Свойства сетей с коммутацией каналов. Что такое коммутация каналов

Лекция 6. Коммутация каналов и коммутация пакетов. Часть 1

Рассматриваются и сравниваются основные подходы к решению задачи коммутации: коммутация пакетов, каналов и сообщений.

Ключевые слова: коммутация каналов, коммутация пакетов, непрерывный составной физический канал, соединение, резервирование пропускной способности, отказ в обслуживании, низкий уровень задержки, синхронность передачи, голосовой трафик, пакеты, заголовки, адреса, независимая маршрутизация, коммутатор, буферизация, случайные задержки, пульсирующий трафик, качество обслуживания.

Разные подходы к выполнению коммутации

В общем случае решение каждой из частных задач коммутации – определение потоков и соответствующих маршрутов, фиксация маршрутов в конфигурационных параметрах и таблицах сетевых устройств, распознавание потоков и передача данных между интерфейсами одного устройства, мультиплексирование/демультиплексирование потоков и разделение среды передачи – тесно связано с решением всех остальных. Комплекс технических решений обобщенной задачи коммутации в совокупности составляет базис любой сетевой технологии. От того, какой механизм прокладки маршрутов, продвижения данных и совместного использования каналов связи заложен в той или иной сетевой технологии, зависят ее фундаментальные свойства.

Среди множества возможных подходов к решению задачи коммутации абонентов в сетях выделяют два основополагающих:

    коммутация каналов (circuit switching);

    коммутация пакетов (packet switching).

Внешне обе эти схемы соответствуют приведенной на рис. 6.1 структуре сети, однако возможности и свойства их различны.

Сети с коммутацией каналов имеют более богатую историю, они произошли от первых телефонных сетей. Сети с коммутацией пакетов сравнительно молоды, они появились в конце 60-х годов как результат экспериментов с первыми глобальными компьютерными сетями. Каждая из этих схем имеет свои достоинства и недостатки, но по долгосрочным прогнозам многих специалистов, будущее принадлежит технологии коммутации пакетов, как более гибкой и универсальной.

Рис. 6.1. Общая структура сети с коммутацией абонентов.

Коммутация каналов

При коммутации каналов коммутационная сеть образует между конечными узлами непрерывный составной физический канал из последовательно соединенных коммутаторами промежуточных канальных участков. Условием того, что несколько физических каналов при последовательном соединении образуют единый физический канал, является равенство скоростей передачи данных в каждом из составляющих физических каналов. Равенство скоростей означает, что коммутаторы такой сети не должны буферизовать передаваемые данные.

В сети с коммутацией каналов перед передачей данных всегда необходимо выполнить процедуру установления соединения, в процессе которой и создается составной канал. И только после этого можно начинать передавать данные.

Например, если сеть, изображенная на рис. 6.1, работает по технологии коммутации каналов, то узел 1, чтобы передать данные узлу 7, сначала должен передать специальный запрос на установление соединения коммутатору А, указав адрес назначения 7. Коммутатор А должен выбрать маршрут образования составного канала, а затем передать запрос следующему коммутатору, в данном случае Е. Затем коммутатор Е передает запрос коммутатору F, а тот, в свою очередь, передает запрос узлу 7. Если узел 7 принимает запрос на установление соединения, он направляет по уже установленному каналу ответ исходному узлу, после чего составной канал считается скоммутированным, и узлы 1 и 7 могут обмениваться по нему данными.

Рис. 6.2. Установление составного канала.

Техника коммутации каналов имеет свои достоинства и недостатки.

Достоинства коммутации каналов

    Постоянная и известная скорость передачи данных по установленному между конечными узлами каналу. Это дает пользователю сети возможности на основе заранее произведенной оценки необходимой для качественной передачи данных пропускной способности установить в сети канал нужной скорости.

    Низкий и постоянный уровень задержки передачи данных через сеть. Это позволяет качественно передавать данные, чувствительные к задержкам (называемые также трафиком реального времени) – голос, видео, различную технологическую информацию.

Недостатки коммутации каналов

      Отказ сети в обслуживании запроса на установление соединения. Такая ситуация может сложиться из-за того, что на некотором участке сети соединение нужно установить вдоль канала, через который уже проходит максимально возможное количество информационных потоков. Отказ может случиться и на конечном участке составного канала – например, если абонент способен поддерживать только одно соединение, что характерно для многих телефонных сетей. При поступлении второго вызова к уже разговаривающему абоненту сеть передает вызывающему абоненту короткие гудки – сигнал "занято".

      Нерациональное использование пропускной способности физических каналов. Та часть пропускной способности, которая отводится составному каналу после установления соединения, предоставляется ему на все время, т.е. до тех пор, пока соединение не будет разорвано. Однако абонентам не всегда нужна пропускная способность канала во время соединения, например в телефонном разговоре могут быть паузы, еще более неравномерным во времени является взаимодействие компьютеров. Невозможность динамического перераспределения пропускной способности представляет собой принципиальное ограничение сети с коммутацией пакетов, так как единицей коммутации здесь является информационный поток в целом.

      Обязательная задержка перед передачей данных из-за фазы установления соединения.

Достоинства и недостатки любой сетевой технологии относительны. В определенных ситуациях на первый план выходят достоинства, а недостатки становятся несущественными. Так, техника коммутации каналов хорошо работает в тех случаях, когда нужно передавать только трафик телефонных разговоров. Здесь с невозможностью "вырезать" паузы из разговора и более рационально использовать магистральные физические каналы между коммутаторами можно мириться. А вот при передаче очень неравномерного компьютерного трафика эта нерациональность уже выходит на первый план.

Коммутация пакетов

Эта техника коммутации была специально разработана для эффективной передачи компьютерного трафика. Первые шаги на пути создания компьютерных сетей на основе техники коммутации каналов показали, что этот вид коммутации не позволяет достичь высокой общей пропускной способности сети. Типичные сетевые приложения генерируют трафик очень неравномерно, с высоким уровнем пульсации скорости передачи данных. Например, при обращении к удаленному файловому серверу пользователь сначала просматривает содержимое каталога этого сервера, что порождает передачу небольшого объема данных. Затем он открывает требуемый файл в текстовом редакторе, и эта операция может создать достаточно интенсивный обмен данными, особенно если файл содержит объемные графические включения. После отображения нескольких страниц файла пользователь некоторое время работает с ними локально, что вообще не требует передачи данных по сети, а затем возвращает модифицированные копии страниц на сервер – и это снова порождает интенсивную передачу данных по сети.

Коэффициент пульсации трафика отдельного пользователя сети, равный отношению средней интенсивности обмена данными к максимально возможной, может достигать 1:50 или даже 1:100. Если для описанной сессии организовать коммутацию канала между компьютером пользователя и сервером, то большую часть времени канал будет простаивать. В то же время коммутационные возможности сети будут закреплены за данной парой абонентов и будут недоступны другим пользователям сети.

При коммутации пакетов все передаваемые пользователем сообщения разбиваются в исходном узле на сравнительно небольшие части, называемые пакетами. Напомним, что сообщением называется логически завершенная порция данных – запрос на передачу файла, ответ на этот запрос, содержащий весь файл и т.д. Сообщения могут иметь произвольную длину, от нескольких байт до многих мегабайт. Напротив, пакеты обычно тоже могут иметь переменную длину, но в узких пределах, например от 46 до 1500 байт. Каждый пакет снабжается заголовком, в котором указывается адресная информация, необходимая для доставки пакета на узел назначения, а также номер пакета, который будет использоваться узлом назначения для сборки сообщения (рис. 6.3). Пакеты транспортируются по сети как независимые информационные блоки. Коммутаторы сети принимают пакеты от конечных узлов и на основании адресной информации передают их друг другу, а в конечном итоге – узлу назначения.

