Чем симплексная связь отличается от дуплексной? Классификация каналов связи. Симплексный. Полудуплексный. Дуплексный

Доступ к среде на основе конкуренции

Механизмы доступа к среде

Каждая сеть должна поддерживать определенный механизм управления доступом к среде передачи данных. Реализуется доступ к среде на втором (канальном) уровне эталонной модели OSI. Хотя теоретически механизм доступа к среде должен быть универсальным, на практике различают несколько способов его реализации. В частности, в локальных сетях для управления доступом к среде передачи данных используется четыре различных подхода:

Конкуренция за право доступа;

Передача маркера;

Доступ по приоритету;

Коммутируемый доступ.

В локальной сети, устройства которой соревнуются за право на передачу данных, применяется метод доступа к среде на основе конкуренции (contention-based media access method) . Совокупность устройств, соперничающих друг с другом за полосу пропускания, называются конфликтным доменом (collision domain). Данный метод применяется во многих разновидностях Ethernet.

Технология доступа к среде на основе конкуренции довольна примитивна и не предполагает использования централизованного механизма управления. Вместо этого каждое сетевое устройство берет на себя все функции по организации процесса передачи своих данных. Каждый раз, когда устройство собирается передать данные, оно должно определить, доступен ли кабель для передачи или уже используется другим устройством. Если кабель используется, необходимо подождать и через некоторое время предпринять следующую попытку.

Из приведенного описания механизма доступа к среде на основе конкуренции можно сделать вывод, что все подключенные к сети устройства передают и принимают данные в одном и том же диапазоне частот. Среда передачи способна передавать только один сигнал в отдельный момент времени, и этот сигнал занимает весь диапазон. Другими словами среда передачи данных поддерживает режим моно полосной передачи.

Технология монополосной передачи использует только один канал для транспортировки всех данных. Поэтому:

Только одно устройство может передавать данные в отдельный момент времени;

Устройство может либо передавать, либо получать данные. Такой режим называется полудуплексным (half-duplex).

Полудуплексная сеть позволяет осуществлять передачу данных только одному устройству в данный момент времени – все остальные должны оставаться пассивными и прослушивать трафик на наличие адресованных им кадров.


В дуплексной (full-duplex) сети доступная полоса пропускания делиться на дискретные каналы. В альтернативном варианте физически разделенные проводники могут использоваться для создания избыточного канала, использующего тот же диапазон частот. В типичной дуплексной сети используется технология коммутации. В любом случае каждому устройству предоставляется в единицу времени как принимать, так и передавать данные.



Следует заметить, что полностью в дуплексной сети, предоставляющей доступ на основе конкуренции, только одно устройство в отдельном конфликтном домене имеет право передавать данные в определенный момент времени. Однако при развертывании дуплексной сети каждое устройство оказывается подключенным к коммутируемому порту. Таким образом, количество устройств в каждом конфликтном домене сокращается до двух: само устройство и коммутируемый порт, к которому оно подключено.

Одновременно. В режиме полудуплекс - или передавать, или принимать информацию.

Полудуплексный режим

Режим, при котором передача ведётся в обоих направлениях, но с разделением по времени называют полудуплексным. В каждый момент времени передача ведётся только в одном направлении.

Разделение во времени вызвано тем, что передающий узел в конкретный момент времени полностью занимает канал передачи. Явление, когда несколько передающих узлов пытаются в один и тот же момент времени осуществлять передачу, называется коллизией и при методе управления доступом CSMA/CD считается нормальным, хотя и нежелательным явлением.

Этот режим применяется тогда, когда в сети используется коаксиальный кабель или в качестве активного оборудования используются концентраторы .

В зависимости от аппаратного обеспечения одновременный приём/передача в полудуплексном режиме может быть или физически невозможен (например, в связи с использованием одного и того же контура для приёма и передачи в рациях) или приводить к коллизиям .

