Дуплексный режим работы. Коммутаторы LAN

Дуплексный режим - наиболее универсальный и производительный способ ра­боты канала. Самым простым вариантом организации дуплексного режима явля­ется использование двух независимых линий связи (двух пар проводников или двух оптических волокон) в кабеле, каждая из которых работает в симплексном режиме, то есть передает данные в одном направлении. Именно такая идея ле­жит в основе реализации дуплексного режима работы во многих сетевых техно­логиях, например Fast Ethernet или ATM.

Иногда такое простое решение оказывается недоступным или неэффективным, например, когда прокладка второй линии связи ведет к большим затратам. Так, при обмене данными с помощью модемов через телефонную сеть у пользователя имеется только одна линия связи с телефонной станцией - двухпроводная. В та­ких случаях дуплексный режим работы организуется на основе разделения ли­нии связи на два логических канала с помощью техники FDM или TDM.

При использовании техники FDM для организации дуплексного канала диапазон частот делится на две части. Деление может быть симметричным и асимметрич­ным, в последнем случае скорости передачи информации в каждом направлении отличаются (популярный пример такого подхода - технология ADSL, исполь­зуемая для широкополосного доступа в Интернет). В случае когда техника FDM обеспечивает дуплексный режим работы, ее называют дуплексной связью с час­тотным разделением (Frequency Division Duplex, FDD).

При цифровом кодировании дуплексный режим на двухпроводной линии орга­низуется с помощью техники TDM. Часть тайм-слотов используется для переда­чи данных в одном направлении, а часть - в другом. Обычно тайм-слоты проти­воположных направлений чередуются, из-за чего такой способ иногда называют «пинг-понговой» передачей. Дуплексный режим TDM получил название дуп­лексной связи с временным разделением (Time Division Duplex, TDD).

В волоконно-оптических кабелях с одним оптическим волокном для организа­ции дуплексного режима работы может применяться технология DWDM. Пере­дача данных в одном направлении осуществляется с помощью светового пучка одной длины волны, а в обратном - другой длины волны. Собственно, решение частной задачи - создание двух независимых спектральных каналов в одном окне прозрачности оптического волокна - и привело к рождению технологии WDM, которая затем трансформировалась в DWDM.

Появление мощных процессоров DSP (Digital Signal Processor), которые могут выполнять сложные алгоритмы обработки сигналов в реальном времени, сдела­ло возможным еще один вариант дуплексной работы. Два передатчика работают одновременно навстречу друг другу, создавая в канале суммарный аддитивный сигнал. Так как каждый передатчик знает спектр собственного сигнала, то он вы­читает его из суммарного сигнала, получая в результате сигнал, посылаемый другим передатчиком.


Выводы

Для представления дискретной информации применяются сигналы двух типов: прямоуголь­ные импульсы и синусоидальные волны. В первом случае используют термин «кодирование», во втором - «модуляция».

При модуляции дискретной информации единицы и нули кодируются изменением амплитуды, частоты или фазы синусоидального сигнала.

Аналоговая информация может передаваться по линиям связи в цифровой форме. Это повы­шает качество передачи, так как при этом могут применяться эффективные методы обнаруже­ния и исправления ошибок, недоступные для систем аналоговой передачи. Для качественной передачи голоса в цифровой форме используется частота оцифровывания в 8 кГц, когда каж­дое значение амплитуды голоса представляется 8-битным числом. Это определяет скорость голосового канала в 64 Кбит/с.

При выборе способа кодирования нужно одновременно стремиться к достижению нескольких целей: минимизировать возможную ширину спектра результирующего сигнала, обеспечивать синхронизацию между передатчиком и приемником, обеспечивать устойчивость к шумам, об­наруживать и по возможности исправлять битовые ошибки, минимизировать мощность пере­датчика.

Спектр сигнала является одной из наиболее важных характеристик способа кодирования. Бо­лее узкий спектр сигналов позволяет добиваться более высокой скорости передачи данных при фиксированной полосе пропускания среды.

Код должен обладать свойством самосинхронизации, то есть сигналы кода должны содержать признаки, по которым приемник может определить, в какой момент времени нужно осуществ­лять распознавание очередного бита.