Коммутаторы пакетной сети отличаются от коммутаторов каналов тем, что они имеют внутреннюю буферную память для временного хранения пакетов, если выходной порт коммутатора в момент принятия пакета занят передачей другого пакета (рис. 6.3). В этом случае пакет находится некоторое время в очереди пакетов в буферной памяти выходного порта, а когда до него дойдет очередь, он передается следующему коммутатору. Такая схема передачи данных позволяет сглаживать пульсацию трафика на магистральных связях между коммутаторами и тем самым наиболее эффективно использовать их для повышения пропускной способности сети в целом.

Действительно, для пары абонентов наиболее эффективным было бы предоставление им в единоличное пользование скоммутированного канала связи, как это делается в сетях с коммутацией каналов. В таком случае время взаимодействия этой пары абонентов было бы минимальным, так как данные без задержек передавались бы от одного абонента другому. Простои канала во время пауз передачи абонентов не интересуют, для них важно быстрее решить свою задачу. Сеть с коммутацией пакетов замедляет процесс взаимодействия конкретной пары абонентов, так как их пакеты могут ожидать в коммутаторах, пока по магистральным связям передаются другие пакеты, пришедшие в коммутатор ранее.

Рис. 6.3. Разбиение сообщения на пакеты.

Тем не менее, общий объем передаваемых сетью компьютерных данных в единицу времени при технике коммутации пакетов будет выше, чем при технике коммутации каналов. Это происходит потому, что пульсации отдельных абонентов в соответствии с законом больших чисел распределяются во времени так, что их пики не совпадают. Поэтому коммутаторы постоянно и достаточно равномерно загружены работой, если число обслуживаемых ими абонентов действительно велико. На рис. 6.4 показано, что трафик, поступающий от конечных узлов на коммутаторы, распределен во времени очень неравномерно. Однако коммутаторы более высокого уровня иерархии, которые обслуживают соединения между коммутаторами нижнего уровня, загружены более равномерно, и поток пакетов в магистральных каналах, соединяющих коммутаторы верхнего уровня, имеет почти максимальный коэффициент использования. Буферизация сглаживает пульсации, поэтому коэффициент пульсации на магистральных каналах гораздо ниже, чем на каналах абонентского доступа – он может быть равным 1:10 или даже 1:2.

    Данные нарезаются порциями - пакетами, каждый из которых обрабатывается коммутаторами независимо

    Каждый пакет содержит адрес назначения и адрес отправителя

    Не требуется предварительной процедуры установления соединения

Рис. 6.4. Сглаживание пульсаций трафика в сети с коммутацией пакетов.

Более высокая эффективность сетей с коммутацией пакетов по сравнению с сетями с коммутацией каналов (при равной пропускной способности каналов связи) была доказана в 60-е годы как экспериментально, так и с помощью имитационного моделирования. Здесь уместна аналогия с мультипрограммными операционными системами. Каждая отдельная программа в такой системе выполняется дольше, чем в однопрограммной системе, когда программе выделяется все процессорное время, пока ее выполнение не завершится. Однако общее число программ, выполняемых за единицу времени, в мультипрограммной системе больше, чем в однопрограммной.

Сеть с коммутацией пакетов замедляет процесс взаимодействия конкретной пары абонентов, но повышает пропускную способность сети в целом.

Задержки в источнике передачи:

    время на передачу заголовков;

    задержки, вызванные интервалами между передачей каждого следующего пакета.

Задержки в каждом коммутаторе:

    время буферизации пакета;

    время коммутации, которое складывается из:

      времени ожидания пакета в очереди (переменная величина);

      времени перемещения пакета в выходной порт.

Достоинства коммутации пакетов

    Высокая общая пропускная способность сети при передаче пульсирующего трафика.

    Возможность динамически перераспределять пропускную способность физических каналов связи между абонентами в соответствии с реальными потребностями их трафика.

Недостатки коммутации пакетов

    Неопределенность скорости передачи данных между абонентами сети, обусловленная тем, что задержки в очередях буферов коммутаторов сети зависят от общей загрузки сети.

    Переменная величина задержки пакетов данных, которая может быть достаточно продолжительной в моменты мгновенных перегрузок сети.

    Возможные потери данных из-за переполнения буферов.

В настоящее время активно разрабатываются и внедряются методы, позволяющие преодолеть указанные недостатки, которые особенно остро проявляются для чувствительного к задержкам трафика, требующего при этом постоянной скорости передачи. Такие методы называются методами обеспечения качества обслуживания (Quality of Service, QoS).

Сети с коммутацией пакетов, в которых реализованы методы обеспечения качества обслуживания, позволяют одновременно передавать различные виды трафика, в том числе такие важные как телефонный и компьютерный. Поэтому методы коммутации пакетов сегодня считаются наиболее перспективными для построения конвергентной сети, которая обеспечит комплексные качественные услуги для абонентов любого типа. Тем не менее, нельзя сбрасывать со счетов и методы коммутации каналов. Сегодня они не только с успехом работают в традиционных телефонных сетях, но и широко применяются для образования высокоскоростных постоянных соединений в так называемых первичных (опорных) сетях технологий SDH и DWDM, которые используются для создания магистральных физических каналов между коммутаторами телефонных или компьютерных сетей. В будущем вполне возможно появление новых технологий коммутации, в том или ином виде комбинирующих принципы коммутации пакетов и каналов.

Коммутация сообщений

Коммутация сообщений по своим принципам близка к коммутации пакетов. Под коммутацией сообщений понимается передача единого блока данных между транзитными компьютерами сети с временной буферизацией этого блока на диске каждого компьютера. Сообщение в отличие от пакета имеет произвольную длину, которая определяется не технологическими соображениями, а содержанием информации, составляющей сообщение.

Транзитные компьютеры могут соединяться между собой как сетью с коммутацией пакетов, так и сетью с коммутацией каналов. Сообщение (это может быть, например, текстовый документ, файл с кодом программы, электронное письмо) хранится в транзитном компьютере на диске, причем довольно продолжительное время, если компьютер занят другой работой или сеть временно перегружена.

По такой схеме обычно передаются сообщения, не требующие немедленного ответа, чаще всего сообщения электронной почты. Режим передачи с промежуточным хранением на диске называется режимом "хранения-и-передачи" (store-and-forward).

Режим коммутации сообщений разгружает сеть для передачи трафика, требующего быстрого ответа, например трафика службы WWW или файловой службы.

Количество транзитных компьютеров обычно стараются уменьшить. Если компьютеры подключены к сети с коммутацией пакетов, то число промежуточных компьютеров уменьшается до двух. Например, пользователь передает почтовое сообщение своему серверу исходящей почты, а тот сразу старается передать его серверу входящей почты адресата. Но если компьютеры связаны между собой телефонной сетью, то часто используется несколько промежуточных серверов, так как прямой доступ к конечному серверу может быть в данный момент невозможен из-за перегрузки телефонной сети (абонент занят) или экономически невыгоден из-за высоких тарифов на дальнюю телефонную связь.

Техника коммутации сообщений появилась в компьютерных сетях раньше техники коммутации пакетов, но потом была вытеснена последней, как более эффективной по критерию пропускной способности сети. Запись сообщения на диск занимает достаточно много времени, и кроме того, наличие дисков предполагает использование в качестве коммутаторов специализированных компьютеров, что влечет за собой существенные затраты на организацию сети.

Сегодня коммутация сообщений работает только для некоторых не оперативных служб, причем чаще всего поверх сети с коммутацией пакетов, как служба прикладного уровня.

Вариант 1

1. Какой способ коммутации наиболее распространен сегодня в компьютерных сетях?

    коммутация каналов

    коммутация пакетов

    коммутация сообщений

2. Какие свойства относятся к сетям с коммутацией пакетов?

    гарантированная пропускная способность (полоса) для взаимодействующих абонентов

3. Какая из перечисленных ниже технологий основана на коммутации пакетов?

    телефонные сети

Вариант 2

1. Какие из перечисленных ниже свойств сетей с коммутацией каналов являются их

недостатками?

