Блок питания шелестова на полевом транзисторе. Линейный лабораторный блок питания своими руками

На разработку этого блока питания потребовался один день, за этот же день он был реализован, и весь процесс был снят на видео камеру. Несколько слов о схеме. Это стабилизированный блок питания с регулировкой выходного напряжения и ограничением тока. Схематические особенности позволяют скинуть минимальную грань выходного напряжения до 0,6 Вольт, а минимальных выходной ток в районе 10мА.


Не смотря на простату конструкции, данному блоку питания уступают даже хорошие лабораторные блоки питания со стоимостью 5-6 тысяч рублей!. Максимальный выходной ток схемы 14Ампер, максимальное выходное напряжение до 40 Вольт - больше не стоит.
Довольно плавное ограничение тока и регулировка напряжения. Блок имеет также фиксированную защиту от коротких замыканий, к стати - ток защиту тоже можно выставить (этой функции лишены почти все промышленные образцы) к примеру, если вам нужно, чтобы защита срабатывала при токах до 1 Ампер - то всего лишь нужно настроить такой ток помощью регулятора настройки тока срабатывания. Максимальный ток - 14Ампер, но и это не предел.

В качестве датчика тока задействовал несколько резисторов 5 ватт 0,39Ом подключенных параллельно, но их номинал можно менять, исходя от нужного тока защиты, к примеру - если планируете блок питания с максимальным током не более 1 Ампер, то номинал этого резистора в районе 1Ом при мощности 3Ватт.
При коротких замыканиях падение напряжения на датчике тока достаточно для срабатывания транзистора BD140, При его открывании срабатывает также нижний транзистор - BD139, через открытый переход которого поступает питание на обмотку реле, в следствии чего, реле срабатывает и размыкается рабочий контакт (на выходе схемы). Схема в таком состоянии может находится сколько угодно времени. Вместе с защитой срабатывает также индикатор защиты. Для того, чтобы снять блок с защиты нужно нажать и опустить кнопку S2 по схеме.
Реле защиты с катушкой 24 Вольт с допустимым током 16-20 и более Ампер.
Силовые ключи в моем случае любимые КТ8101 установленные на теплоотвод (дополнительно изолировать транзисторы не нужно, поскольку коллекторы ключей общие). Заменить транзисторы можно на 2SC5200 - полный импортный аналог или на КТ819 с индексом ГМ (железные), при желании также можно задействовать - КТ803, КТ808, КТ805 (в железных корпусах), но максимальный ток отдачи будет не более 8-10 Ампер. Если блок нужен с током не более 5 Ампер, то можно убрать один из силовых транзисторов.
Маломощные транзисторы типа BD139 можно заменить на полный аналог - KT815Г,(можно также - KT817, 805), BD140 - на КТ816Г (можно также КТ814).
Маломощные транзисторы устанавливать на теплоотводы не нужно.

По сути - представлена только схема управления(регулировки) и защиты (рабочий узел). В качестве блока питания я задействовал доработанные компьютерные блоки питания (последовательно соединенные), но можно любой сетевой трансформатор с мощностью 300-400 ватт, во вторичной обмоткой 30-40 Вольт, ток обмотки 10-15 Ампер - это в идеале, но можно трансформаторы и меньшей мощности.
Диодный мост - любой, с током не менее 15 Ампер, напряжение не важно. Можно использовать готовые мосты, стоят они не более 100 руб.
За 2 месяца было собрано и продано свыше 10 таких блоков питания - никаких жалоб. Для себя собрал точно такой БП, и как только я его не мучил - неубиваемый, мощный и очень удобный для любых дел.
Если есть желающие стать владельцем такого БП, то могу сделать под заказ, свяжитесь со мной по адресу

Для настройки, ремонта автоэлектронных и радиотехнических устройств или зарядки аккумуляторных батарей необходимо иметь хороший источник питания.

Использование современной схемотехники и элементной базы позволяют сделать в домашних условиях источник питания, по основным техническим характеристикам не уступающий лучшим промышленным образцам.

Основные требования, которым должен удовлетворять такой источник питания:

  • регулировка напряжения в диапазоне 0 - 25 В;
  • способность обеспечить ток в нагрузке до 7 А при минимальных пульсациях;
  • регулировка срабатывания токовой защиты. Кроме того, срабатывание защиты по току должно быть достаточно быстрым, чтобы исключить повреждение самого источника в случае короткого замыкания на выходе.

