Батареи с высоким кпд. Применение в повседневной жизни. Устройство солнечных модулей

Солнечной панелью принято считать источник электрической энергии, который работает непосредственно от светового потока. Если говорить о конструктивном исполнении, любая гелиопанель представляет определенный набор фотоячеек, соединенных между собой, помещенных в защитный корпус и закрытых передней панелью из стекла.

Что собой представляет фотоячейка

Фотоячейка является полупроводниковым элементом, который объединяет в себе два типа проводимости, отличающиеся недостатком или избытком электронов:

  • n — проводимость;
  • p — проводимость.

Она состоит из двух полупроводников, в которых электроны исходного материала поглощают энергию, получаемую из солнечного потока, что придает им дополнительный импульс. Покидая свою орбиту, направленный поток электронов генерирует постоянный фототок, который и используется в практических целях.

Применение в повседневной жизни

Сфера применения подобных устройств очень широка и охватывает различные отрасли, среди которых можно отметить следующие направления:

  • Микроэлектроника (часы, калькуляторы).
  • Электроника, используемая в быту (внешние аккумуляторы для смартфонов, планшетов, ноутбуков).
  • Обеспечение электроэнергией как отдельно стоящих зданий, так и удаленных районов.
  • Использование в передвижных средствах связи и различных комплексах.
  • Автомобильная промышленность (электромобили).
  • Космическая отрасль (космические станции).

Преимущества использования

Среди прочих альтернативных источников энергии солнечные панели обладают рядом неоспоримых преимуществ, а именно:

  • Являются энергонезависимым источником энергии, не нуждаются в сложном обслуживании и замене агрегатных узлов или соединений. Максимальный уход заключается в очистке стеклянного покрытия от возникающих загрязнений.
  • Работают независимо, не требуют коммутирующих включений и выключений и всегда находятся в рабочем состоянии. Также отличаются бесшумностью действия и абсолютно экологически безопасны.
  • Небольшой период окупаемости.
  • Срок службы приравнивается к 25 годам, при этом в процессе работы не происходит снижения мощности элементов. По заявлениям производителей, снижение выходной мощности должно быть не более 5%.
  • При их использовании существует возможность конфигурирования конечной установки в зависимости от требуемой мощности и напряжения, что проблематично осуществить с другими источниками энергии.

Виды используемых устройств

Как уже было сказано, все они имеют в своем составе фотоэлементы, которые могут быть представлены следующими полупроводниками:

Кремниевые гелиопанели

В настоящее время для производства фотоячеек используется монокристаллический, поликристаллический и аморфный кремний.

  • Из монокристаллического кремния. Как видно из названия, основным материалом в данных приборах считается очищенный кремний. По внешнему виду они выполнены в виде пчелиных сот, соединенных в единую структуру. Конструктивно очищенный монокристаллический кремний представляет собой тончайшие пластины (до 300 микрон), связанные электродной сеткой. Главным преимуществом признана их высокая эффективность, которая может составлять до 20%.
  • Поликристаллические элементы. Подобные виды значительно дешевле предыдущего варианта в связи с более простой технологией изготовления (охлаждения кремниевой субстанции). Заметим, что образование внутри поликристаллов приводит к тому, что стабильность работы становится значительно ниже, а показатели конечного коэффициента полезного действия не превышают 18%.
  • Гелиопанели из аморфного кремния. Можно отнести как к пленочным, так и к кремниевым, так как основным полупроводниковым материалом в них является силан (или кремневодород). Тонкая пленка силана наносится на специально подготовленную подожку, которая и образует фотоячейку. Не смотря на то, что КПД составляет всего порядка 5%, данный тип нашел широкое применение. Фотоячейки обладают хорошим светопоглощением, благодаря чему несмотря на малый КПД, способны работать при отсутствии прямого солнца и в пасмурную погоду. В связи с этим применяют сочетание монокристаллических (или поликристаллических) ячеек с аморфными, так как сборные секции способны работать в любых погодных условиях.

Пленочные гелиопанели

Бывают двух видов:

  • На основе теллурида кадмия. Имеют низкий КПД (до 10%) и ядовитое вещество в своем составе, но не смотря на это низкая стоимость обуславливает их популярность. На основе селенида меди-индия. Основные материалы, применяемые для создания ячеек – медь, селен и индий. Также являются достаточно дешевыми, однако имеют эффективность порядка 20%.
  • Полимерные. В настоящий момент являются более популярными в связи с их дешевизной и доступностью. В качестве полупроводников используется полифенилен или фталоцианин меди. Эффективность составляет всего 5%, однако в связи с их доступностью, легкостью установки и монтажа, а также экологической безопасностью, они применяются не только в промышленных, но и в бытовых целях.