    обязательная задержка перед передачей данных из-за фазы установления соединения

    постоянная и известная скорость передачи данных по установленному между конечными узлами каналу

    возможность отказа сети в обслуживании запроса на установление соединения

    низкий и постоянный уровень задержки передачи данных через сеть

2. Какие свойства характерны для сетей с коммутацией каналов?

    адрес используется только на этапе установления соединения

    каждая порция данных снабжается адресом

    сеть может отказать абоненту в установлении соединения

3. Используется ли буферизация в сетях с коммутацией каналов?

    всегда, на каждом промежуточном узле

    нет, никогда

    иногда, при большой загрузке сети

Вариант 3

1. Какие из перечисленных ниже свойств сетей с коммутацией пакетов негативно

сказываются на передаче мультимедийной информации?

    возможность динамически перераспределять пропускную способность физических каналов связи между абонентами в соответствии с реальными потребностями их трафика

    неопределенность скорости передачи данных между абонентами сети, обусловленная зависимостью задержек в очередях буферов коммутаторов сети от общей загрузки сети

    переменная величина задержки пакетов данных, которая может быть достаточно продолжительной в моменты мгновенных перегрузок сети

    возможные потери данных из-за переполнения буферов

2. Какие свойства относятся к сетям с коммутацией каналов?

    сеть всегда готова принять данные от абонента

    ресурсы сети используются эффективно при передаче пульсирующего трафика

    пропускная способность сети для абонентов неизвестна, задержки передачи носят случайный характер

    трафик реального времени передается без задержек

3. Какой элемент сети с коммутацией каналов может отказать запрашивающему узлу в

установлении составного канала? допускается использовать исключительно в образовательных целях . Запрещается тиражирование информационных ресурсов с целью

  • Допускается использовать исключительно в образовательных целях запрещается тиражирование информационных ресурсов (4)

    Учебное пособие

    допускается использовать исключительно в образовательных целях . Запрещается тиражирование информационных ресурсов с целью извлечения коммерческой выгоды, а также иное...

  • Допускается использовать исключительно в образовательных целях запрещается тиражирование информационных ресурсов (5)

    Список учебников

    В телекоммуникационной библиотеке и представленные в виде цитат, допускается использовать исключительно в образовательных целях . Запрещается тиражирование информационных ресурсов с целью извлечения коммерческой выгоды, а также иное...

  • Допускается использовать исключительно в образовательных целях запрещается тиражирование информационных ресурсов (3)

    Учебное пособие

    В телекоммуникационной библиотеке и представленные в виде цитат, допускается использовать исключительно в образовательных целях . Запрещается тиражирование информационных ресурсов с целью извлечения коммерческой выгоды, а также иное...

  • ) подключен с помощью терминального устройства (Т), который отправляет информацию в сеть с одинаковой скорость. Эта скорость равна канала. Если возникают ситуации, когда пользователь передает объемы информации меньшей пропускной способности канала, то Терминальное устройство заполняет пустоту пустыми данными. Это показано на рис.2.

    Рисунок 2

    О том, что часть информации есть фактично дополнена пустотой знает и Терминальное устройство получателя, который откидывает дополненную информацию.

    Установка соединения

    Для обмена информацией сначала нужно установить соединение через . Во время установки соединение могут возникнуть Допустим два объекта А и В хотят обменяться данными (см.рис.1). Для начала нужно отправить запрос в коммутационную сеть, где объект указывает адрес объекта В. Задачей посылки запроса — сделать соединение между объектами информационным каналом, характеристики которого похожи на непрерывной связи, то есть на всем протяжении времени установленного соединения данные передаются с одинаковой скоростью и объемом. Это значит, что в транзитных коммутаторах нету нужды буферизировать информацию объектов.

    Для создания соединения запрос должен пройти через чреду коммутаторов, которые лежат на канале от А к В, и убедится что все отрезки пути в данный момент свободны.

    Отказ в установлении соединения

    Единственным положительным моментом такого соединения, это то что уровень задержки минимальный и передавать реального времени /(голос, видео) будет очень удобным.
    Негативные моменты, это то что каждая физическая линия всегда передает данные с одинаковой скоростью что есть неэффективно. Да и использование ресурсов также не эффективно как показано на рис.1. Решение проблем коммутации каналов есть мультиплексирование.

    Коммутация пакетов

    Алгоритм коммутации пакетов была специально сделана для эффективного обмена компьютерного трафика. Когда объект передает коммутированные пакеты, то данные разбиваются в начальном узле на небольшие части, которые называются кадры. Каждому пакету дается заголовок , в котором пишется адрес доставки. На рис.3 показано разбиение потока данных на пакеты. Еще одним дополнительным полем которое добавляется в конец пакета это концевик . Туда помещается контрольная сумма , которая разрешает проверить, была ли изменена информация при передачи или нет.

    Рисунок 3

    Пакеты попадает в сеть без предварительного резервирования каналов сети и не с заданной наперед скоростью , как это реализовано в сетях с коммутацией. А передается в темпе котором генерирует источник. Предполагается, что сеть с коммутацией пакетов всегда готова принять пакет от объекта в отличии сети с коммутацией каналов.

    Схема резервирования пропускной характеристики может применяться и в пакетных сетях. Но, основная идея такого резервирования в корне отличатеся от идеи резервирования пропускной характеристики в сетях с коммутацией каналов. Разница в том, что пропускная характеристика канала сети с коммутацией пакетов может динамически меняться между информационными линиями связи в зависимости от текущих задач каждого канала, чего не может реализовать техника коммутации каналов.

    Коммутация каналов

    При коммутации каналов такая сеть реализует между конечными узлами постоянный цельный физических канал из последовательных соединенных промежуточных участков с помощью коммутатора. Главным условием такого канала, является одинаковая скорость передачи данных на каждом из участков. Равенство определяет то, что коммутаторы такой сети не должны буферизовать транспортируемые данные. На рис.4 видна сеть работающая по технологии коммутации каналов. Для того, что бы узел 1 мог передать данные узлу 7, сначала должен поступить специальных запрос на реализацию соединения коммутатору А, указав адрес назначения 7. Коммутатор А должен обозначить маршрут составного канала, а потом передать запрос следующему коммутатору, на рис. это коммутатор Е. Затем коммутатор Е передает коммутатору F запрос, а тот уже передает его узлу 7. Узел 7 принимает запрос на установку соединения, и потом он уже по назначенному маршруту отвечает изначальному узлу.

    Рисунок — 4

    Плюсы коммутации каналов:

    • Известная и постоянная скорость передачи информации по установленному каналу
    • Постоянный и низкий уровень задержки транспортировки информации через сеть

    Недостатки коммутации каналов:

    • Нерациональная реализация пропускной способности физических каналов. Передача информации может быть неравномерная, и выделенный канал может простаивать
    • Обязательная задержка перед транспортировкой информации из-за установки соединения

    Плюсы и минусы любой сетевой технологии относительны, так как в разных ситуациях плюсы могут выступать минусами и наоборот.

    Рисунок — 5

    Сравнение способов коммутации:

    Динамическая и постоянная коммутация

    Сети с динамической коммутацией:

    • разрешается реализовывать соединение по инициативе пользователя этой сети
    • коммутация реализуется только на период сеанса связи, а потом по инициативе пользователя разрывается
    • Пользователь может реализовывать соединение с любым пользователем сети
    • Время установки соединения между парой пользователей может быть от пары секунд до нескольких часов и завершается после завершение работы — передачи файлов и тд

    Примеры таких сетей это , локальные сети или TCP/IP.

    Сети с постоянной коммутации:

    • Дает возможность паре пользователей заказать соединение на большой период времени
    • Соединение создается специальным персоналом, которые обслуживают сеть, а не пользователями
    • Режим постоянной коммутации в сетях с коммутацией каналов называют сервисом выделенных (dedicated) или арендуемых (leased) каналов

    Самые популярные сети в постоянной коммутации являются SDH.

