве физической среды - коаксиальный кабель (толстый или тонкий). В ЦО находится сервер ЛВС, а в Ф - компьютеры, которые требуется подключить к этому серверу. С помощью лазерных систем, например моделей LOO-28/LOO-28S или ОВ2000Е, вы легко решите эту проблему. Мост устанавливается в ЦО, а повторитель в Ф. Если мост или повторитель имеет оптический интерфейс, то оптический минимодем не потребуется. Лазерные приемопередатчики подключаются посредством сдвоенного оптоволокна. Модель LOO-28S позволит вам осуществлять связь на расстоянии до 213 м, а LOO-28 - до 1000 м при угле "уверенного" приема 3 мрад. Модель ОВ2000Е покрывает расстояние до 1200 м при угле "уверенного" приема 5 мрад. Все эти модели работают в режиме полного дуплекса и обеспечивают скорость передачи 10 Мбит/с.

Рисунок 2. Подключение удаленного сегмента ЛВС Ethernet на основе коаксиального кабеля.

Подобный же вариант объединения двух сетей Ethernet, использующих в качестве физической среды витую пару (10BaseT) приведен на рисунке 3. Его отличие заключается в том, что вместо моста и повторителя используются концентраторы (хабы), имеющие необходимое число разъемов 10BaseT и один интерфейс AUI или FOIRL для подключения лазерных приемопередатчиков. В этом случае необходимо установить лазерный приемопередатчик LOO-38 или LOO-38S, который обеспечивает требуемую скорость передачи в режиме полного дуплекса. Модель LOO-38 может поддерживать связь на расстоянии до 1000 м, а модель LOO-38S - до 213 м.

Рисунок 3. Подключение удаленного сегмента ЛВС Ethernet на основе витой пары.

На рисунке 4 представлен вариант комбинированной передачи данных между двумя ЛВС (Ethernet) и группового цифрового потока E1 (ИКМ30) между двумя УАТС (в ЦО и Ф). Для решения этой проблемы подходит модель ОВ2846, которая обеспечивает передачу данных и речи со скоростью 12 (10+2) Мбит/с на расстояние до 1200 м. ЛВС подключается к приемопередатчику при помощи сдвоенного оптоволокна через стандартный SMA-разъем, а телефонный трафик передается посредством коаксиального кабеля 75 Ом через BNC-разъем. Необходимо отметить тот факт, что мультиплексирование потоков данных и речи не требует дополнительного оборудования и выполняется приемопередатчиками без снижения пропускной способности каждого из них в отдельности.

Рисунок 4. Объединение вычислительных и телефонных сетей.

Вариант осуществления высокоскоростной передачи данных между двумя ЛВС (LAN "A" в ЦО и LAN "B" в Ф) с использованием коммутаторов АТМ и лазерных приемопередатчиков представлен на рисунке 5. Модель ОВ4000 позволит решить проблему высокоскоростной ближней связи оптимальным образом. Вы получите возможность передавать потоки Е3, ОС1, SONET1 и ATM52 с требуемыми скоростями на расстояние до 1200 м, а потоки 100 Base-VG или VG ANYLAN (802.12), 100 Base-FX или Fast Ethernet (802.3), FDDI, TAXI 100/140, OC3, SONET3 и ATM155 с требуемыми скоростями - на расстояние до 1000 м. Передаваемые данные доставляются на лазерный приемопередатчик при помощи стандартного сдвоенного оптоволокна, подключаемого через SMA-разъем.

Рисунок 5. Объединение высокоскоростных телекоммуникационных сетей.

Приведенные примеры не исчерпывают всех возможных вариантов применения лазерного оборудования.

Что выгодней?

Попробуем определить место лазерной связи среди остальных проводных и беспроводных решений, кратко оценив их достоинства и недостатки (таблица 3).

Таблица 3.