Дуплексный режим

Режим, при котором, в отличие от полудуплексного, передача данных может производиться одновременно с приёмом данных.

Суммарная скорость обмена информацией в данном режиме может достигать вдвое большего значения. Например, если используется технология Fast Ethernet со скоростью 100 Мбит / , то скорость может быть близка к 200 Мбит/с (100 Мбит/с - передача и 100 Мбит/с - приём).

В качестве наглядного примера можно привести разговор двух человек по рации (полудуплексный режим) - когда в один момент времени человек либо говорит, либо слушает, и по телефону (полный дуплекс) - когда человек может одновременно и говорить, и слушать.

Дуплексная связь обычно осуществляется с использованием двух каналов связи: первый канал - исходящая связь для первого устройства и входящая для второго, второй канал - входящая для первого устройства и исходящая для второго.

В ряде случаев возможна дуплексная связь с использованием одного канала связи. В этом случае устройство при приёме данных вычитает из сигнала свой отправленный сигнал, а получаемая разница является сигналом отправителя (модемная связь по телефонным проводам, GigabitEthernet).


Wikimedia Foundation . 2010 .

Смотреть что такое "Полный дуплекс" в других словарях:

    Двойная спираль с Уотсона-крика дуплекс - Двойная спираль, с. Уотсона крика, дуплекс * падвойная спіраль, с. Уотсана крыка, дуплекс * double helix or d. h. DNA or Watson Crick h. or duplex модель Уотсона Крика, описывающая структуру ДНК как спираль, которая образована из двух… … Генетика. Энциклопедический словарь

    режим полного дуплекса - — [Е.С.Алексеев, А.А.Мячев. Англо русский толковый словарь по системотехнике ЭВМ. Москва 1993] полный дуплекс Одновременная двусторонняя передача. (полный) дуплекс… …

    Кабель UTP с разъемом 8P8C (ошибочно называемый RJ 45), используемый в Ethernet сетях стандартов 10BASE T, 100BASE T(x) и 1 … Википедия

    Название: Teletype network Уровень (по модели OSI): Прикладной Семейство: TCP/IP Порт/ID: 23/TCP Назначение протокола: виртуальный текстовый терминал Спецификация: RFC 854 / STD 8 … Википедия

    Дуплекс и полудуплекс режимы работы приёмо передающих устройств (модемов, сетевых карт, раций, телефонных аппаратов). В режиме дуплекс устройства могут передавать и принимать информацию одновременно. В режиме полудуплекс или передавать, или… … Википедия

    Дуплекс и полудуплекс режимы работы приёмо передающих устройств (модемов, сетевых карт, раций, телефонных аппаратов). В режиме дуплекс устройства могут передавать и принимать информацию одновременно. В режиме полудуплекс или передавать, или… … Википедия - сетевая карта сетевой адаптер сетевой интерфейс Компонент компьютера для подключения к вычислительной сети. сетевой адаптер Периферийное устройство (плата), обеспечивающее соединение компьютера и ЛВС.… … Справочник технического переводчика

Технология коммутации сама по себе не имеет непосредственного отношения к методу доступа к среде, который используется портами коммутатора. При подключении к порту коммутатора сегмента, представляющего собой разделяемую среду, данный порт, как и все остальные узлы такого сегмента, должен поддерживать полудуплексный режим.

Однако когда к каждому порту коммутатора подключен не сегмент, а только один компьютер, причем по двум физически раздельным каналам, как это происходит почти во всех стандартах Ethernet, кроме коаксиальных версий Ethernet, ситуация становится не такой однозначной. Порт может работать как в обычном полудуплексном режиме, так и в дуплексном.

В полудуплексном режиме работы порт коммутатора по-прежнему распознает коллизии. Доменом коллизий в этом случае является участок сети, включающий передатчик коммутатора, приемник коммутатора, передатчик сетевого адаптера компьютера, приемник сетевого адаптера компьютера и две витые пары, соединяющие передатчики с приемниками. Коллизия возникает, когда передатчики порта коммутатора и сетевого адаптера одновременно или почти одновременно начинают передачу своих кадров.