    Способы коммутации и маршрутизации информации в сети. Глобальные сети в своем развитии прошли три этапа:

    I. 60-е годы. Использование существующей телефонной сети.

    Две АбС могли взаимодействовать между собой подключаясь к международной телефонной сети (ТС) посредством модема путем набора необходимого телефонного номера

    Основные характеристики:

    • Управление взаимодействием осуществлялось программно.
    • Использовался асинхронный режим взаимодействия.
    • Максимальная скорость передачи 800 бит/сек.
    • Достоинство: повсеместная распространенность телефонной сети обеспечивает универсальную доступность для передачи данных.
    • Недостатки: жесткая скорость передачи данных. Если машина требует меньшей скорости передачи, то возможности канала не используются. Если большей - то телефонный канал не мог ее удовлетворить.

    II.70-е годы. Появление сети передачи данных.

    Две АбС взаимодействуют между собой посредством сети передачи данных Подсоединение абонентской системы к сети (рис.10) выполняется через коммутируемую телефонную линию посредством модема (в исключительных случаях - через выделенную линию).

    Основные характеристики:

    • Управление взаимодействием осуществляется посредством одной из АсС.
    • Сеть позволяла использовать синхронный режим передачи (в условиях выделенных линий). МАХ скорость передачи 64 Кбит/сек (по выделенным линиям).
    • Узлы предназначены для коммутации и маршрутизации цифровой информации поступающей по выделенным каналам и имеют следующую структуру, представленную
    • Достоинства: Относительно большая скорость передачи данных.
    • Недостатки: Отсутствует возможность передавать по одним и тем же каналам данные и речь.

    III. 80-е - 90-е годы. Создание сетей общего пользования , отвечающих модели взаимодействия открытых систем (OSI).

    Основные характеристики:

    • Любая ЭВМ подключается к сети передачи через интерфейс (шлюз), обеспечивающей согласование результатных данных. По одной и той же сети могут быть переданы данные и речь.
    • Одной из основных характеристик узла сети передачи данных является коммутация и маршрутизация информации. Сущность ее заключается в выборе Узлом Связи последовательности каналов, по которым следует передать пакеты (блоки, на которые делится массив информации перед передачей). представлен пример коммутации информации. Здесь представлен узел КС, связывающий абонентские системы А (передающие) с абонентскими системами В (получающие).
    • Программному обеспечению узла необходимо решить, в каком порядке и по каким каналам направить эти пакеты абонентам В. Об этом процессе говорят, что в узле происходит коммутация информации. Существует два способа коммутации информации: коммутация каналов и коммутация пакетов. В первом случае (коммутация каналов) коммутация физического канала осуществляется предварительно один раз согласно схеме При коммутации каналов предварительно путем посылки определенного сигнала устанавливается связь абонента А с абонентом В, который с помощью сигнала обратной связи сообщает о готовности принять сообщение. После этого абонент А начинает передавать данные. Время передачи данных зависит от длины передаваемого сообщения, пропускной способности канала (время передачи данных) и времени распространения сигнала по каналу. В момент передачи ни одна из частей канала не может быть использована другой АбС.
    • Метод коммутации каналов прост, но имеет ряд существенных недостатков:
    • Время организации линии для передачи информации достаточно велико.

    Нерациональное использование каналов связи. Во время сеанса между двумя абонентами могут быть большие паузы, однако каналы связи между этими абонентами в период пауз заняты другими не могут быть. Низкая достоверность передачи информации. Это связано с тем, что данные, передаваемые по последовательности каналов, нигде не проверяются. Стремление устранить эти недостатки привело к созданию метода коммутации пакетов. Сущность заключается в том, что здесь каждый пакет имеет адрес назначения и самостоятельно передается через подсеть. При использовании этого метода в узле проверяется адрес пакета и по каждому из них принимается решение по какому очередному каналу его передавать. Здесь ни одна пара абонентов во время сеанса взаимодействия не занимает монопольно ни одного канала.

    Метод коммутации пакетов имеет ряд существенных преимуществ:

    • Эффективное использование каналов связи за счет разделения времени работы каналов между различными парами абонентов (мультиплексирование потоков данных). Процесс мультиплексирования данных
    • Высокая достоверность передаваемой информации. Достигается за счет выполнения проверки каждого пакета всеми узлами сети.
    • Почти мгновенное предоставление возможности передачи информации (не нужно ожидать пока освободятся каналы, образующие путь от Аб-отправителя к Аб-получателю.

    Метод коммутации каналов при всех своих недостатках имеет одно преимущество перед коммутацией пакетов. Оно заключается в том, что при монопольном владении каналами все пакеты проходят путь за одно и то же время. При коммутации пакетов из-за пиковых нагрузок в узлах могут возникать некоторые задержки. Учитывая указанное преимущество метода коммутации каналов в настоящее время происходит модернизация метода коммутации пакетов. Его разрабатывают комплексным, обеспечивающим как коммутацию каналов, так и коммутацию пакетов. Такие сети получили название дискретных сетей с интегральным сервисом. Дискретными эти сети называются потому, что по ним передаются дискретные сигналы. Интегральный сервис означает, что каждая такая сеть в будущем заменит практически все сети связи: телефонную, телеграфную, телетайпную и т.д. Сущность модернизированного метода передачи пакетов заключается в том, что любой канал передачи данных коммуникационной подсети может работать в 2-х режимах: монопольном и коллективном. Поэтому первый пакет передаваемой последовательности пакетов должен сообщать всем узлам о том, в каком режиме необходимо передавать остальные пакеты этой последовательности

    Коммутация каналов может быть

    • пространственной
    • временной.

    Пространственный коммутатор размера N*M представляет собой сетку (матрицу), в которой N входов подключены к горизонтальным шинам, а M выходов - к вертикальным В узлах сетки имеются коммутирующие элементы, причем в каждом столбце сетки может быть открыто не более чем по одному элементу. Если N < M, то коммутатор может обеспечить соединение каждого входа с не менее чем одним выходом; в противном случае коммутатор называется блокирующим, т.е. не обеспечивающим соединения любого входа с одним из выходов. Обычно применяются коммутаторы с равным числом входов и выходов N*N. Недостаток рассмотренной схемы - большое число коммутирующих элементов в квадратной матрице, равное N2. Для устранения этого недостатка применяют многоступенные коммутаторы. Например, схема трехступенного коммутатора 6*6 имеет видДостаточным условием отсутствия блокировок входов является равенство k > 2*n-1. Здесь k - число блоков в промежуточном каскаде, n = N/p; p - число блоков во входном каскаде. В приведенной на рис. 1.3 схеме это условие не выполнено, поэтому блокировки возможны. Например, если требуется выполнить соединение a1-d1, но ранее скоммутированы соединения a2-b2-c4-d3, a3-b3-c1-d2, то для a1 доступны шины b1,с3 и с5, однако они не ведут к d1. В многоступенных коммутаторах существенно уменьшено число переключательных элементов за счет некоторого увеличения задержки. Так, при замене одноступенного коммутатора 1000*1000 трехступенным с n = 22 и k = 43 число переключателей уменьшается с 10 6 до 2*46*22*43+43*46*46, т.е. примерно до 0,186*10 6 .

    Временной коммутатор построен на основе буферной памяти, запись производится в ее ячейки последовательным опросом входов, а коммутация осуществляется благодаря считыванию данных на выходы из нужных ячеек памяти. При этом происходит задержка на время одного цикла "запись-чтение". В настоящее время преимущественно используются временная или смешанная коммутация. Во многих случаях наиболее эффективной оказывается коммутация пакетов. Во-первых, ускоряется передача данных в сетях сложной конфигурации за счет того, что возможна параллельная передача пакетов одного сообщения на разных участках сети; во-вторых, при появлении ошибки требуется повторная передача короткого пакета, а не всего длинного сообщения. Кроме того, ограничение сверху на размер пакета позволяет обойтись меньшим объемом буферной памяти в промежуточных узлах на маршрутах передачи данных в сети.