Ориентировочная стоимость

Медный кабель

Оптоволокно

Радиоканал

Лазерный канал

от 3 до 7 тыс. дол. за 1 км

до 10 тыс. дол. за 1 км

от 7 до 100 тыс. дол. за комплект

12-22 тыс. дол. за комплект

Время на подготовку и выполнение монтажа

Подготовка работ и прокладка - до 1 месяца; установка HDSL-модемов - несколько часов

В настоящее время лазерная техника открывает новые возможности для совершенствования систем связи, локации и радиоуправления. Эти возможности связаны с огромным коэффициентом усиления передающих оптических антенн, что позволяет получить большое отношение сигнал/шум в приемнике в широкой полосе частот при маломощных передатчиках и с возможностью использовать очень широкие полосы частот при передаче и приеме оптических сигналов.

Лазерные системы передачи информации имеют следующие преимущества по сравнению с радиосистемами.

Возможность передачи информации с очень высокой скоростью при относительно малой мощности передатчика и малых габаритных размерах антенны. Сегодня лазерные линии связи могут обеспечить передачу информации со скоростью до 102 Гбит/с и более. При временном уплотнении каналов можно в многоканальной линии связи получить результирующую частоту следования импульсов более 100 ГГц, что превышает всю полосу радиочастотного спектра, используемого сегодня.

Скрытность передачи информации и защищенность от организованных помех (из-за очень узких ДН передающих и приемных антенн, составляющих единицы угловых секунд).

Однако имеются и недостатки, основными из которых являются: зависимость работы от метеоусловий и необходимость использовать световоды (кварцевые, стеклянные волокна).

Реальные перспективы для лазерных систем связи открываются в системах космической связи «ИСЗ-ИСЗ» ввиду отсутствия атмосферы. В таких системах широкополосная и узкополосная информация от низкоорбитальных КА будет передаваться по лазерным линиям связи на стационарные ИСЗ и с них на наземные станции. Важное значение будут иметь спутниковые системы связи «Земля-Земля» через ИСЗ-ретранслятор с лазерными линиями связи.

Расчеты показывают, что в таком канале связи реализуема скорость передачи информации более 1 Мбит/с из района Марса. Для сравнения можно сказать, что в существующих телеметрических радиолиниях для связи с КА в районе Марса скорость передачи информации не превышает 10 бит/с.

Прежде чем обсуждать вопрос выбора системы для космической связи, оценим достоинства и недостатки используемых систем:

с прямым детектированием (рис. 8, а);

с гетеродинным приемником (рис. 8, б).

Рис. 8

Отметим, что помехоустойчивость обеих систем примерно одинакова и для одной и той же частоты и одинакового уровня развития лазерной техники имеются явные преимущества у первой системы, которые заключаются в следующем:

Имеет более простое приемное устройство;

Нечувствительна к доплеровскому сдвигу частоты, что исключает необходимость поиска сигнала по частоте в приемнике (как это имеет место во второй системе);

Нечувствительна к искажению волнового фронта сигнала (возникающего в турбулентной атмосфере), поэтому возможны простые наземные антенны с большой апертурой. В гетеродинном приемнике турбулентность атмосферы ограничивает размеры приемной антенны и для ее увеличения (площади антенны) необходимо применять антенную решетку, состоящую из множества антенн с устройством сложения выходных сигналов;

Имеет приемную антенну, к которой не предъявляются требования высокого оптического качества, что позволяет реализовать более легкие и дешевые бортовые антенны;

Позволяет реализовать более эффективные методы взаимного наведения передающих и приемных антенн (по сравнению с одноэтапным растровым сканированием во второй системе).

Единственным преимуществом систем с гетеродинным приемником является более эффективное подавление фона в приемнике (по сравнению с первым).

Проведем анализ частотной пригодности лазеров для космической связи.