Возможность плавно регулировать в источнике питания ограничения тока позволяет при настройке внешних устройств исключить их повреждение. Всем этим требованиям удовлетворяет предлагаемая схема универсального источника питания. Кроме того, данный блок питания позволяет использовать его в качестве источника стабильного тока.

Основные технические характеристики источника питания:

  • плавная регулировка напряжения в диапазоне от 0 до 25 В;
  • напряжение пульсаций, не более 1 мВ;
  • плавная регулировка тока ограничения (защиты) от 0 до 7 А;
  • коэффициент нестабильности по напряжению не хуже 0,001 %/В;
  • коэффициент нестабильности по току не хуже 0,01 %/В;
  • КПД источника не хуже 0,6.

Принципиальная схема

Электрическая схема источника питания, состоит из схемы управления, трансформатора (Т1), выпрямителя (VD4 ч- VD7), силовых регулирующих транзисторов VT3, VT4 и блока коммутации обмоток трансформатора.

Схема управления собрана на двух универсальных операционных усилителях (ОУ), расположенных в одном корпусе, и питается от отдельного трансформатора Т2. Это обеспечивает регулировку выходного напряжения от нуля, а также более стабильную работу всего устройства.

Для облегчения теплового режима работы силовых регулирующих транзисторов применен трансформатор с секционной вторичной обмоткой. Отводы автоматически переключаются в зависимости от уровня выходного напряжения при помощи реле К1, К2. Что позволяет, несмотря на большой ток в нагрузке, применить теплоотвод для VT3 и VT4 сравнительно небольших размеров, а также повысить КПД стабилизатора.

Блок коммутации предназначен для того, чтобы при помощи всего двух реле обеспечить переключение четырех отводов трансформатора, выполняет их включение в следующей последовательности: при превышении выходного напряжения уровня 6,2 В - включается К2; при превышения уровня 15,3 В включается К1(в этом случае с обмоток трансформатора поступает максимальное напряжение).

Указанные пороги задаются используемыми стабилитронами (VD10, VD12). Отключение реле при снижении напряжения выполняется в обратной последовательности, но с гистерезисом примерно 0,3 В, т. е. когда напряжение снизится на это значение ниже чем при включении, что исключает дребезг при переключении обмоток.

Схема управления состоит из стабилизатора напряжения и стабилизатора тока. При необходимости устройство может работать в любом из этих режимов. Режим зависит от сопротивления регуляторов "I" (R21,R22). Стабилизатор напряжения собран на элементах DA3, VT5, VT6.

Рис. 1. Принципиальная схема лабораторного источника питания с регулировкой тока ограничения.

Работает схема стабилизатора следующим образом. Нужное выходное напряжение устанавливается резисторами "грубо" (R9) и "точно" (R10). В режиме стабилизации напряжения сигнал обратной связи по напряжению (-Uoc) с выхода (Х2) через делитель из резисторов R9, RIO, R11 поступает на неинвертирующий вход 2 операционного усилителя DA3.

На этот же вход через резисторы R3, R5, R7 подается опорное напряжение +9 вольт. В момент включения схемы на выходе 12 DA3.1 будет увеличиваться положительное напряжение (оно через транзистор VT5 приходит на управление VT4) до тех пор, пока напряжение на выходных клеммах X1 и Х2 не достигнет установленного резисторами R9, R10 уровня.

За счет отрицательной обратной связи по напряжению, поступающей с выхода Х2 на вход 2 усилителя DA3.1, выполняется стабилизация выходного напряжения источника питания. При этом выходное напряжение будет определяться соотношением:

где Uoп = + 9 В.

Соответственно изменяя сопротивление резисторов R9 "грубо" и R10 "точно", можно менять выходное напряжение (Uвых) от 0 до 25 В. Когда к выходу источника питания подключена нагрузка, в его выходной цепи начинает протекать ток, создающий положительное падение напряжения на резисторе R23 (относительно общего провода схемы).

Это напряжение поступает через резистор R21, R22 в точку соединения R8, R12. Со стабилитрона VD9 через R6, R8 подается опорное отрицательное напряжение - 9 вольт.

Операционный усилитель DA3.2 усиливает разность между ними. Пока разность отрицательная (т. е. выходной ток меньше установленной резисторами R23, R24 величины), на выходе 10 DA3.2 действует + 15 В. Транзистор VT6 будет закрыт и эта часть схемы не оказывает влияния на работу стабилизатора напряжения.