Эффективность работы

В самом начале, еще на этапе появления солнечных батарей на рынке, коэффициент полезного действия был достаточно невелик, но на сегодняшний момент их производительность поднялась на довольно высокий уровень. Сейчас для монокристаллических кремниевых батарей она доходит до 24%, для поликристаллических – 20%, кремниевых тонкопленочных – 15%, а для тонкопленочных на основе арсенида галлия – 24%. Для многослойных гелиопанелей КПД доходит до 30%.

Если обратиться к производителям подобных устройств, то лучшие солнечные батареи с высоким КПД представлены следующими компаниями:

  • Панели, созданные институтом Soitec & Fraunhofer Institute на сегодняшний день являются лидером по эффективности использования. КПД достигает невероятных 46%, однако ввиду колоссальной стоимости они используются только в научно-космической сфере.
  • Компания Sharp — безусловный лидер с 55-ти летним стажем. Выпускают солнечные батареи практически для всех отраслей, начиная от калькуляторов и заканчивая космическими станциями. Сейчас КПД производимых ими солнечных панелей доходит до 19.8%. В своих разработках компании удалось достигнуть производительности в 44,4%, однако эти технологии сейчас крайне дорогостоящие и не предлагаются на рынке.
  • На третьем месте испанский институт IES (Spanish solar research institute). Им удалось добиться эффективности в 32,6%.

Однако вернемся на землю, цифры выше – из области высоких технологий, которые пока недоступны для использования для коммерческих или жилых объектов. При выборе гелиосистемы для дома – самые эффективные солнечные панели из тех, что Вы сможете найти на рынке, вряд ли превысят КПД в 20%. Со своей стороны можем порекомендовать Вам обратить внимание на таких производителей как Amonix, Sun Power, SunTech Power, Q-Cells, Sanyo и First Solar.

Как правильно рассчитать количество гелиопанелей

Для того чтобы определиться с количеством устанавливаемых батарей в быту, необходимо принимать во внимание следующие факторы:

  • Рассчитать необходимое количество электроэнергии в доме.
  • В зависимости от местоположения (региона) уточнить уровень солнечной радиации в течение года. Как правило, данные имеются у местных метеорологических служб.
  • Рассчитать мощность в сутки. При этом необходимо учитывать потери на зарядку аккумулятора (не более 20%) – W.
  • С учетом летних и зимних коэффициентов получить мощность (выработку) одной секции в сутки N, при этом летний поправочный коэффициент – 0,5, зимний – 0,7.
  • Разделив W на N, получим необходимое количество батарей, требуемых для обеспечения потребности в электроэнергии.

При расчете можно прикинуть, что для регионов средней полосы России количество необходимых панелей, обеспечивающих требуемую электроэнергию, в зимний период в несколько раз больше, чем летом.

При этом на выработку влияет не только мощность отдельной секции, но и угол ее наклона, наличие или отсутствие поворотных приводов и концентрирующих устройств. В любом случае, при недостаточной выработке электроэнергии количество секций можно увеличить, что поможет решить проблему.

Повышение эффективности работы солнечных панелей

С учетом того, что их коэффициент полезного действия достаточно низок, перед производителями, как и перед пользователями остро стоит проблема его повышения. Эффективность работы солнечных батарей зависит от множества факторов, потому для увеличения КПД и производительности следует придерживаться основных пунктов:

  • Правильный выбор материала. В отличие от поликристаллических моделей, индий-галлиевые или же ячейки из кадмий-теллура способны значительно повысить производительность.
  • Правильное расположение поверхности секции под прямым углом к световому потоку, что достигается установкой специальных приводов и датчиков, реагирующих на направление света.
  • Как и для любого другого прибора, перегрев крайне опасен, потому вместе с установкой панелей необходимо предусмотреть систему их вентиляции и охлаждения.
  • Исключить падение тени от стоящих неподалеку высоких объектов, так как это может понизить производительность установки в несколько раз.
  • Условия эксплуатации, правильное и своевременное обслуживание всех узлов, входящих в состав управления панелями (приводы, контроллеры, инверторы, аккумуляторы и прочее).