    В сетях коммутации пакетов различают два режима работы:

    • режим виртуальных каналов (другое название - связь с установлением соединения)
    • дейтаграммный режим (связь без установления соединения).

    В режиме виртуальных каналов пакеты одного сообщения передаются в естественном порядке по устанавливаемому маршруту. При этом в отличие от коммутации каналов линии связи могут разделяться многими сообщениями, когда попеременно по каналу передаются пакеты разных сообщений (это так называемый режим временного мультиплексирования, иначе TDM - Time Division Method), или задерживаться в промежуточных буферах. Предусматривается контроль правильности передачи данных путем посылки от получателя к отправителю подтверждающего сообщения - положительной квитанции. Этот контроль возможен как во всех промежуточных узлах маршрута, так и только в конечном узле. Он может осуществляться старт-стопным способом, при котором отправитель до тех пор не передает следующий пакет, пока не получит подтверждения о правильной передаче предыдущего пакета, или способом передачи "в окне". Окно может включать N пакетов, и возможны задержки в получении подтверждений на протяжении окна. Так, если произошла ошибка при передаче, т.е. отправитель получает отрицательную квитанцию относительно пакета с номером K, то нужна повторная передача и она начинается с пакета K Например, в сетях можно использовать переменный размер окна. Так, в соответствии с рекомендацией документа RFC-793 время ожидания подтверждений вычисляется по формуле T ож = 2*Tср, где Tср:= 0,9*Tср + 0,1*Ti, Tср - усредненное значение времени прохода пакета до получателя и обратно, Ti - результат очередного измерения этого времени.

    В дейтаграммном режиме сообщение делится на дейтаграммы. Дейтаграмма - часть информации, передаваемая независимо от других частей одного и того же сообщения в вычислительных сетях с коммутацией пакетов. Дейтаграммы одного и того же сообщения могут передаваться в сети по разным маршрутам и поступать к адресату в произвольной последовательности, что может послужить причиной блокировок сети. На внутренних участках маршрута контроль правильности передачи не предусмотрен и надежность связи обеспечивается лишь контролем на оконечном узле. Блокировкой сети в дейтаграммном режиме называется такая ситуация, когда в буферную память узла вычислительной сети поступило столько пакетов разных сообщений, что эта память оказывается полностью занятой. Следовательно, она не может принимать другие пакеты и не может освободиться от уже принятых, так как это возможно только после поступления всех дейтаграмм сообщения. Первоначальными видами сообщений могут быть голос, изображения, текст, данные. Для передачи звука традиционно используется телефон, изображений - телевидение, текста - телеграф (телетайп), данных - вычислительные сети. Передача документов (текста) может быть кодовой или факсимильной. Для передачи в единой среде звука, изображений и данных применяют сети, называемые сетями интегрального обслуживания.

    Кодовая передача сообщений между накопителями, находящимися в узлах информационной сети, называется телетексом (в отличие от телекса - телетайпной связи), а факсимильная связь называется телефаксом. Виды телетекса: электронная почта (E-mail) - обмен сообщениями между двумя пользователями сети, обмен файлами, "доска объявлений" и телеконференции - широковещательная передача сообщений. Установление соединения между отправителем и получателем с возможностью обмена сообщениями без заметных временных задержек характеризует режим работы on-line ("на линии"). При существенных задержках с запоминанием информации в промежуточных узлах имеем режим off-line ("вне линии"). Связь может быть односторонней (симплексной), с попеременной передачей информации в обоих направлениях (полудуплексной) или одновременной в обоих направлениях (дуплексной). Это набор семантических и синтаксических правил, определяющий поведение функциональных блоков сети при передаче данных. Другими словами, протокол - это совокупность соглашений относительно способа представления данных, обеспечивающего их передачу в нужных направлениях и правильную интерпретацию данных всеми участниками процесса информационного обмена. Поскольку информационный обмен - процесс многофункциональный, то протоколы делятся на уровни. К каждому уровню относится группа родственных функций. Для правильного взаимодействия узлов различных вычислительных сетей их архитектура должна быть открытой. Этим целям служат унификация и стандартизация в области телекоммуникаций и вычислительных сетей.

    Страница 29 из 29 Коммутация каналов и пакетов

    Коммутация каналов и пакетов

    Коммутация каналов

    Сети, построенные на принципе коммутации каналов, имеют богатую историю, они и се­годня нашли широкое применение в мире телекоммуникаций, являясь основой создания высокоскоростных магистральных каналов связи. Первые сеансы связи между компью­терами были осуществлены через телефонную сеть, то есть также с применением техники коммутации каналов, а пользователи, которые получают доступ в Интернет по модему, продолжают обслуживаться этими сетями, так как их данные доходят до оборудования провайдера по местной телефонной сети.

    В сетях с коммутацией каналов решаются все те частные задачи коммутации, которые были сформулированы ранее. Так, в качестве информационных потоков в сетях с коммутацией каналов выступают данные, которыми обмениваются пары абонентов (Термин «абонент» принят в телефонии для обозначения конечного узла. Так как все мы - много¬летние пользователи телефонной сети, то далее мы будем сопровождать наше объяснение принципа работы сетей с коммутацией каналов примерами из области телефонии.) .Соответственно глобальным признаком потока является пара адресов (телефонных номеров) абонентов, связывающихся между собой. Для всех возможных потоков заранее определяются марш­руты. Маршруты в сетях с коммутацией каналов задаются либо «вручную» администра­тором сети, либо находятся автоматически с привлечением специальных программных и аппаратных средств. Маршруты фиксируются в таблицах, в которых признакам потока ставятся в соответствие идентификаторы выходных интерфейсов коммутаторов. На осно­вании этих таблиц происходит продвижение и мультиплексирование данных. Однако, как уже было сказано, в сетях с коммутацией каналов решение всех этих задач имеет свои особенности.

    Элементарный канал

    Одной из особенностей сетей с коммутацией каналов является понятие элементарного канала.

    Элементарный канал (или просто канал) – это базовая техническая характеристика сети с коммутацией каналов, представляющая собой некоторое фиксированное а пределах данного типа сетей значение пропускной способности. Любая линия связи в сети c коммутацией каналов имеет пропускную способность, кратную элементарному каналу, принятому для данного типа сети.

    Говоря о сетях с коммутацией каналов, мы придаем термину «канал» значение единицы пропускной способности.

    Значение элементарного канала, или, другими словами, минимальная единица пропускной способности линии связи, выбирается с учетом разных факторов. Очевидно, однако, что элементарный канал не стоит выбирать меньше минимально необходимой пропускной способности для передачи ожидаемой предложенной нагрузки. Например, в традиционных телефонных сетях наиболее распространенным значением элементарного канала сегодня является скорость 64 Кбит/с - это минимально достаточная скорость для качественной цифровой передачи голоса.

    Задача оцифровывания голоса является частным случаем более общей проблемы - передачи анало­говой информации в дискретной форме. Она была решена в 60-е годы, когда голос начал передаваться по телефонным сетям в виде последовательности единиц и нулей. Такое преобразование основано на дискретизации непрерывных процессов как по амплитуде, так и по времени (рис).

    Амплитудаисходной непрерывной функции измеряется с заданным периодом - за счет этого про­исходит дискретизация по времени. Затем каждый замер представляется в виде двоичного числа определенной разрядности, что означает дискретизацию по значениям - непрерывное множество возможных значений амплитуды заменяется дискретным множеством ее значений.

    Для качественной передачи голоса используется частота квантования амплитуды звуковых колебаний в 8000 Гц (дискретизация по времени с интервалом 125 мкс). Для представления амплитуды одного замера чаще всего используется 8 бит кода, что дает 256 градаций звукового сигнала (дискретиза­ция по значениям). В этом случае для передачи одного голосового канала необходима пропускная способность 64 Кбит/с: 8000 х 8 = 64 000 бит/с или 64 Кбит/с. Такой голосовой канал называют элементарным каналом цифровых телефонных сетей .