При увеличении тока нагрузки до величины, при которой на входе 7 DA3.2 появится положительное напряжение, на выходе 10 DA3.2 будет отрицательное напряжение и транзистор VT6 приоткроется. В цепи R16, R17, HL1 будет протекать ток, который уменьшит открывающее напряжение на базе регулирующего силового транзистора VT4.

Свечение красного светодиода (HL1) сигнализирует о переходе схемы в режим ограничения тока. В этом случае выходное напряжение источника питания снизится до такой величины, при которой выходной ток будет иметь значение, достаточное для того, чтобы напряжение обратной связи по току (Uoc), снимаемое с резистора R10, и опорное в точке соединения R8, R12, R22 взаимно компенсировались, т. е. появился нулевой потенциал.

В результате выходной ток источника окажется ограниченным на уровне, задаваемым положением движка резисторов R21, R22. При этом ток в выходной цепи будет определяться соотношением:

где Uoп = - 9 В.

Диоды (VD11) на входах операционных усилителей обеспечивают защиту микросхемы от повреждения в случае включения её без обратной связи или при повреждении силового транзистора. В рабочем режиме напряжение на входах ОУ близко к нулю и диоды не оказывают влияния на работу устройства.

Конденсатор С8 ограничивает полосу усиливаемых частот ОУ, что предотвращает самовозбуждение и повышает устойчивость работы схемы.

Настройка

При безошибочном монтаже в схеме узла управления потребуется настроить только максимум диапазона регулировки выходного напряжения 0: 25 В резисторомR7 и максимальный ток защиты 7 А - резистором R8.

Блок коммутации в настройке не нуждается. Необходимо только проверить пороги переключения реле К1, К2 и соответствующее увеличение напряжения на конденсаторе С3.

При работе схемы в режиме стабилизации напряжения светится зеленый светодиод (HL2), а при переходе в режим стабилизации тока - красный (HL1).

Детали

Подстроечные резисторы R7 и R8 - типа СПЗ-19а; переменные резисторы R9, R10, R21, R22 - типа СПЗ-4а или ППБ-1 А; постоянные резисторы R23 - типа С5-16МВ на 5 Вт, остальные из серии МЛТ или С2-23 соответствующей мощности.

Конденсаторы С6, С7, С8, СЮ типа КІО-17, электролитические С1 - С5, С9 типа К50-35 (К50-32). Микросхема DA1 может быть заменена импортным аналогом 78L15; DA2 - на 79L15; DA3 на рА747 или двумя микросхемами 140УД7.

Светодиоды HL1, HL2 подойдут любые с разным цветом свечения. Силовые транзисторы устанавливаются на радиатор площадью около 1000 см^2.

Два силовых транзистора устанавливается параллельно для обеспечения надёжной работы устройства в случае короткого замыкания на выходных клеммах.

В наихудшем случае силовые транзисторы кратковременно должны выдерживать перегрузку по мощности Р = Ubx*I = 25x7= 175 Вт. А один транзистор КТ827А может рассеивать мощность не более 125 Вт. Диоды VD4 - VD7 надо установить на небольшой радиатор.

Реле К1, К2 применены типоразмера R-15 (польского производства) с обмоткой на рабочее напряжение 24 В (сопротивление обмотки 430 Ом) - они за счет бескорпусного исполнения имеют малые габариты и достаточно мощные переключающие контакты. Можно использовать и отечественные реле типа РЭН29 (0001), РЭН32 (0201).

Переключающие напряжение с трансформатора Т1 реле К1 и К2 инерционны и не обеспечивают мгновенное снижение напряжения, приходящего со вторичной обмотки Т1, но они уменьшат тепловую рассеиваемую мощность на силовых транзисторах при длительной работе источника.

Микроамперметр РА1 малогабаритный типа М42303 или аналогичный с внутренним шунтом на ток до 10 А. Для удобства эксплуатации источника питания схему можно дополнить вольтметром, показывающим выходное напряжение.

В качестве сетевого трансформатора Т1 используется промышленный трансформатор типа ТППЗ19-127/220-50. Т2 - типа ТПП259-127/220-50. Трансформатор можно изготовить и самостоятельно на основе промышленного трансформатора мощностью 200 Вт, намотав все обмотки (Т1 и Т2) на одном трансформаторе.