Конечно, установка гелиопанелей не решит полностью проблему по автономному питанию необходимым количеством электроэнергии, но поможет поднять ее выработку для запитки хотя бы части электроприборов.

Рекордсменом по КПД среди солнечных батарей, из числа так или иначе доступных на рынке сегодня, являются, разработанные Институтом гелиоэнергетических систем Общества имени Фраунгофера в Германии, солнечные батареи на базе многослойных фотоэлементов. Начиная с 2005 года, их коммерческим внедрением занимается компания Soitec.

Размер самих фотоэлементов не превышает 4 миллиметра, а фокусировка солнечного света на них достигается путем применения вспомогательных концентрирующих линз, благодаря которым насыщенный солнечный свет преобразуется в электричество с КПД достигающим 47%.

Батарея содержит четыре p-n перехода, чтобы четыре различные звена фотоэлемента могли эффективно принимать и преобразовывать излучение с конкретной длиной волны, из солнечного света, сконцентрированного в 297,3 раза, в диапазоне длин волн от инфракрасного до ультрафиолетового.

Исследователи под руководством Франка Димирота изначально поставили перед собой задачу вырастить многослойный кристалл, и решение было найдено, - они срастили подложки для выращивания, и в результате был получен кристалл с различными полупроводниковыми слоями, с четырьмя фотоэлектрическими подъячейками.

Многослойные фотоэлементы давно используются на космических аппаратах, но теперь на их основе запущены и солнечные станции уже в 18 странах. Это становится возможным благодаря совершенствованию и удешевлению технологии. В итоге, количество стран, снабженных новыми солнечными станциями, будет расти, и налицо тенденция к конкуренции на рынке промышленных солнечных батарей.

На втором месте - солнечные батареи на базе трехслойных фотоэлементов Sharp, КПД которых достиг 44,4%. Фосфид индия-галлия - первый слой фотоэлемента, арсенид галлия - второй, арсенид индия-галлия - третий слой. Три слоя разделены диэлектриком, который служит для достижения туннельного эффекта.

Концентрация света на фотоэлемент достигается благодаря линзе Френеля, как и у немецких разработчиков, - свет солнца концентрируется в 302 раза, и преобразуется трехслойным полупроводниковым фотоэлементом.

Научные исследования по развитию этой технологии непрерывно велись Sharp, начиная с 2003 года при поддержке NEDO - японской организации общественного управления, содействующей научным исследованиям и развитию, а также распространению промышленных, энергетических и экологических технологий. К 2013 году Sharp был достигнут рекорд в 44,4%.

За два года до Sharp, в 2011 году, американская компания Solar Junction уже выпустила аналогичные батареи, но с КПД 43,5%, элементы которых обладали размером 5 на 5 мм, и фокусировка также производилась линзами, концентрируя свет солнца в 400 раз. Фотоэлементы были трехпереходными на основе германия, и группа планировала даже создать пяти и шестипереходные фотоэлементы, чтобы лучше захватить спектр. Исследования ведутся компанией и по сей день.

Таким образом, максимально рекордным КПД обладают солнечные батареи, выполненные в сочетании с концентраторами, которые, как мы видим, производят и в Европе, и в Азии, и в Америке. Но эти батареи в основном изготавливаются для постройки наземных солнечных электростанций крупных масштабов и для эффективного электроснабжения космических аппаратов.

Недавно был поставлен рекорд в сфере обычных потребительских солнечных панелей, которые доступны большинству желающих снабдить ими, например, крышу дома.

В середине осени 2015 года компания Илона Маска «SolarCity» представила наиболее эффективные потребительские солнечные панели, КПД которых превышает 22%.

Этот показатель подтвердили замеры, проведенные лабораторией Renewable Energy Test Center. Завод в Баффало уже ставит план производства на каждый день - от 9 до 10 тысяч солнечных панелей, точные характеристики которых пока не сообщаются. Компания уже планирует снабжать своими батареями не менее 200000 домов ежегодно.

Дело в том, что оптимизированный технологический процесс позволил предприятию значительно снизить стоимость производства, при этом повысив КПД в 2 раза по сравнению с широко распространенными потребительскими кремниевыми солнечными панелями. Маск уверен, что именно его солнечные панели будут пользоваться наибольшей популярностью у домовладельцев в ближайшем будущем.