    Линии связи в сетях с коммутацией пакетов (как, впрочем, и в остальных типах компьютер­ных сетей) имеют разную пропускную способность , одни - большую, другие - меньшую. Выбирая линии связи с разными скоростными качествами, специалисты, проектирующие сеть, стараются учесть разную интенсивность информационных потоков, которые могут возникнуть в разных фрагментах сети - чем ближе к центру сети, тем выше пропускная способность линии связи, так как магистральные линии агрегируют трафик большого количества периферийных линий связи.

    Особенностью сетей с коммутацией каналов является то, что пропускная способность каждой линии связи должна быть равна целому числу элементарных каналов .

    Так, линии связи, подключающие абонентов к телефонной сети, могут содержать 2,24 или 30 элементарных каналов, а линии, соединяющие коммутаторы, - 480 или 1920 каналов.

    Обратимся к фрагменту сети, изображенному на рис.

    Предположим, что эта сеть характеризуется элементарным каналом Р бит/с. В сети существуют линии связи разной пропускной способности, состоящие из 2, 3, 4 и 5 элементарных каналов. На рисунке по­казаны два абонента, A и B генерирующие во время сеанса связи (телефонного разговора) информационный поток , для которого в сети был предусмотрен маршрут , проходящий через четыре коммутатора S1, S2, S3 и S4. Предположим также, что интенсивность инфор­мационного потока между абонентами не превосходит 2Р бит/с. Тогда для обмена данны­ми этим двум абонентам достаточно иметь в своем распоряжении по паре элементарных каналов, «выделенных» из каждой линии связи, лежащей на маршруте следования данных от пункта A к пункту В. На рисунке эти элементарные каналы, необходимые абонентам A и В , обозначены толстыми линиями.

    Составной канал

    Связь, построенную путем коммутации (соединения) элементарных каналов, называют состав­ным каналом .

    В рассматриваемом примере для соединения абонентов A и В был создан составной канал «толщиной» в два элементарных канала. Если изменить наше предположение и считать, что предложенная нагрузка гарантированно не превысит Р бит/с, то абонентам будет достаточно иметь в своем распоряжении составной канал, «толщиной» в один элементарный канал. В то же время абоненты, интенсивно обменивающиеся данными, могут предъявить и более высокие требования к пропускной способности составного канала. Для этого они должны в каждой линии связи зарезервировать за собой большее (но непременно одина­ковое для всех линий связи) количество элементарных каналов.

    Подчеркнем следующие свойства составного канала:

      составной канал на всем своем протяжении состоит из одинакового количества элемен­тарных каналов;

      составной канал имеет постоянную и фиксированную пропускную способность на всем своем протяжении;

      составной канал создается временно на период сеанса связи двух абонентов;

      на время сеанса связи все элементарные каналы, входящие в составной канал, поступа­ют в исключительное пользование абонентов, для которых был создан этот составной канал;

      в течение всего сеанса связи абоненты могут посылать в сеть данные со скоростью, не превышающей пропускную способность составного канала;

      данные, поступившие в составной канал, гарантированно доставляются вызываемому абоненту без задержек, потерь и с той же скоростью (скоростью источника) вне зави­симости от того, существуют ли в это время в сети другие соединения или нет;

      после окончания сеанса связи элементарные каналы, входившие в соответствующий составной канал, объявляются свободными и возвращаются в пул распределяемых ресурсов для использования другими абонентами.

    В сети может одновременно происходить несколько сеансов связи (обычная ситуация для телефонной сети, в которой одновременно передаются разговоры сотен и тысяч абонентов). Разделение сети между сеансами связи происходит на уровне элементарных каналов. Например (см. рис. выше), мы можем предположить, что после того как в линии связи S2-S3 было выделено два канала для связи абонентов A и В, оставшиеся три эле­ментарных канала были распределены между тремя другими сеансами связи, проходив­шимив это же время и через эту же линию связи. Такое мультиплексирование позволяет одновременно передавать через каждый физический канал трафик нескольких логических соединений.

    Мультиплексирование означает , что абоненты вынуждены конкурировать за ресурсы, в данном случае за элементарные каналы. Возможны ситуации, когда некоторая проме­жуточная линия связи уже исчерпала свободные элементарные каналы, тогда новый сеанс связи, маршрут которого пролегает через данную линию связи, не может состояться.

    Для того чтобы распознать такие ситуации, обмен данными в сети с коммутацией каналов предваряется процедурой установления соединения. В соответствии с этой процедурой абонент, являющийся инициатором сеанса связи (например, абонент А в нашей сети), посылает в коммутационную сеть запрос, представляющий собой сообщение, в котором содержится адрес вызываемого абонента, например абонента В (В телефонной сети посылке запроса соответствует набор телефонного номера).

    Цель запроса - проверить, можно ли образовать составной канал между вызывающим и вызываемым абонентами. А для этого требуется соблюдение двух условий: наличие требуемого числа свободных элементарных каналов в каждой линии связи, лежащей на пути от А к B, и незанятость вызываемого абонента в другом соединении.

    Запрос перемещается по маршруту, определенному для информационного потока данной пары абонентов. При этом используются глобальные таблицы коммутации, ставящие в со­ответствие глобальному признаку потока (адресу вызываемого абонента) идентификатор выходного интерфейса коммутатора (как уже упоминалось, такие таблицы часто называют также таблицами маршрутизации).

    Если в результате прохождения запроса от абонента А к абоненту В выяснилось, что ничто не препятствует установлению соединения, происходит фиксация составного канала. Для этого во всех коммутаторах вдоль пути от A до B создаются записи в локальных таблицах коммутации , в которых указывается соответствие между локальными признаками пото­ка - номерами элементарных каналов, зарезервированных для этого сеанса связи. Только после этого составной канал считается установленным, и абоненты A и B могут начать свой сеанс связи.

    Таким образом, продвижение данных в сетях с коммутацией каналов происходит в два этапа:

      В сеть поступает служебное сообщение - запрос, который несет адрес вызываемого абонента и организует создание составного канала.

      По подготовленному составному каналу передается основной поток данных, для пере­дачи которого уже не требуется никакой вспомогательной информации, в том числе адреса вызываемого абонента. Коммутация данных в коммутаторах выполняется на основе локальных признаков - номеров элементарных каналов.

    Запросы на установление соединения не всегда завершаются успешно. Если на пути между вызывающим и вызываемым абонентами отсутствуют свободные элементарные каналы или вызываемый узел занят, то происходит отказ в установлении соединения. Например, если во время сеанса связи абонентов A и В абонент С пошлет запрос в сеть на установ­ление соединения с абонентом D , то он получит отказ, потому что оба необходимых ему элементарных канала, составляющих линию связи коммутаторов S3 и S4, уже выделены соединению абонентов A и В (рис.).

    При отказе в установлении соединения сеть инфор­мирует вызывающего абонента специальным сообщением (Телефонная сеть в этом случае передает короткие гудки - сигнал «занято». Некоторые телефонные сети различают события «сеть занята» и «абонент занят», передавая гудки с разной частотой или используя разные тона ). Чем больше нагрузка на сеть, то есть чем больше соединений она в данный момент поддерживает, тем больше вероятность отказа в удовлетворении запроса на установление нового соединения.

    Мы описали процедуру установления соединения в автоматическом динамическом режиме , основанном на способности абонентов отправлять в сеть служебные сообще­ния - запросы на установление соединения и способности узлов сети обрабатывать такие сообщения. Подобный режим используется телефонными сетями: телефонный аппарат генерирует запрос, посылая в сеть импульсы (или тоновые сигналы), кодирующие номер вызываемого абонента, а сеть либо устанавливает соединение, либо сообщает об отказе сигналами «занято».