При дискретном кодировании двоичная информация представляется различными уровнями постоянного потенциала или полярностью импульса.

Наиболее простым потенциальным кодом является код без возвращения к нулю (NRZ), однако он не является самосинхронизирующимся.

Для улучшения свойств потенциального кода NRZ используются методы, основанные на вве­дении избыточных битов в исходные данные и на скремблировании исходных данных.

Коды Хэмминга и сверточные коды позволяют не только обнаруживать, но и исправлять мно­гократные ошибки. Эти коды являются наиболее часто используемыми средствами прямой коррекции ошибок (FEC).

Для повышения полезной скорости передачи данных в сетях применяется динамическая ком­прессия данных на основе различных алгоритмов. Коэффициент сжатия зависит от типа дан­ных и применяемого алгоритма и может колебаться в пределах от 1:2 до 1:8.

Для образования нескольких каналов в линии связи используются различные методы мультип­лексирования, включая частотное (FDM), временнбе (TDM) и волновое (WDM), а также мно­жественный доступ с кодовым разделением (CDMA). Техника коммутации пакетов сочетается только с методом TDM, а техника коммутации каналов позволяет использовать любой тип мультиплексирования.

Соединения WiFi работает в полудуплексном режиме, а проводная часть локальной сети в полном дуплексе. Узнайте больше прочитав эту статью.

Дуплекс против симплекса

В сети термин «дуплекс» означает возможность для двух точек или устройств связываться друг с другом в оба направления, в отличие от «симплекса», который относится к однонаправленной коммуникации. В системе дуплексной связи, обе точки (устройства) могут передавать и получать информацию. Примерами дуплексных систем являются телефоны и рации.

С другой стороны, в симплекс системе одно устройство передает информацию, а другое получает. Пульт дистанционного управления является примером системы симплекс, где пульт дистанционного управления передает сигналы, но не получает их в ответ.

Полный и полудуплекс

Полная дуплексная связь между двумя компонентами означает, что оба могут передавать и получать информацию друг другу одновременно. Телефоны являются полными дуплексными системами, так как обе стороны могут говорить и слушать одновременно.

В полудуплексных системах передача и прием информации должны происходить поочередно. Во время передачи одной точки, остальные должны только получать. Рации являются полудуплексными системами, в конце передачи участник должен сказать «Прием», это означает, что он готов получать информацию.


WiFi роутеры (маршрутизаторы) - это устройства, которые модулируют и планируют потоки информации из и от любого WiFi-совместимого электронного устройства (например, ноутбук или смартфон) к сети Интернет, используя определенный стандарт или протокол, называемый IEEE 802.11, который работает в полудуплексном режиме. WiFi это только торговая марка для определенного стандарта IEEE.

WiFi устройства подключаются к маршрутизатору с помощью радиоволн частотой 2,4 ГГц или 5 ГГц. Маршрутизатор гарантирует правильное распределение информационных потоков между подключенным устройством и Интернетом; с помощью процесса вызова с временным разделением каналов (TDD) который работает в режиме полного дуплекса.

TDD эмулирует полную дуплексную связь путем создания или деления периодов времени, которые чередуются между передачей и приемом. Пакеты данных идут в обоих направлениях, как продиктовано расписанием. Путем точного разбития этих периодов времени, подключенные устройства, могут осуществлять передачу и прием одновременно.

Самой большой проблемой для достижения полнодуплексного контроля над радиосвязью являются внутрисистемные помехи. Это помехи или шум более интенсивный, чем сам сигнал. Проще говоря, помехи в полнодуплексной системе возникают тогда, когда одна точка осуществляет передачу и прием одновременно, и также получает свою собственную передачу, следовательно, происходит само-интерференция.

Практически полнодуплексная беспроводная связь возможна в сферах исследований и научных сообществах. Во многом это достигается за счет устранения собственных помех на двух уровнях. Первый способ-инверсия самого шумового сигнала и тогда процесс шумоподавления дополнительно усиливается в цифровом виде.

Что насчет проводной сети?


Проводная часть локальной сети обменивается данными в режиме полного дуплекса с помощюю двух пар крученных проводов, образующих кабельное подключение Ethernet. Каждая пара предназначена для передачи и приема пакетов информации одновременно, поэтому нет столкновения данных и передача осуществляется без помех.