Дата добавления: 30.04.2015

В наше время возобновляемая энергетика, особенно где используется солнечная энергия, развивается очень интенсивно. В связи с этим продолжается активный поиск способов и устройств, повышение продуктивности существующих систем, позволяющих максимально эффективно преобразовать энергию солнца в электричество. Тут можно выделить два направления - прямое преобразование солнечного излучения в электрический ток, и многократное преобразование солнечной энергии - в тепло, далее в механическую работу, а потом в электричество. Пока во втором направлении достигнуты более высокие результаты - промышленные гелиоустановки с концентраторами, турбинами или двигателями Стирлинга показывают отличную продуктивность преобразования солнечной энергии. Так, на эксплуатирующейся в в Нью-Мексико гелиостанции с солнечными концентраторами и двигателями Стирлинга получен КПД на выходе, с учетом расходов энергии на систему ориентации и прочее - 31,25 %.

Но подобные гелиоустановки чрезвычайно сложные и дорогие, эффективны в условиях очень высокой солнечной инсоляции и пока достаточного развития в мире не получили. Поэтому прямые преобразователи солнечного излучения - солнечные батареи , занимают лидирующее положение в мире солнечной энергетики по инсталляциям и спектру применения. Продуктивность серийных промышленных солнечных панелей на сегодняшнее время, в зависимости от технологии, находится в диапазоне от 7 до 20%. Технологии не стоят на месте, развиваются и совершенствуются, уже разрабатываются и тестируются новые ячейки, по крайней мере, вдвое продуктивнее существующих. Попробуем вкратце рассмотреть основные направления развития фотоэлектрических панелей, технологий и их продуктивности.

Подавляющее большинство ячеек солнечных преобразователей современных серийных фотомодулей изготавливается из монокристаллического (C-Si), или поликристаллического (МС-Si) кремния. На сегодняшний день такие кремниевые фотоэлектрические модули занимают около 90% рынка фотоэлектрических преобразователей, из которых примерно 2/3 приходится на поликристаллический кремний и 1/3 — на монокристаллический. Далее идут солнечные модули, фотоэлементы которых изготовлены по тонкопленочной технологии - методом осаждения, или напыления фоточувствительных веществ на различные подложки. Существенное преимущество модулей из этих элементов - более низкая стоимость продукции, ведь для их требуется примерно в 100 раз меньше материала по сравнению с кремниевыми пластинами. И пока что меньше всего представлены многопереходные солнечные элементы из так называемых тандемных, или многопереходных ячеек (multijunction cells).

Доли рынка фотоэлектрических панелей различных технологий:

Кремниевые кристаллические фотомодули .

КПД ячеек кремниевых модулей на сегодня порядка 15 - 20% (поликристаллы - монокристаллы). Этот показатель в целом скоро может быть увеличен на несколько процентов. Например, компания SunTech Power, один из крупнейших мировых производителей модулей из кристаллического кремния, заявила о своем намерении в течении ближайшей пары лет выпустить на рынок фотомодули с КПД 22%. Существующие же лабораторные образцы монокристаллических ячеек показывают производительность 25%, поликристаллических - 20,5%. Теоретический максимальный КПД у кремниевых однопереходных (p-n) элементов - 33,7%. Пока он не достигнут, и основная задача производителей, кроме увеличения эффективности ячеек - усовершенствование технологии производства, удешевление фотомодулей.

Отдельно позиционируются фотомодули компании Sanyo, произведенные по технологии HIT (Heterojunction with Intrinsic Thin layer) с использованием нескольких слоев кремния, аналогично тандемным многослойным ячейкам. КПД таких элементов из монокристаллического C-Si и нескольких слоев нано кристаллического nc-Si - 23%. Это самый высокий на сегодня показатель КПД ячеек серийных кристаллических модулей, своего рода нано солнечные батареи.

Тонкопленочные солнечные батареи эффективность.