Из-за большой дальности связи требуются передатчики со средней мощностью от долей до единиц ватт. Такие лазеры с приемлемым КПД имеются в трех основных диапазонах:

10 мкм - газовый лазер на СО 2 с = 10,6 мкм, в одномодовом режиме при Р = 1 Вт = 10%, t раб = 10 тыс. ч. непрерывной работы (пригоден для бортовой аппаратуры и из-за высокой стабильности частоты вполне может работать в системе с гетеродинным приемником);

1 мкм - твердотельный лазер на итрий-алюминиевом гранате (ИАГ), активированном ниодимом (J-Al/Nd) = 1,06 мкм, = 1,5 2%, Р макс = n0,1 Вт (такой лазер может с успехом работать на стационарных ИСЗ, т.к. накачка осуществляется решетками светодиодов или устройствами солнечной накачки. В последнем случае коллектор солнечной энергии через оптический фильтр фокусирует энергию накачки на лазерном стержне, обеспечивая его возбуждение. Калий-рубидиевые лампы накачки обеспечивают t раб до 5 тыс. ч при = 10%. Результирующий = 10 Светодиоды имеют больший ресурс, но их мощность мала и поэтому они пригодны только для маломощных передатчиков до 0,1 Вт);

0,5 мкм - перспективным здесь является Nd:ИАГ-лазер, работающий в режиме удвоения частоты = 0,53 мкм (ярко-зеленый цвет), с эффективностью преобразователя близкой к единице.

Для низкоскоростных лазерных линий связи перспективными являются импульсные газовые лазеры на парах металлов. В импульсном режиме лазер на парах меди имеет = 0,5106 и 0,5782 мкм и = =5% (в режиме модуляции добротности) при средней мощности единицы ватт.

Возможности приемной техники в этих трех диапазонах следующие:

10,6 мкм - имеются фотодетекторы с высокой квантовой эффективностью (40 50%) при охлаждении до 77 100 К, но т.к. фотодетекторы не обладают внутренним усилением, они не пригодны для систем с прямым детектированием;

1,06 мкм - для систем с прямым детектированием можно использовать ФЭУ или лавинные фотодиоды. Но квантовая эффективность ФЭУ на этой длине волны составляет всего 0,008, поэтому этот диапазон значительно уступает первому;

0,53 мкм оказывается более приемлемым диапазоном в режиме прямого детектирования, т.к. показатели его из-за увеличения эффективности ФЭУ существенно выше.

Итак, имеются две системы космической связи:

С прямым детектированием сигнала на длине волны 0,53 мкм;

С гетеродинным приемником в ИК-диапазоне на 10,6 мкм.

Причем система с = 10,6 мкм имеет:

Более низкий уровень квантового шума (т.к. спектральная плотность квантового шума пропорциональна величине hf, то на = =10,6 мкм она в 20 раз меньше, чем на = 0,53 мкм);

КПД лазерного передатчика диапазона =10,6 мкм выше, чем на = 0,53 мкм.

Первые два свойства системы позволяют использовать более широкие диаграммы направленности передатчиков по сравнению с системой видимого диапазона, что упрощает систему наведения.

Недостатки здесь те же, что и у гетеродинного метода.

Система видимого диапазона = 0,53 мкм, имея более высокий уровень квантового шума, более низкий КПД передатчика, может иметь значительно уменьшенные ДН передающей антенны. Так, если апертуры передающих антенн одинаковы (на = 0,53 и 10,6 мкм), то передающая антенна на = 0,53 мкм будет иметь коэффициент усиления в 400 раз больший, чем на = 10,6 мкм, что с запасом компенсирует названные выше недостатки. Более узкие лучи передающих антенн усложняют систему взаимного наведения передающих и приемных антенн, однако использование эффективных многоэтапных методов поиска позволяет существенно сократить время вхождения в связь. Причем в гетеродинном приемнике возможно только простое растровое сканирование при поиске сигнала и время поиска существенно увеличивается за счет необходимости одновременного поиска сигнала по частоте.