!
Сегодня мы с вами соберем мощнейший лабораторный блок питания. На данный момент он является одним из самых мощных на YouTube.

Все началось с постройки водородного генератора. Для запитки пластин автору понадобился мощный блок питания. Покупать готовый блок типа DPS5020 не наш случай, да и бюджет не позволял. Спустя некоторое время схема была найдена. Позже выяснилось, что этот блок питания настолько универсален, что его можно использовать абсолютно везде: в гальванике, электролизе и просто для запитки различных схем. Сразу пробежимся по параметрам. Входное напряжение от 190 до 240 вольт, выходное напряжение - регулируемое от 0 до 35 В. Выходной номинальный ток 25А, пиковый - свыше 30А. Также, блок имеет автоматическое активное охлаждение в виде кулера и ограничения по току, она же защита от короткого замыкания.

Теперь, что касается самого устройства. На фото вы можете видеть силовые элементы.


От одного взгляда на них захватывает дух, но свой рассказ хотелось бы начать совсем не со схем, а непосредственно с того, от чего приходилось отталкиваться, принимая то или иное решение. Итак, в первую очередь, конструкция ограничена корпусом. Это было очень большим препятствием в построении печатных плат и размещении компонентов. Корпус был куплен самый большой, но все равно его размеры для такого количества электроники малы. Второе препятствие - это размер радиатора. Хорошо, что они нашлись в точности, подходящие под корпус.


Как видим радиаторов тут два, но входе построения объединим в один. Помимо радиатора, в корпусе нужно установить силовой трансформатор, шунт и высоковольтные конденсаторы. Они никак не влазили на плату, пришлось их вынести за пределы. Шунт имеет небольшие размеры, его можно положить на дно. Силовой трансформатор был в наличии только таких размеров:


Остальные раскупили. Его габаритная мощность 3 кВт. Это конечно намного больше чем нужно. Теперь можно переходить к рассмотрению схем и печаток. В первую очередь рассмотрим блок-схему устройства, так будет легче ориентироваться.


Состоит она из блока питания, dc-dc преобразователя, системы плавного пуска и различной периферии. Все блоки не зависят друг от друга, например, вместо блока питания можно заказать готовый. Но мы рассмотрим вариант как сделать все своими руками , а вам уже решать, что купить, а что делать также. Стоит отметить, что необходимо установить предохранители между силовыми блоками, так как при выходе из строя одного элемента, он потащит за собой в могилу остальную схему, а это вылетит вам в копеечку.


Предохранители на 25 и 30А в самый раз, так как это номинальный ток, а выдержать они могут на пару ампер больше.
Теперь по порядку о каждом блоке. Блок питания построен на всеми любимой ir2153.


Также в схему добавлен умощненный стабилизатор напряжения для питания микросхемы. Он запитан от вторичной обмотки трансформатора, параметры обмоток рассмотрим при намотке. Все остальное - это стандартная схема блока питания.
Следующий элемент схемы - это плавный пуск.


Установить его необходимо для ограничения тока зарядки конденсаторов, чтобы не спалить диодный мост.
Теперь самая важная часть блока – dc-dc преобразователь.


Его устройство очень сложное, поэтому углубляться в работу не будем, если интересно подробнее узнать про схему, то изучите самостоятельно.

Настало время переходить к печатным платам. Вначале рассмотрим плату блока питания.


На нее не вместились ни конденсаторы, ни трансформатор, поэтому на плате имеются отверстия для их подключения. Размеры фильтрующего конденсатора подбирайте под себя, так как они бывают разных диаметров.

Далее рассмотрим плату преобразователя. Тут тоже можно немного подогнать размещение элементов. Автору пришлось сместить второй выходной конденсатор вверх, так как он не вмещался. Так же можете добавить еще перемычку, это уже на ваше усмотрение.
Теперь переходим к травлению платы.






Думаю, тут нет ничего сложного.
Осталось запаять схемы и можно проводить тесты. В первую очередь запаиваем плату блока питания, но только высоковольтную часть, чтобы проверить не накосячили ли мы во время разводки. Первое включение как всегда через лампу накаливания.


Как видим, при подключении лампочки, она загорелась, а это значит, что схема без ошибок. Отлично, можно установить элементы выходной цепи, а как известно, туда нужен дроссель. Его придется изготовить самостоятельно. В качестве сердечника используем вот такое желтое кольцо от компьютерного блока питания:


С него необходимо удалить штатные обмотки и намотать свою, проводом 0,8 мм сложенным в две жилы, количество витков 18-20.