Под этим названием подразумевается несколько различных технологий, о производительности которых вкратце расскажем. В настоящее время существует три основных типа неорганических пленочных солнечных элементов - кремниевые пленки на основе аморфного кремния (a-Si), пленки на основе теллурида кадмия (CdTe) и пленки селенида меди-индия-галлия (CuInGaSe2, или CIGS). КПД современных тонкопленочных солнечных батарей на основе аморфного кремния около 10%, фотомодулей на основе теллурида кадмия - 10-11% (компания First Solar), на основе селенида меди-индия-галлия - 12-13% (японские солнечные модули SOLAR FRONTIER). Показатели эффективности пред серийных элементов: CdTe имеют КПД 15.7% (модули MiaSole), а CIGS элементов 18,7% (ЕМРА). КПД отдельных тонкопленочных солнечных батарей значительно выше, например, данные по производительности лабораторных образцов элементов из аморфного кремния - 12,2% (компания United Solar), CdTe элементов - 17,3% (First Solar), CIGS элементов - 20,5% (ZSW). Пока солнечные преобразователи на основе тонких пленок аморфного кремния лидируют по объемам производства среди других тонкопленочных технологий - объем мирового рынка тонкопленочных Si элементов около 80%, солнечных ячеек на основе теллурида кадмия - около 18% рынка, и селенид меди-индия-галлия - 2% рынка. Это связано, в первую очередь, со стоимостью и доступностью сырья, а так же более высокой стабильностью характеристик, чем в многослойных структурах. Ведь кремний - один из самых распространенных элементов в земной коре, индий же (элементы CIGS) и теллур (элементы CdTe) рассеяны и добываются в малом количестве. Кроме того, кадмий (элементы CdTe) токсичен, хотя все производители таких солнечных модулей гарантируют полную утилизацию своей продукции. Так же процесс деградации в элементах тонкопленочных модулей протекает быстрее кристаллических ячеек. Дальнейшее развитие фотоэлектрических преобразователей на основе неорганических тонких пленок связано с усовершенствованием технологии производства и стабилизации их параметров.

К тонкопленочным солнечным батареям относятся также органические/полимерные тонкопленочные светочувствительные элементы и сенсибилизированные красители. В этом направлении коммерческое применение солнечных элементов пока ограничено, все находится в лабораторной стадии, а так же в совершенствовании технологии будущего серийного производства. Ряд источников заявил о достижении КПД элементов на органических преобразователях больше 10%: немецкая компания Heliatek -10,7%, университета Калифорнии UCLA - 10,6%. Группа ученых из лаборатории в EPFL получила КПД 12,3% ячеек из сенсибилизированных красителей. Вообще направление органических тонкопленочных элементов, а так же светочувствительных красителей считается одним из перспективных. Регулярно делаются заявления о достижении очередного рекорда эффективности, выходе технологий за стены лабораторий, покрытии в скором времени всех доступных поверхностей высокоэффективными и дешевыми солнечными преобразователями - компании Konarka, Dyesol, Solarmer Energy. Работы сосредоточены над повышением стабильности характеристик, удешевлением технологий.

Многопереходные (многослойные, тандемные) солнечные панели характеристики.

Ячейки из таких элементов содержат слои различных материалов, образовывающие несколько p-n переходов. Идеальный солнечный элемент в теории должен иметь сотни различных слоев (p-n переходов), каждый из которых настроен на небольшой диапазон длин волн света во всем спектре, от ультрафиолетового до инфракрасного. Каждый переход поглощает солнечное излучение с определенной длиной волны, таким образом, охватывая весь спектр. Основным материалом для таких элементов являются соединения галлия (Ga) - фосфид индия галлия, арсенид галлия, и др.

Одним из частных решений преобразования всего солнечного спектра является применение призм, разлагающих солнечный свет на спектры, концентрирующиеся на однопереходных элементах с различным диапазоном преобразования излучения. Не смотря на то, что исследования в области многопереходных солнечных элементов продолжаются уже два десятилетия, и фотомодули из таких ячеек успешно работают в космосе (солнечные батареи станции «Мир», марсоходов «Mars Exploration Rover» и др.), их практическое земное использование начато сравнительно недавно. Первые коммерческие продукты на таких элементах вышли на рынок несколько лет назад и показали отличный результат, а исследования в этом направлении постоянно приковывают к себе внимание. Дело в том, что теоретический КПД двухслойных ячеек может составить 42% эффективности, трехслойных ячеек 49%, а ячеек с бесконечным количеством слоев - 68% не фокусированного солнечного света. Предел продуктивности ячеек с бесконечным количеством слоев составляет 86,8% при применении концентрированного солнечного излучения. На сегодня практические результаты КПД для многопереходных ячеек составляют порядка 30% при не сфокусированном солнечном свете. Этого недостаточно, чтобы компенсировать затраты на производство таких ячеек - стоимость многопереходной ячейки примерно в 100 раз выше аналогичной по площади кремниевой, поэтому в конструкциях модулей из многопереходных ячеек применяются концентраторы для фокусировки света в 500 - 1000 раз. Концентратор в виде линзы Френеля и параболического зеркала собирает солнечный свет с площади, в 1000 раз превышающей площадь ячейки. Полная стоимость фотомодулей из многопереходных ячеек с применением концентраторов (СРV) значительно удешевляется за счет недорогих линз и подложек, компенсируя высокую стоимость производства самой ячейки. При этом производительность ячеек возрастает до 40%.