    Однако это - не единственно возможный режим работы сети с коммутацией каналов, существует и другой статический ручной режим установления соединения. Этот режим характерен для случаев, когда необходимо установить составной канал не на время одного сеанса связи абонентов, а на более долгий срок. Создание такого долговременного канала не могут инициировать абоненты, он создается администратором сети. Очевидно, что статический ручной режим мало пригоден для традиционной телефонной сети с ее короткими сеансами связи, однако он вполне оправдан для создания высокоскоростных телекоммуникационных каналов между городами и странами на более-менее постоянной основе.

    Технология коммутации каналов ориентирована на минимизацию случайных coбытий в сети, то есть это технология, стремящаяся к детерминизму. Во избежание всяких возможных неопределенностей значительная часть работы по организации информационного обмена выполняется заранее, еще до того, как начнется собственно передача данных. Сначала по заданному адресу проверяется доступность необходимых элементарных каналов на всем пути от отправителя до адресата. Затем эти каналы за­крепляются на все время сеанса для исключительного использования двумя абонентами и коммутируются в один непрерывный «трубопровод» (составной канал), имеющий «шлюзовые задвижки» на стороне каждого из абонентов. После этой исчерпывающей подготовительной работы остается сделать самое малое: «открыть шлюзы» и позволить информационному потоку свободно и без помех «перетекать» между заданными точками сети (рис.).

    Неэффективность при передаче пульсирующего трафика

    Сети с коммутацией каналов наиболее эффективно передают пользовательский трафик в том случае, когда скорость его постоянна в течение всего сеанса связи и максимально соответствует фиксированной пропускной способности физических линий связи сети Эффективность работы сети снижается, когда информационные потоки, генерируемые абонентами, приобретают пульсирующий характер.

    Так, разговаривая по телефону, люди постоянно меняют темп речи, перемежая быстрые высказывания паузами. В результате соответствующие «голосовые» информационные по­токи становятся неравномерными, а значит, снижается эффективность передачи данных. Правда, в случае телефонных разговоров это снижение оказывается вполне приемлем и позволяет широко использовать сети с коммутацией каналов для передачи голосового трафика.

    Гораздо сильнее снижает эффективность сети с коммутацией каналов передача так называемого компьютерного трафика , то есть трафика, генерируемого приложениями, с которыми работает пользователь компьютера. Этот трафик практически всегда является пульсирующим. Например, когда вы загружаете из Интернета очередную страницу, скорость трафика резко возрастает, а после окончания загрузки падает практически до нуля. Если для описанного сеанса доступа в Интернет вы задействуете сеть с коммутацией канал то большую часть времени составной канал между вашим компьютером и веб-сервером будет простаивать. В то же время часть производительности сети окажется закреплен за вами и останется недоступной другим пользователям сети. Сеть в такие периоды похожа на пустой эскалатор метро, который движется, но полезную работу не выполняет, другими словами, «перевозит воздух».

    Для эффективной передачи неравномерного компьютерного трафика была специально разработана техника коммутации пакетов.

    Коммутация пакетов

    Сети с коммутацией пакетов, так же как и сети с коммутацией каналов, состоят из комму­таторов, связанных физическими линиями связи. Однако передача данных в этих сетях происходит совершенно по-другому. Образно говоря, по сравнению с сетью с коммута­цией каналов сеть с коммутацией пакетов ведет себя менее «ответственно». Например, она может принять данные для передачи, не заботясь о резервировании линий связи на пути следования этих данных и не гарантируя требуемую пропускную способность. Сеть с коммутацией пакетов не создает заранее для своих абонентов отдельных, выделенных исключительно для них каналов связи. Данные могут задерживаться и даже теряться по пути следования. Как же при таком хаосе и неопределенности сеть с коммутацией пакетов выполняет свои функции по передаче данных?

    Важнейшим принципом функционирования сетей с коммутацией пакетов является представление информации, передаваемой по сети, в виде структурно отделенных друг от друга порций данных, называемых пакетами (Наряду с термином «пакет» используются также термины «кадр», «фрейм», «ячейка» и др. В данном контексте различия в значении этих терминов несущественны. В некоторых технологиях коммутации пакетов (например, в технологии виртуальных каналов) полная независимость обработки пакетов не обеспечивается ).

    Каждый пакет снабжен заголовком (рис.), в котором содержится адрес назначения и другая вспомогательная информация (длина поля данных, контрольная сумма и др.), используемая для доставки пакета адресату. Наличие адреса в каждом пакете является одним из важнейших особенностей техники коммутации пакетов, так как каждый пакет может быть обработан коммутатором независимо от других пакетов, составляющих сетевой трафик. Помимо заголовка у пакета может иметься еще одно дополнительное поле, раз­мещаемое в конце пакета и поэтому называемое концевиком. В концевике обычно поме­щается контрольная сумма, которая позволяет проверить, была ли искажена информация при передаче через сеть или нет.

    В зависимости от конкретной реализации технологии коммутации пакетов пакеты могут иметь фиксированную или переменную длину, кроме того, может меняться состав инфор­мации, размещенной в заголовках пакетов. Например, в технологии ATM пакеты (назы­ваемые там ячейками) имеют фиксированную длину, а в технологии Ethernet установлены лишь минимально и максимально возможные размеры пакетов (кадров).

    Пакеты поступают в сеть без предварительного резервирования линий связи и не с фикси­рованной заранее заданной скоростью , как это делается в сетях с коммутацией каналов, а в том темпе, в котором их генерирует источник. Предполагается, что сеть с коммутацией пакетов, в отличие от сети с коммутацией каналов, всегда готова принять пакет от конеч­ного узла.

    Как и в сетях с коммутацией каналов, в сетях с коммутацией пакетов для каждого из по­токов вручную или автоматически определяется маршрут, фиксируемый в хранящихся на коммутаторах таблицах коммутации. Пакеты, попадая на коммутатор, обрабатываются и направляются по тому или иному маршруту на основании информации, содержащейся вих заголовках, а также в таблице коммутации (рис.).

    .

    ПРИМЕЧАНИЕ

    Процедура резервирования пропускной способности может применяться и в пакетных сетях. Однако основная идея такого резервирования принципиально отличается от идеи резервирования про­пускной способности в сетях с коммутацией каналов. Разница заключается в том, что пропускная способность канала сети с коммутацией пакетов может динамически перераспределяться между информационными потоками в зависимости от текущих потребностей каждого потока, чего не мо­жет обеспечить техника коммутации каналов.

    Пакеты, принадлежащие как одному и тому же, так и разным информационным потокам, при перемещении по сети могут «перемешиваться» между собой, образовывать очереди и «тормозить» друг друга. На пути пакетов могут встретиться линии связи, имеющие раз­ную пропускную способность. В зависимости от времени суток может сильно меняться и степень загруженности линий связи. В таких условиях не исключены ситуации, когда пакеты, принадлежащими одному и тому же потоку, могут перемещаться по сети с разны­ми скоростями и даже прийти к месту назначения не в том порядке, в котором они были отправлены.

    Разделение данных на пакеты позволяет передавать неравномерный компьютерный трафик более эффективно, чем в сетях с коммутацией каналов. Это объясняется тем, что пульса­ции трафика от отдельных компьютеров носят случайный характер и распределяются во времени так, что их пики чаще всего не совпадают. Поэтому когда линия связи передает трафик большого количества конечных узлов, то в суммарном потоке пульсации сглажи­ваются, и пропускная способность линии используется более рационально, без длительных простоев. Это эффект иллюстрируется рис. ниже, на котором показаны неравномерные по­токи пакетов, поступающие от конечных узлов 3,4 и 10 в сети, изображенной на рис. выше.

    Предположим, что эти потоки передаются в направлении коммутатора 8, а следовательно, накладываются друг на друга при прохождении линии связи между коммутаторами 5 и 8. Получающийся в результате суммарный поток является более равномерным, чем каждый из образующих его отдельных потоков.

    Буферизация пакетов

    Неопределенность и асинхронность перемещения данных в сетях с коммутацией пакетов предъявляет особые требования к работе коммутаторов в таких сетях.