Заодно можем намотать дросселя для dc-dc преобразователя. Материалом для намотки являются вот такие кольца из порошкового железа.


В отсутствие такого, можно применить тот же материал, что и в первом дросселе. Одной из важных задач является соблюдение одинаковых параметров для обоих дросселей, так как они будут работать в параллели. Провод тот же – 0,8 мм, количество витков 19.
После намотки, проверяем параметры.


Они в принципе совпадают. Далее запаиваем плату dc-dc преобразователя. С этим проблем возникнуть не должно, так как номиналы подписаны. Тут все по классике, сначала пассивные компоненты, потом активные и в последнюю очередь – микросхемы.
Настало время заняться подготовкой радиатора и корпуса. Радиаторы соединим между собой двумя пластинками вот таким образом:


На словах это все хорошо, надо бы заняться делом. Сверлим отверстия под силовые элементы, нарезаем резьбу.




Сам же корпус тоже немного подправим, отломав лишние выступы и перегородки.

Когда все готово, приступаем к креплению деталей на поверхность радиатора, но так как фланцы активных элементов имеют контакт с одним из выводов, то необходимо их изолировать от корпуса подложками и шайбами.

Крепить будем на винты м3, а для лучшей термо передачи воспользуемся не высыхающей термопастой.
Когда разместили на радиаторе все греющиеся части, запаиваем на плату преобразователя ранее не установленные элементы, а также припаиваем провода для резисторов и светодиодов.

Теперь можно тестировать плату. Для этого подадим напряжение от лабораторного блока питания в районе 25-30В. Проведем быстрый тест.


Как видим, при подключении лампы идет регулировка по напряжению, а также ограничения по току. Отлично! И эта плата тоже без косяков.

Тут же можно настроить температуру срабатывания кулера. С помощью подстроечного резистора производим калибровку.
Сам же термистор нужно закрепить на радиаторе. Осталось намотать трансформатор для блока питания на вот таком гигантском сердечнике:


Перед намоткой необходимо рассчитать обмотки. Воспользуемся специальной программой (ссылку на нее найдете в описании под видеороликом автора, пройдя по ссылке «Источник»). В программе указываем размер сердечника, частоту преобразования (в данном случае 40 кГц). Также указываем количество вторичных обмоток и их мощность. Силовая обмотка на 1200 Вт, остальные на 10 Вт. Также нужно указать каким проводом будут мотаться обмотки, жмем кнопку «Рассчитать», тут нет ничего сложного, думаю разберетесь.


Посчитали параметры обмоток и начинаем изготовление. Первичка в один слой, вторичка в два слоя с отводом от середины.


Изолируем все с помощью термоскотча. Тут по сути стандартная намотка импульсника.
Все готово к установке в корпус, осталось разместить периферийные элементы на лицевой стороне таким образом:


Сделать это можно довольно просто, лобзиком и дрелью.

Теперь самая трудная часть - разместить все внутри корпуса. В первую очередь соединяем два радиатора в один и закрепляем его.
Соединение силовых линий будем проводить вот такой 2-ух миллиметровой жилой и проводом сечением 2,5 квадрата.

Также возникли некие проблемы с тем, что радиатор занимает всю заднюю крышку, и там невозможно вывести провод. Поэтому выводим его сбоку.


На этом все, сборка завершена. Перед закрытием крышки проводим тестовое включение.


Блок завелся, теперь закрываем верхнюю крышку и идем тестировать. Для теста сначала воспользуемся лампочками накаливания на 36В 100Вт.


Как видим, блок держит их без труда. Данный вольтамперметр, который купил автор, не может измерить максимальный ток блока даже шунтом, хоть и написано на сайте, что с шунтом может измерять до 50А. Не совершайте такую же ошибку и возьмите себе стрелочный амперметр - надежнее будет. А по поводу проверки - не переживайте, сейчас вы убедитесь в том, что максимальный ток устройства свыше 25А. Для этого воспользуемся предохранителем на 25А и пустим его в короткое замыкание.


Его просто плавит, а это значит, что ток тут больше 25 ампер. Также попробуем плавить различные предметы.




Скрепка, шайба и даже шило - ничто не устояло перед мощью данного блока.


Благодарю за внимание. До новых встреч!