Солнечные батареи характеристики. Например, КПД ячеек компании SolFocus размером 5,5 мм х 5,5 мм составляет 40% при применении концентраторов; а средние размеры ячеек в СРV системах имеют размеры в диапазоне от 5,5 мм х 5,5 мм до 1 см х 1 см. При чем для производства 1см? ячеек необходима 1/1000 сырья в сравнении с ячейкой аналогичной продуктивности из кристаллического кремния. Чтобы многопереходные ячейки работали с максимальной эффективностью, необходима постоянная высокая интенсивность солнечного излучения, для этого применяются двухосевые системы ориентации СРV систем. Местами развертывания солнечных ферм на базе модулей из многопереходных ячеек с концентраторами являются регионы с высокой солнечной инсоляцией.

Максимальный КПД многопереходных ячеек, полученный в лабораторных условиях c применением концентраторов, составляет на сегодня 43,5% (Solar Junction), и по прогнозам, будет увеличен в ближайших пару лет до 50%.

Как видим, на сегодня существуют солнечные ячейки с высокой продуктивностью, изготавливаемые по различным технологиям, и основная задача производителей - удешевление конечного продукта, адаптация лабораторных исследований для массового производства. Не смотря на малый расход сырья в тонкопленочных солнечных элементах, стоимость некоторых компонентов в разных видах довольно высокая, так же, как энергоемки сами технологии производства. Остается под вопросом долговременная стабильность параметров. Пока еще очень дорогими являются многопереходные солнечные ячейки, для максимальной эффективной работы которых к тому же необходима повышенная концентрация солнечного излучения. Поэтому кристаллические кремниевые элементы в ближайшее время будут удерживать лидирующие позиции на рынке фотоэлектрических преобразователей, снижаясь в цене. Потеснят их только эффективные и дешевые тонкопленочные модули, возможно, из полимерных полупроводников, или светочувствительных красителей. Но прогнозы в развитии той, или иной технологии - дело не благодарное. Поживем - увидим.

В последнее время солнечная энергетика развивается столь бурными темпами

В последнее время солнечная энергетика развивается столь бурными темпами, что за 10 лет доля солнечного электричества в мировой годовой выработке электроэнергии увеличилась с 0.02% в 2006 году до почти одного процента в 2016 году.


Dam Solar Park - самая большая СЭС в мире. Мощность 850 мегаватт.

Основным материалом для солнечных электростанций является кремний, запасы которого на Земле практически неистощимы. Одна беда – эффективность кремниевых солнечных батарей оставляет желать лучшего. Самые эффективные солнечные батареи имеют коэффициент полезного действия, не превышающий 23%. А средний показатель эффективности колеблется от 16% до 18%. Поэтому исследователи всего мира, занятые в области солнечной фотовольтаики, работают на тем, чтобы освободить солнечные фотопреобразователи от имиджа поставщика дорогого электричества.

Развернулась настоящая борьба за создание солнечной суперячейки. Основные критерии – высокая эффективность и низкая стоимость. Национальная лаборатория возобновляемых источников энергии (NREL) в США даже выпускает периодически бюллетень, в котором отражаются промежуточные результаты этой борьбы. И в каждом выпуске показываются победители и проигравшие, аутсайдеры и выскочки, случайно ввязавшиеся в эту гонку.

Лидер: солнечная многослойная ячейка

Эти гелиевые преобразователи напоминают сэндвич из разных материалов, в том числе из перовскита, кремния и тонких пленок. При этом каждый слой поглощает свет только определенной длины волны. В результате эти при равной площади рабочей поверхности многослойные гелиевые ячейки вырабатывают значительно больше энергии, чем другие.

Рекордное значение эффективности многослойных фотопреобразователей было достигнуто в конце 2014 года совместной немецко-французской группой исследователей под руководством доктора Франка Димрота во Фраунгоферовском институте систем солнечной энергии. Была достигнута эффективность в 46%. Такое фантастическое значение эффективности было подтверждено независимым исследованием в NMIJ/AIST - крупнейшем метрологическом центре Японии.