Прогресс в области WiFi-связи

В рамках протокола IEEE 802.11, были внесены изменения для достижения лучшего диапазона или лучшей пропускной способности, или то и другое. От своего основания в 1997 году до 2016, беспроводные стандарты были скорректированы от 802.11, 802.11b/a, 802.11g, 802.11n, 802.11ac, и наконец последний 802.22. Какими бы прогрессивными они ни стали, они по-прежнему принадлежат семье 802, который будет постоянно работать в режиме полудуплекса. Хотя были сделаны многие улучшения, особенно с включением технологии MIMO, работа в полудуплексном режиме снижает общую спектральную эффективность в два раза.

Интересно отметить, что MIMO поддерживаемая маршрутизаторами (со многими входами и многими выходами) рекламирует гораздо более высокие скорости передачи данных. Эти маршрутизаторы используют несколько антенн для передачи и приема одновременно нескольких потоков данных, которые могут увеличить общую скорость передачи. Это часто встречается и в маршрутизаторах 802.11 N, которые рекламируют скорости от 600 мегабит в секунду и выше. Однако, так как они работают в полудуплексном режиме, 50 процентов (300 мегабит в секунду) пропускная способность резервируется для передачи в то время как другие 50 процентов используют для получения.

Полнодуплексный WiFi в будущем

К полнодуплексной беспроводной связи растет все больший коммерческий интерес. Основная причина, состоит в том, что прогресс в полудуплексном FDD и TDD не насыщен. Усовершенствования программного обеспечения, модуляции достижений и улучшений технологии MIMO становятся все сложнее и сложнее. Поскольку все больше новых устройств имеют беспроводное подключение, необходимость повышения эффективности использования спектра в конечном итоге имеет первостепенное значение. Появление полнодуплексной беспроводной связи мгновенно удвоит спектральную эффективность.

Симплекс

Симплексный канал является однонаправленным, позволяющим передавать данные " лишь в одном направлении, как показано на рис. 2.10. Традиционное радиовещание является примером симплексной передачи. Радиостанция передает широковещательную программу, но в ответ ничего не получает от вашего радиоприемника.

Рис. 2.10. Симплексная передача

Это ограничивает использование симплексного канала для передачи данных, поскольку для контроля процесса передачи, подтверждения данных и т. д. требуется постоянный поток данных в обоих направлениях.

Полудуплекс

Полудуплексная передача дает возможность предоставить симплексную связь в обои;, направлениях по, единственному каналу, как показано на рис. 2.11. Здесь передатчик кг станции А посылает данные приемнику на станции В. Когда требуется передаче з обратном направлении, имеет место процедура переключения линии. После этогс передатчик станции - В получает возможность связаться с приемником станции А Задержка при переключении линии снижает передаваемыйтю каналу связи объем данных.

Рис. 2.11. Полудуплексная передача

Полный дуплекс

Полнодуплексный канал дает возможность одновременной связи в обоих напоавлениях, как показано на рис. 2.12.

Рис 2.12. Полнодуплексная передача

2.4.2. Синхронизация сигналов цифровых данных

Передача данных зависит от правильного согласования моментов генерации и получения сигналов. Определять, какой элемент данных передается - "1" или "0", приёмник должен в нужные моменты времени. Процесс выбора и поддержания эталонных интервалов времени называется синхронизацией.

Чтобы синхронизировать передачу, передающее и принимающее устройства должны согласовать длину бита (bit time) - длительность используемого элемента кода. Приемнику нужно извлечь переданный синхросигнал, закодированный в полученном потоке данных. Синхронизируя длину бита тактового генератора приемника с длиной бита, закодированной в данных отправителя, приемник может определить нужные моменты времени для демодуляции данных и корректной расшифровки сообщения. Устройства на обоих концах цифрового канала могут синхронизироваться с использованием либо асинхронной, либо синхронной передачи, как описано ниже.

В предыдущей статье, я коротко упомянул о том, какие .

Сейчас мы ознакомимся с согласованием параметров между устройствами, а так же скорости и режима работы (full- duplex или half-duplex ).