Видео:

Для настройки или ремонта радиотехнических устройств необходимо иметь несколько источников питания. У многих дома уже есть такие устройства, но, как правило, они имеют ограниченные эксплуатационные возможности (допустимый ток нагрузки до 1 А, а если и предусмотрена токовая защита, то она инерционна или без возможности регулировать - триггерная). В общем такие источники по своим техническим характеристикам не могут конкурировать с промышленными блоками питания. Приобретать же универсальный лабораторный промышленный источник довольно дорого.

Использование современной схемотехники и элементной базы позволяют сделать в домашних условиях источник питания, по основным техническим характеристикам не уступающий лучшим промышленным образцам. При этом он может быть простым в изготовлении и настройке.

Основные требования, которым должен удовлетворять такой источник питания: регулировка напряжения в диапазоне 0...30 В; способность обеспечить ток в нагрузке до 3 А при минимальных пульсациях; регулировка срабатывания токовой защиты. Кроме того, срабатывание защиты по току должно быть достаточно быстрым, чтобы исключить повреждение самого источника в случае короткого замыкания на выходе.

Возможность плавно регулировать в источнике питания ограничения тока позволяет при настройке внешних устройств исключить их повреждение.

Всем этим требованиям удовлетворяет предлагаемая ниже схема универсального источника питания. Кроме того, данный блок питания позволяет использовать его в качестве источника стабильного тока (до 3 А).

Основные технические характеристики источника питания:

плавная регулировка напряжения в диапазоне от 0 до 30 В;

напряжение пульсации при токе 3 А не более 1 мВ;

плавная регулировка тока ограничения (защиты) от 0 до 3 А;

коэффициент нестабильности по напряжению не хуже 0,001%/В;

коэффициент нестабильности по току не хуже 0,01%/В;

КПД источника не хуже 0,6.

Электрическая схема источника питания, рис. 4.10, состоит из схемы управления (узел А1), трансформатора (Т1), выпрямителя (VD5...VD8), силового регулирующего транзистора VT3 и блока коммутации обмоток трансформатора (А2).

Схема управления (А1) собрана на двух универсальных операционных усилителях (ОУ), расположенных в одном корпусе, и питается от отдельной обмотки трансформатора. Это обеспечивает регулировку выходного напряжения от нуля, а также более стабильную работу всего устройства. А для облегчения теплового режима работы силового регулирующего транзистора применен трансформатор с секционированной вторичной обмоткой. Отводы автоматически переключаются в

зависимости от уровня выходного напряжения при помощи реле К1, К2. Что позволяет, несмотря на большой ток в нагрузке, применить теплоотвод для VT3 небольших размеров, а также повысить КПД стабилизатора.

Блок коммутации (А2), чтобы при помощи всего двух реле обеспечить переключение четырех отводов трансформатора, выполняет их включение в следующей последовательности: при превышении выходного напряжения уровня 7,5 В - включается К1; при превышения уровня 15 В включается К2; при превышении 22 В-отключается К1 (в этом случае с обмоток трансформатора поступает максимальное напряжение). Указанные пороги задаются используемыми стабилитронами (VD11...VD13). Отключение реле при снижении напряжения выполняется в обратной последовательности, но с гистерезисом примерно 0,3 В, т.е. когда напряжение снизится на это значение ниже чем при включении, что исключает дребезг при переключении обмоток.

Схема управления (А1) состоит из стабилизатора напряжения и стабилизатора тока. При необходимости устройство может работать в любом из этих режимов. Режим зависит от положения регулятора "I" (R18).

Стабилизатор напряжения собран на элементах DA1.1-VT2-VT3. Работает схема стабилизатора следующим образом. Нужное выходное напряжение устанавливается резисторами "грубо" (R16) и "точно" (R17). В режиме стабилизации напряжения сигнал обратной связи по напряжению (-Uoc) с выхода (Х2) через делитель из резисторов R16-R17-R7 поступает на неинвертирующий вход операционного усилителя DA1/2. На этот же вход через резисторы R3-R5-R7 подается опорное напряжение +9 В. В момент включения схемы на выходе DA1/12 будет увеличиваться положительное напряжение (оно через транзистор VT2 приходит на управление VT3) до тех пор, пока напряжение на выходных клеммах Х1-Х2 не достигнет установленного резисторами R16-R17 уровня. За счет отрицательной обратной связи по напряжению, поступающей с выхода Х2 на вход усилителя DA1/2, выполняется стабилизация выходного напряжения источника питания.