Многослойная солнечная ячейка. Эффективность – 46%

Эти ячейки состоят из четырех слоев и линзы, которая концентрирует на них солнечный свет. К недостаткам следует отнести наличие в структуре субстрата германия, который несколько увеличивает стоимость солнечного модуля. Но все недостатки многослойных ячеек в конечном счете устранимы, и исследователи уверены, что в самом ближайшем будущем их разработка выйдет из стен лабораторий в большой мир.

Новичок года - перовскит

Совершенно неожиданно в гонку лидеров вмешался новичок – перовскит. Перовскит – это общее название всех материалов, имеющих определенную кубическую структуру кристаллов. Хотя перовскиты известны давно, исследование солнечных ячеек, изготовленных из этих материалов, началось только в период с 2006 по 2008 годы. Первоначальные результаты были разочаровывающими: эффективность перовскитных фотопреобразователей не превышала 2%. При этом расчеты показывали, что этот показатель может быть на порядок выше. И действительно, после ряда успешных экспериментов корейские исследователи в марте 2016 года получили подтвержденную эффективность 22%, что само по себе уже стало сенсацией.


Перовскитный солнечный элемент

Преимуществом перовскитных элементов является то, что с ними более удобно работать, их легче производить, чем аналогичные кремниевые элементы. При массовом производстве перовскитных фотопреобразователей цена одного ватта электроэнергии могла бы достигнуть $0.10. Но специалисты считают, что до тех пор, пока перовскитные гелиевые ячейки достигнут максимальной эффективности и начнут выпускаться в промышленном количестве, стоимость «кремниевого» ватта электричества может быть существенно снижена и достигнуть того же уровня в $0.10.

Экспериментально: квантовые точки и органические солнечные ячейки

Эта разновидность солнечных фотопреобразователей пока находится на ранней стадии развития и пока не может рассматриваться как серьезный конкурент существующим гелиевым ячейкам. Тем не менее разработчик – Университет Торонто – утверждает, что согласно теоретическим расчетам, эффективность солнечных батарей на базе наночастиц – квантовых точек ‒ будет выше 40%. Суть изобретения канадских ученых состоит в том, что наночастицы – квантовые точки ‒ могут поглощать свет в различных диапазонах спектра. Изменяя размеры этих квантовых точек, можно будет выбрать оптимальный диапазон работы фотопреобразователя.


Солнечная ячейка на базе квантовых точек

А учитывая, что этот нанослой может наноситься методом распыления на любую, в том числе и прозрачную основу, то в практическом применении этого открытия просматриваются многообещающие перспективы. И хотя на сегодняшний день в лабораториях при работе с квантовыми точками достигнут показатель эффективности, равный всего11.5%, сомнений в перспективности этого направления нет ни у кого. И работы продолжаются.

Solar Window – новые солнечные ячейки с эффективностью 50%

Компания Solar Window из штата Мэриленд (США) представила революционную технологию «солнечного стекла», которая в корне меняет традиционные представления о солнечных батареях.

Ранее уже были сообщения о прозрачных гелиевых технологиях, а также о том, что эта компания обещает увеличить в разы эффективность солнечных модулей. И, как показали последние события, это были не просто обещания, а эффективность 50% - уже не только теоретические изыски исследователей компании. В то время как другие производители только выходят на рынок с более скромными результатами, Solar Window уже представила свои поистине революционные высокотехнологичные разработки в области гелиевой фотовольтаики.

Эти разработки открывают дорогу к выпуску прозрачных солнечных батарей, имеющих значительно более высокую эффективность по сравнению с традиционными. Но это не единственный плюс новых солнечных модулей из Мэриленда. Новые гелиевые элементы могут легко крепиться к любым прозрачным поверхностям (например, к окнам), могут работать в тени или при искусственном освещении. Благодаря своей дешевизне инвестиции в оснащение здания такими модулями могут окупиться в течение года. Для сравнения следует отметить, что срок окупаемости традиционных солнечных батарей колеблется от пяти до десяти лет, а это – огромная разница.



Солнечные ячейки от компании Solar Window

Компания Solar Window озвучила некоторые детали новой технологии получения солнечных батарей, имеющих столь высокую эффективность. Разумеется, главные know how остались за скобками. Все гелиевые элементы изготовлены, в основном, из органического материала. Слои элементов состоят из прозрачных проводников, углерода, водорода, азота и кислорода. По данным компании, производство этих солнечных модулей настолько безвредно, что оно оказывает в 12 раз меньшее воздействие на окружающую среду, чем производство традиционных гелиевых модулей. В течение ближайших 28 месяцев первые прозрачные солнечные батареи будут установлены в некоторых зданиях, школах, офисах, а также в небоскребах.