Важным преимуществом антенны видимого диапазона является возможность построения спутниковой системы связи многостанционного доступа. В этом случае на борту ИСЗ-РРС размещаются несколько (по числу линий связи) простых приемников прямого детектирования. Для систем диапазона 10,6 мкм это практически невыполнимо из-за сложности гетеродинных приемников с громоздкими устройствами охлаждения фотосмесителей.

Таким образом, по существующему техническому уровню системы с прямым детектированием (= 0,53 мкм) имеют существенные преимущества:

для дальней космической связи «КА-Земля» через атмосферу;

для спутниковой системы с многостанционным доступом.

Для спутниковой системы связи, когда приемный (или передающий) луч ИСЗ-ретранслятора «перекидывается» с одного абонента на другой по программе, система связи с высокой пропускной способностью на = 0,53 и 10,6 мкм имеют сравнимые характеристики при скоростях передачи информации до нескольких сотен мегабит в секунду. Более высокие скорости передачи информации (более 10 Гбит/с) в системе с = 10,6 мкм трудно реализуемы, в то время как в видимом диапазоне они могут быть просто обеспечены за счет временного уплотнения каналов.

Пример реализации системы связи трех синхронных спутников (рис. 9):

длина волны передатчика = 0,53 мкм (детектирование прямое);

модуляция осуществляется электрооптическим модулятором, а сигналом модуляции является СВЧ-поднесущая с центральной частотой m = 3 ГГц и боковой полосой от мин = 2,5·10 9 до макс = 3,5·10 9 Гц (т.е. = 10 9 Гц);


Рис. 9

электрооптический модулятор (кристалл) работает в поперечном режиме с электрооптическим коэффициентом r 4·10 -11 при микроволновой диэлектрической проницаемости = 55 0 . Максимальная глубина модуляции - Г m = /3;

коллимирующая и принимающая линзы имеют размеры 10 см;

соотношение сигнал/шум на выходе усилителя, следующего за ФЭУ, равен 10

Определим общую мощность источника постоянного тока, которым спутник должен снабжаться, чтобы удовлетворить требованиям задания на проектирование (определим сначала уровень оптической мощности передаваемого излучения, а затем мощность модуляции, необходимую для работы).

Решение : Синхронный спутник имеет период обращения 24 часа. Расстояние от Земли до спутника определяем из равенства центробежной и гравитационной сил

mV 2 /R ES = mg(R Зем) 2 /(R ES) 2 ,

где V скорость спутника; m его масса; g - гравитационное ускорение у поверхности Земли; R ES - расстояние от центра Земли до спутника; R Зем - радиус Земли.

Синхронная орбитальная частота вращения (24 часа) позволяет определить

V/R ES = 2/(246060), тогда R ES = 42 222 км.

Расстояние между спутниками R = 73 12 км при разносе в 120 О. Если оптический сигнал мощностью Р Т передается в телесном угле T и принимаемая апертура обеспечивает телесный угол R , то принимаемая мощность

P R = P T (R / T).

Передаваемый оптический пучок (рис. 35) дифрагирует с углом расходимости пучка, который связан с минимальным радиусом пучка 0 выражением

пучка = / 0 .

Соответствующий телесный угол T = (пучка) 2 .

Если принять 0 равным радиусу d т передающей линзы, то

Телесный угол приемника равен

R = d 2 R /R 2 ,

R расстояние между передатчиком и приемником.

Из (42), (44), (45) имеем

P T = P R R 22 / 22 T 2 R .

Запишем соотношение сигнал/шум на выходе ФЭУ, работающем в режиме квантового ограничения (т.е. когда основной источник шума - дробовый шум самого сигнала):

с/ш = 2 (P R e/h) 2 G 2 /G 2 ei d = P R /h,

где Р R оптическая мощность, G - коэффициент усиления по току, i d - темновой ток. При = 0,53 мкм, = 0,2 - эффективность преобразования мощности, = 10 9 Гц с/ш = 10 3 получим Р R 2·10 -6 . При этом требуемая мощность в соответствии с (46) при R = 7,5·10 4 м составит Р т 3 Вт.