Каждый начинающий радиолюбитель нуждается в лабораторном блоке питания. Чтобы правильно его сделать, нужно подобрать подходящую схему, а с этим обычно возникает много проблем.

Виды и особенности блоков питания

Встречаются два типа блоков питания:

  • Импульсный;
  • Линейный.

Блок импульсного типа может рождать помехи, которые буду отражаться на настройке приемников и других передатчиков. Блок питания линейного типа может оказаться неспособным для выдачи необходимой мощности.

Как правильно сделать лабораторный блок питания, от которого можно будет заряжать АКБ, и питать, чувствительны платы схем? Если взять простой блок питания линейного типа на 1,3-30 В, и мощностью тока не более 5 А, то получится хороший стабилизатор напряжения и тока.


Воспользуемся классической схемой для сборки блока питания своими руками. Она сконструирована на стабилизаторах LM317, которые регулируют напряжение в диапазоне 1,3-37В. Их работа совмещена с транзисторами КТ818. Это мощные радиодетали, которые способны пропустить большой ток. Защитную функцию схемы обеспечивают стабилизаторы LM301.

Эта схема разработана достаточно давно, и периодически модернизировалась. На ней появилось несколько диодных мостов, а измерительная головка получила не стандартный метод включения. На замену транзистору MJ4502 пришел менее мощный аналог – КТ818. Так же появились фильтрующие конденсаторы.

Монтаж блока своими руками

При очередной сборке, схема блока получила новую интерпретацию. В конденсаторах выходного типа увеличилась емкость, а для защиты были добавлены несколько диодов.

Транзистор типа КТ818 был в этой схеме неподходящим элементом. Он сильно перегревался, и часто приводил к поломке. Ему нашли замену более выгодным вариантом TIP36C, в схеме он имеет параллельное подключение.


Поэтапная настройка

Изготовленный лабораторный блок питания своими руками нуждается в поэтапном включении. Первоначальный запуск проходит с отключенными LM301 и транзисторами. Далее проверяется функция регулирующая напряжение через регулятор Р3.

Если напряжение регулируется хорошо, тогда в схему включаются транзисторы. Их работа тогда будет хорошей, когда несколько сопротивлений R7,R8 начнут балансировать цепь эмиттера. Нужны такие резисторы, чтобы их сопротивление было на максимально низком уровне. При этом тока должно хватать, иначе в Т1 и Т2 его значения будут различаться.

Этот этап регулировки позволяет подсоединять нагрузку к выходному концу блока питания. Следует стараться избегать короткого замыкания, иначе транзисторы тут же перегорят, а вслед за ними стабилизатор LM317.


Дальнейшим шагом буде монтаж LM301. Сперва, нужно удостовериться, что на операционном усилителе в 4 ножке имеется -6В. Если на ней присутствует +6В, то возможно имеется неправильное подключение диодного моста BR2.

Так же подключение конденсатора С2 может быть неверным. Проведя осмотр и исправив дефекты монтажа, можно на 7 ножку LM301 давать питание. Это допустимо делать с выхода блока питания.

На последних этапах настраивается Р1, так чтобы он мог работать на максимальном рабочем токе БП. Лабораторный блок питания с регулировкой напряжения отрегулировать не так сложно. В этом деле лучше лишний раз перепроверить монтаж деталей, чем получить КЗ с последующей заменой элементов.

Основные радиоэлементы

Чтобы собрать мощный лабораторный блок питания своими руками, нужно приобрести подходящие компоненты:

  • Для питания потребуется трансформатор;
  • Несколько транзисторов;
  • Стабилизаторы;
  • Операционный усилитель;
  • Несколько разновидностей диодов;
  • Электролитические конденсаторы – не более 50В;
  • Резисторы разных типов;
  • Резистор Р1;
  • Предохранитель.

Номинал каждой радиодетали необходимо сверять со схемой.


Блок в конечном виде

Для транзисторов необходимо подобрать подходящий радиатор, который сможет рассеивать тепло. Более того, внутри монтируется вентилятор, для охлаждения диодного моста. Еще один устанавливается на внешнем радиаторе, который будет обдувать транзисторы.

Для внутренней начинки желательно подобрать качественный корпус, так как вещь получилась серьезной. Все элементы следует хорошо зафиксировать. На фото лабораторного блока питания, можно заметить, что на замену стрелочным вольтметрам пришли цифрового устройства.

Фото лабораторного блока питания