В дуплексном режиме одновременная передача данных передатчиком порта коммутатора и сетевого адаптера коллизией не считается. В принципе, это достаточно естественный режим работы для отдельных дуплексных каналов передачи данных, и он всегда использовался в протоколах глобальных сетей. При дуплексной связи порты Ethernet стандарта 10 Мбит/с могут передавать данные со скоростью 20 Мбит/с - по 10 Мбит/с в каждом направлении.

Уже первые коммутаторы Kalpana поддерживали оба режима работы своих портов, позволяя использовать коммутаторы для объединения сегментов разделяемой среды, как делали их предшественники-мосты, и в то же время позволяя удваивать скорость обмена данными на предназначенных для связи между коммутаторами портах за счет работы этих портов в дуплексном режиме.

Долгое время коммутаторы Ethernet сосуществовали в локальных сетях с концентра торами Ethernet: на концентраторах строились нижние уровни сети здания, такие как сети рабочих групп и отделов, а коммутаторы служили для объединения этих сегментов в общую сеть.

Постепенно коммутаторы стали применяться и на нижних этажах, вытесняя концентраторы, так как цены коммутаторов постоянно снижались, а их производительность росла (за счет поддержки не только технологии Ethernet со скоростью 10 Мбит/с, но и всех последующих более скоростных версий этой технологии, то есть Fast Ethernet со скоростью 100 Мбит/с, Gigabit Ethernet со скоростью 1 Гбит/с и 10G Ethernet со скоростью 10 Гбит/с). Этот процесс завершился вытеснением концентраторов Ethernet и переходом к полностью коммутируемым сетям, пример такой сети показан на рис. 1

Рис. 1 Полностью коммутируемая сеть Ethernet.

В полностью коммутируемой сети Ethernet все порты работают в дуплексном режиме, а продвижение кадров осуществляется на основе МАС-адресов. При разработке технологий Fast Ethernet и Gigabit Ethernet дуплексный режим стал одним из двух полноправных стандартных режимов работы узлов сети. Однако уже практика применения первых коммутаторов с портами Gigabit Ethernet показала, что они практически всегда применяются в дуплексном режиме для взаимодействия с другими коммутаторами или высокоскоростными сетевыми адаптерами. Поэтому при разработке стандарта 10G Ethernet его разработчики не стали создавать версию для работы в полудуплексном режиме, окончательно закрепив уход разделяемой среды из технологии Ethernet.

Обратная связь

Данный принцип работы, естественно подразумевает только соединение типа точка-точка. Но это скорее большой плюс, чем минус. Дело в том, что в этом случае отпадает необходимость в каком либо ручном тюнинге (согласовании), установке дополнительных резисторов (они уже встроены), а сама линия всегда будет работать в наиболее оптимальном режиме. Все что потребуется это обжать концы кабеля в типовые телефонные коннекторы и воткнуть в соответствующие гнезда, по аналогии с тем как монтируются сети Ethernet. На следующем рисунке представлена схема сети RS-.5.

Рисунок 2

В моей реализации преобразователи RS-.5 не имеют собственного источника питания трансмиттера. Дело в том, что кабель типа витая пара всегда имеет как минимум 2 пары проводов. Поэтому, я задействовал еще одну пару проводов для передачи напряжения питания всех трансмиттеров в линии/сети. Это позволяет избавиться от dc/dc конвертеров (вещь довольно не дешевая). Все приемопередающие части преобразователей можно питать от одного источника питания. Если сеть большая ИП может быть и больше чем один естественно.
На картинке нарисована коробочка с двумя портами и надписью RS-.5 Switch - на самом деле возможность коммутировать данные в сети асинхронной передачи данных определяется используемым протоколом. На практике я такого не встречал ни в одном протоколе, но реализовать нетрудно.