По умолчанию, каждый порт Cisco настроен таким образом, что устройство само определяет какие настройки на этом порту использовать, какую скорость выбрать, какой режим передачи данных. Такая технология называется Auto-negotiation (Автоопределение). Так же эти параметры можно задать «вручную», на каждом порту устройства.

Cisco определяют автоматически скорость между сетевыми устройствами (например между портом коммутатора и сетевой картой компьютера), используя некоторые методы. Cisco коммутаторы используют для определния скорости Fast Link Pulse (FLP) , это некоторый электрический импульс, по которому устройства могут понять на каких оптимальных скоростях может установиться соединение между данными сетевыми устройствами.

Если скорости выставлены вручную и они совпадают, то устройства смогут установить соединение используя электрические сигналы.

Если на коммутаторе и на сетевом устройстве компьютера (для примера), установлены вручную скорости и они не совпадают, то соединение не будет установлено.

Примерно так же проходит и определение режима работы соединения: half-duplex или full-duplex .

Если оба устройства работают в режиме автоопределения, и устройства могут работать в duplex режиме, то этот режим и установится.

Если на устройствах автоопределение выключено, то режим будет присвоен по некоторым правилам «по умолчанию». Для 10 и 100 мегабитных интерфейсов установится режим half-duplex, для 1000 мегабитных установится Full-Duplex.

Для отключения автоопределения дуплексности необходимо вручную указать настройки режима.

Ethernet устройства могут работать в режиме Full-Duplex (FDX ), только тогда, когда нет коллизий в передающей среде.

Современные технологии говорят что коллизии не происходят. Коллизии происходят только там где есть разделяемая среда передача данных, например при топологии шина, или при использовании такого устройства как hub (хотя сейчас увидеть такого «динозавтра» достаточно сложно 🙂).

Все же необходимо представлять какие технологии есть и как они борятся с в таких разделяемых ресурсах.

Алгоритм, по борьбе с коллизиями называется CSMA/CD (Carrier Sense Multiple Access Collision Detection ), что означает множественный доступ с контроллем несущей и обнаружением коллизий.

Что такое коллизия вобще?

Коллизия это наложение сигнала, т.е, когда одновременно несколько сетевых устройств начинают передачу данных по разделяемой среде, два этих сигнала встречаются, накладываются друг на друга, и происходит коллизия (тоесть данные искажены, и не несут в себе никакой полезной нагрузки.

Теперь давайте рассмотрим как это работает.

  1. Устройство, которое желает отправить сначала слушает, свободна ли линия связи.
  2. Когда линия связи не занята, это устройство начинает отправлять фреймы в Ethernet.
  3. Устройство «слышит», что коллизия не происходит, значит все хорошо.
  4. Если все же коллизия произошла (а как же первый шаг? где устройство убеждалось, что линия не занята? Дело в том, что другое устройство могло тоже прослушивать линию, и эти два устройства отправили фреймы практически в одно и тоже время, поэтому и произошла коллизия). Теперь, когда отправляемые устройства «поняли», что произошла коллизия, они отправляют так называемый jam signal, который «говорит» другим участникам сети, что сейчас передача невозможно, так как возникла коллизия и придется немного подождать.
  5. После jam сигнала, у каждого отправляюшего устройства случайным образом определяется некоторое время, которое можно назвать «время простоя», когда устройство не может посылать никакие данные в сети.
  6. После истечения этого таймера, алгоритм переходит к 1 шагу.

Соединения WiFi работает в полудуплексном режиме, а проводная часть локальной сети в полном дуплексе. Узнайте больше прочитав эту статью.

Дуплекс против симплекса

В сети термин «дуплекс» означает возможность для двух точек или устройств связываться друг с другом в оба направления, в отличие от «симплекса», который относится к однонаправленной коммуникации. В системе дуплексной связи, обе точки (устройства) могут передавать и получать информацию. Примерами дуплексных систем являются телефоны и рации.

С другой стороны, в симплекс системе одно устройство передает информацию, а другое получает. Пульт дистанционного управления является примером системы симплекс, где пульт дистанционного управления передает сигналы, но не получает их в ответ.