Если говорить о перспективах развития гелиевой фотовольтаики, то очень похоже, что традиционные кремниевые солнечные батареи могут отойти в прошлое, уступив место высокоэффективным, легким, многофункциональным элементам, открывающим самые широкие горизонты гелиевой энергетике. опубликовано

Много путаницы сегодня существует вокруг понятия кпд гелиосистемы, что является важным критерием их стоимости. Понятие кпд солнечных батарей означает процент падающего на панель солнечного света, преобразованного в электричество, с дальнейшей возможностью использования. Разные материалы для солнечных панелей создают различный кпд, даже одинаковые компании – производители имеют различный показатель эффективности преобразования. Повышение кпд является лучшим способом снизить затраты на солнечную энергию.

КПД солнечной батареи зависит от чистоты пластин, которые используются в качестве сырья при изготовлении. Кроме того, очень важно, является ли панель монокристаллического или поликристаллического вида. Большинство крупных компаний концентрирует свои усилия именно на повышении эффективности, для сокращения расходов в беспощадном использовании солнечной энергетики.

Рассмотрим общий диапазон кпд солнечных батарей, исходя из разных типов элементов и различных технологий.

Бывают следующих - поликристаллического или монокристаллического кремния. Мульти-солнечные батареи имеют более низкую эффективность, чем батареи из монокристаллических элементов.

Кпд солнечной батареи может варьироваться от 12% до 20% для обычного монокристаллического кремния. В обычно устанавливаемых, расчетный кпд составляет 15% и зависит от вида исполнения самого кремния. Одни из мировых производителей постоянно повышают эффективность для того, чтобы снизить свои издержки и опередить соперников в этой конкурентной индустрии. Другие дают максимальную эффективность кристаллических солнечных элементов, используя крупные масштабы производства.

Поликристаллические фотоэлементы имеют более низкую стоимость, чем монокристаллические и кпд в диапазоне 14-17%.

Тонкопленочная технология, в отличие от углерод – кремниевых материалов, имеет ряд преимуществ.

Аморфные кремниевые технологии С-Si имеют самый низкий средний коэффициент эффективности, но они наиболее дешевые.

Наибольший потенциал в повышении эффективности имеют медь-индий-галлий-сульфидные (CIGS) и кадмий - теллур (Cd-Te). Многие изготовители продвигают вперед разработку этой технологии и представляют один из наиболее высоких показателей эффективности своих моделей, увеличив его на 19%. Они достигли этого значения, используя несколько методов, в том числе – применение отражающих покрытий, которые могут захватить больше света от угла.

Если обосновывать зависимость не от материала, а от габаритных размеров, то, чем выше эффективность, тем меньше необходимая площадь рабочей поверхности батарей.

Хотя средний процент может показаться немного низким, можно легко изменить оснащение, именно при установке, с достаточной мощностью, чтобы покрыть потребности в энергии.

Факторы, влияющие на кпд солнечных массивов, включают в себя:

Ориентация поверхности монтажа
Крыша в идеале должна смотреть на юг, но и качество дизайна зачастую может компенсировать другие направления.

Угол наклона
Высота и наклон поверхности может повлиять на количество часов солнечного света, полученных в среднем за день в течение года. Крупные коммерческие системы имеют системы солнечного слежения, которая автоматически изменяет угол падения луча солнца в течение дня. Обычно не используется для жилых установок.

Температура
Большинство панелей при эксплуатации нагреваются. Таким образом, обычно должны быть установлены несколько выше уровня крыши, для обеспечения достаточного потока охлаждаемого воздуха.

Тень
В принципе, тень - враг солнечной энергии.При выборе неудачного дизайна при монтировании, даже небольшое количество тени на одной панели может закрыть производство энергии на всех других элементах.Перед тем, как разработать систему, проводится детальный анализ затенения поверхности крепления, для выявления возможных форм тени и солнечного света в течение года. Затем проводится другой детальный анализ, проверяющий сделанные выводы.

Обычные солнечные батареи с высоким кпд гелиосистем промышленных масштабов устанавливаются на сваи над поверхностью земли на 80см, расположены по направления с востока на запад, вдоль движения солнца, под углом 25 градусов.