После проработки основных принципов была разработана принципиальная схема UART to RS.5 трансмиттера (Рисунок 3).

Рисунок 3

Хотя там разрабатывать нечего. Оптроны выбрал самые дешевые из не самых медленных - H11L1. Заявленная скорость до 1Мб. На скорости 115200 работает хорошо. Хотя есть неприятный момент: один оптрон работал вплоть до скорости 921 600 бит в секунду, тогда как другой спотыкался уже на 230 400 бит в секунду. При осциллографической диагностике оказалось что все оптроны H11L1 перетягивают задний фронт. В общем это не проблема, можно оптроны подобрать по вкусу.
Так все выглядит в железе (конечно же это тестовые железки):

Рисунок 4

Рисунок 5

Интересная особенность: если с одного конца отсоединить коннектор, то трансмиттер на другом конце будет принимать свое эхо. В дальнейшем хочу попробовать на основе этого эффекта и на таком же модуле сделать измеритель длины кабеля.

В технических системах часто возникает задача связать две подсистемы или два узла для организации информационного обмена между ними. Полученную коммуникативную связь называют каналом связи .

Каналы связи можно разделить по типу передаваемого сигнала (электрический, оптический, радиосигнал и т.д.), по среде передачи данных (воздух, электрический проводник, оптоволокно и т.д.) и по многим другим характеристикам. В этой статье речь пойдёт о делении каналов связи по режимам и правилам приёма и передачи информации. По указанным признакам каналы связи делят на симплексные, полудуплексные и дуплексные.

Симплексная связь

Симплексный канал связи — это односторонний канал, данные по нему могут передаваться только в одном направлении. Первый узел способен отсылать сообщения, второй может только принимать их, но не может подтвердить получение или ответить. Типичным примером каналов связи этого типа является речевое оповещение в школах, больницах и других учреждениях. Другой пример — радио и телевидение.

При симплексной передаче данных один узел связи имеет передатчик, а другой (другие) приёмник.


Полудуплексная связь

При полудуплексном типе связи оба абонента имеют возможность принимать и передавать сообщения. Каждый узел имеет в своём составе и приёмник, и передатчик, но одновременно они работать не могут. В каждый момент времени канал связи образуют передатчик одного узла и приёмник другого.

Типичным примером полудуплексного канала связи является рация. По рации обычно происходит приблизительно такой диалог:

— Белка, Белка! Я Мадагаскар! Приём!

— Мадагаскар, я Белка. Приём!

Слово «Приём» делегирует право на передачу сообщения. В этот момент узел, который был приёмником, становится передатчиком и наоборот. Конечно, направление обмена данными меняется не само по себе. Для этого на рации предусмотрена специальная кнопка. Человек, начинающий говорить, зажимает эту кнопку, включая свою рацию в режим передачи. После этого он произносит своё сообщение и кодовое слово «Приём», отпускает кнопку и возвращается в режим приёмника. Кодовое слово даёт другому абоненту понять, что сообщение закончено и он может переключиться в режим передачи для ответного сообщения. Слово «Приём» позволяет избежать коллизий, когда оба абонента начнут передавать одновременно и ни одно из сообщений не будет услышано собеседником.

Дуплексная связь

По дуплексному каналу данные могут передаваться в обе стороны одновременно. Каждый из узлов связи имеет приёмник и передатчик. После установления связи передатчик первого абонента соединяется с приёмником второго и наоборот.

Классическим примером дуплексного канала связи является телефонный разговор. Безусловно, одновременно говорить и слушать собеседника тяжело для человека, но такая возможность при телефонном разговоре имеется, и,согласитесь, разговаривать по дуплексному телефону гораздо удобнее, чем по полудуплексной рации. Электронные же устройства, в отличие от человека, без проблем могут одновременно передавать и принимать сообщения, благодаря своему быстродействию и внутренней архитектуре.