Полный и полудуплекс

Полная дуплексная связь между двумя компонентами означает, что оба могут передавать и получать информацию друг другу одновременно. Телефоны являются полными дуплексными системами, так как обе стороны могут говорить и слушать одновременно.

В полудуплексных системах передача и прием информации должны происходить поочередно. Во время передачи одной точки, остальные должны только получать. Рации являются полудуплексными системами, в конце передачи участник должен сказать «Прием», это означает, что он готов получать информацию.


WiFi роутеры (маршрутизаторы) - это устройства, которые модулируют и планируют потоки информации из и от любого WiFi-совместимого электронного устройства (например, ноутбук или смартфон) к сети Интернет, используя определенный стандарт или протокол, называемый IEEE 802.11, который работает в полудуплексном режиме. WiFi это только торговая марка для определенного стандарта IEEE.

WiFi устройства подключаются к маршрутизатору с помощью радиоволн частотой 2,4 ГГц или 5 ГГц. Маршрутизатор гарантирует правильное распределение информационных потоков между подключенным устройством и Интернетом; с помощью процесса вызова с временным разделением каналов (TDD) который работает в режиме полного дуплекса.

TDD эмулирует полную дуплексную связь путем создания или деления периодов времени, которые чередуются между передачей и приемом. Пакеты данных идут в обоих направлениях, как продиктовано расписанием. Путем точного разбития этих периодов времени, подключенные устройства, могут осуществлять передачу и прием одновременно.

Самой большой проблемой для достижения полнодуплексного контроля над радиосвязью являются внутрисистемные помехи. Это помехи или шум более интенсивный, чем сам сигнал. Проще говоря, помехи в полнодуплексной системе возникают тогда, когда одна точка осуществляет передачу и прием одновременно, и также получает свою собственную передачу, следовательно, происходит само-интерференция.

Практически полнодуплексная беспроводная связь возможна в сферах исследований и научных сообществах. Во многом это достигается за счет устранения собственных помех на двух уровнях. Первый способ-инверсия самого шумового сигнала и тогда процесс шумоподавления дополнительно усиливается в цифровом виде.

Что насчет проводной сети?


Проводная часть локальной сети обменивается данными в режиме полного дуплекса с помощюю двух пар крученных проводов, образующих кабельное подключение Ethernet. Каждая пара предназначена для передачи и приема пакетов информации одновременно, поэтому нет столкновения данных и передача осуществляется без помех.

Прогресс в области WiFi-связи

В рамках протокола IEEE 802.11, были внесены изменения для достижения лучшего диапазона или лучшей пропускной способности, или то и другое. От своего основания в 1997 году до 2016, беспроводные стандарты были скорректированы от 802.11, 802.11b/a, 802.11g, 802.11n, 802.11ac, и наконец последний 802.22. Какими бы прогрессивными они ни стали, они по-прежнему принадлежат семье 802, который будет постоянно работать в режиме полудуплекса. Хотя были сделаны многие улучшения, особенно с включением технологии MIMO, работа в полудуплексном режиме снижает общую спектральную эффективность в два раза.

Интересно отметить, что MIMO поддерживаемая маршрутизаторами (со многими входами и многими выходами) рекламирует гораздо более высокие скорости передачи данных. Эти маршрутизаторы используют несколько антенн для передачи и приема одновременно нескольких потоков данных, которые могут увеличить общую скорость передачи. Это часто встречается и в маршрутизаторах 802.11 N, которые рекламируют скорости от 600 мегабит в секунду и выше. Однако, так как они работают в полудуплексном режиме, 50 процентов (300 мегабит в секунду) пропускная способность резервируется для передачи в то время как другие 50 процентов используют для получения.

Полнодуплексный WiFi в будущем

К полнодуплексной беспроводной связи растет все больший коммерческий интерес. Основная причина, состоит в том, что прогресс в полудуплексном FDD и TDD не насыщен. Усовершенствования программного обеспечения, модуляции достижений и улучшений технологии MIMO становятся все сложнее и сложнее. Поскольку все больше новых устройств имеют беспроводное подключение, необходимость повышения эффективности использования спектра в конечном итоге имеет первостепенное значение. Появление полнодуплексной беспроводной связи мгновенно удвоит спектральную эффективность.