    Главное отличие пакетных коммутаторов (Для простоты будем далее называть коммутаторы сетей с коммутацией пакетов «пакетными коммутаторами» ) от коммутаторов в сетях с коммутацией каналов состоит в том, что они имеют внутреннюю буферную память для временного хранения пакетов,

    Действительно, пакетный коммутатор не может принять решения о продвижении пакета, не имея в своей памяти всего пакета. Коммутатор проверяет контрольную сумму, и только если она говорит о том, что данные пакета не искажены, начинает обрабатывать пакет и по адресу назначения определяет следующий коммутатор. Поэтому каждый пакет последова­тельно бит за битом помещается во входной буфер. Имея в виду это свойство, говорят, что сети с коммутацией пакетов используют технику сохранения с продвижением (store-and- forward). Заметим, что для этой цели достаточно иметь буфер размером в один пакет.

    Коммутатору нужны буферы для согласования скоростей передачи данных в линиях связи подключенных к его интерфейсам. Действительно, если скорость поступления пакетов из одной линии связи в течение некоторого периода превышает пропускную способность той линии связи, в которую эти пакеты должны быть направлены, то во избежание потерь пакетов на целевом интерфейсе необходимо организовать выходную очередь (рис.).

    Буферизация необходима пакетному коммутатору также для согласования скорости поступления пакетов со скоростью их коммутации. Если коммутирующий блок не успевает обрабатывать пакеты (анализировать заголовки и перебрасывать пакеты на нужный ин­терфейс), то на интерфейсах коммутатора возникают входные очереди. Очевидно, что для хранения входной очереди объем буфера должен превышать размер одного пакета. Существуют различные подходы к построению коммутирующего блока. Традиционный способ основан на одном центральном процессоре, который обслуживает все входные очереди коммутатора. Такой способ построения может приводить к большим очередям, так как производительность процессора разделяется между несколькими очередями. Со­временные способы построения коммутирующего блока основаны на многопроцессорном подходе, когда каждый интерфейс имеет свой встроенный процессор для обработки пакетов Кроме того, существует центральный процессор, координирующий работу интерфейсных процессоров. Использование интерфейсных процессоров повышает производительность коммутатора и уменьшает очереди во входных интерфейсах. Однако такие очереди все равно могут возникать, так как центральный процессор по-прежнему остается «узким местом".

    Поскольку объем буферов в коммутаторах ограничен, иногда происходит потеря пакетов из-за переполнения буферов при временной перегрузке части сети, когда совпадают периоды пульсации нескольких информационных потоков. Для сетей с коммутацией пакетов потеря пакетов является обычным явлением, и для компенсации таких потерь в данной сетевой технологии предусмотрен ряд специальных механизмов, которые мы рассмотрим позже.

    Пакетный коммутатор может работать на основании одного из трех методов продвижения пакетов:

      дейтаграммная передача;

      передача с установлением логического соединения;

      передача с установлением виртуального канала.

    Дейтаграммная передача

    Дейтаграммный способ передачи данных основан на том, что все передаваемые пакеты продвигаются (передаются от одного узла сети другому) независимо друг от друга на основании одних и тех же правил, процедура обработки пакета определяется только значениями параметров, которые он несет в себе и текущим состоянием сети (например, в зависимости от ее нагрузки пакет может стоять в очереди на обслуживание большее или меньшее время). Однако никакая информация об уже вырезанных пакетах сетью не хранится и в ходе обработки очередного пакета во внимание не принимается. То есть каждый отдельный пакет рассматривается сетью как совершенно независимая единица передачи - дейтаграмма .

    Независимо от того, обеспечивают ли они соединение между компьютерами или между компьютерами и терминалами, коммуникационные сети могут быть разделены на два основных типа: с коммутацией каналов и коммутацией пакетов . Сети с коммутацией каналов работают, образуя выделенное соединение (канал) между двумя точками Преимущество коммутации каналов заключается в ее гарантированной пропускной способности: как только канал создан, ни один сетевой процесс не уменьшит пропускной способности этого канала. Недостатком при коммутации каналов является ее стоимость: платы за каналы являются фиксированными и независимыми от трафика, низкий коэффициент использования каналов, повышенное время ожидания других пользователей - в узлах коммутации образуются очереди.

    В сетях с коммутацией пакетов трафик сети делится на небольшие части, называемые пакетами, которые объединяются в высокоскоростных межмашинных соединениях. Пакет имеет идентификатор, который позволяет компьютерам в сети узнавать, предназначен ли он им, и если нет, то помогает им определить, как послать его в указанное место назначения. Главным преимуществом коммутации пакетов является то, что большое число соединений между компьютерами может работать одновременно, так как межмашинные соединения разделяются между всеми парами взаимодействующих машин. Недостатком ее является то, что всякий раз, когда сеть с коммутацией пакетов становится перегруженной, компьютеры, использующие сеть, должны ждать, пока они не смогут послать следующие пакеты.

    Несмотря на потенциальный недостаток негарантируемой сетевой пропускной способности, сети с коммутацией пакетов стали очень популярными. Причинами их широкого использования являются стоимость и производительность. В связи с тем, что к сети может быть подключено большое число машин, требуется меньше соединений и стоимость остается низкой. Так как инженеры смогли создать высокоскоростное сетевое оборудование, с пропускной способностью обычно проблем не возникает.

    Коммутация каналов:

    -- Аналоговые телефонные сети

    Цифровые сети с интегральными услугами (ISDN –Integrated Services Digital Network)

    Сети xDSL(Технологии xDSL основаны на превращении абонентской линии обычной телефонной сети из аналоговой в цифровую xDSL. Суть данной технологии заключается в том, что на обоих концах абонентской линии – на АТС и у абонента – устанавливаются разделительные фильтры):

    -ADSL –асимметричное цифровое клиентское окончание

    - SDSL –симметричное цифровое клиентское окончание

    -RADSL –цифровое абонентское окончание с адаптируемой скоростью передачи

    -VDSL –сверхбыстрое цифровое абонентское окончание

    Коммутация пакетов

    Протяженные телекоммуникационные сети с коммутацией каналов при разработке оптимизировались для достижения наилучших характеристик при передаче голоса, и подавляющая доля потока данных в этих сетях связывалась именно с голосовой передачей. Ключевая характеристика таких сетей в том, что ресурсы внутри сети выделяются под определенные телефонные вызовы. Для голосового соединения это не плохо, поскольку один из абонентов обычно говорит, и канал не простаивает. Можно сказать, что дуплексный канал при телефонной связи используется на 50%. Полоса пропускания для канала также оптимизирована и установлена как раз такой, чтобы можно было обеспечить приемлемое качество передачи речи. Однако при использовании таких телекоммуникационных сетей для передачи данных между компьютерами, появляются два очевидных недостатка.

    1. При типовом соединении (например, терминал-хост) значительную часть времени канал связи может быть свободен. Но телекоммуникационная сеть выделяет вполне определенную полосу пропускания под этот канал и не может использовать его для другого приложения. Таким образом, подход с коммутацией каналов не эффективен.

    2. В сетях с коммутацией каналов соединение обеспечивает передачу на постоянной скорости. Поэтому любой паре устройств терминал-хост будет предоставлена одна и та же фиксированная скорость, что ограничивает возможности сети при подключении разнообразных хостов и терминалов.

    Сеть с коммутацией пакетов способна устранить эти недостатки. Данные в такой сети передаются в виде блоков, называемых пакетами (или кадрами). Обычно верхний предел длины пакета в зависимости от стандарта может быть от тысячи до нескольких тысяч байт.
    Если устройство – источник передачи желает передать данные размером больше максимальной длины пакета, то данные разделяются на несколько пакетов, рис. 5.12.

    Каждый пакет имеет поле данных, заголовок, другие служебные поля, расположенные в начале или в конце пакета. Поле заголовка, как минимум, включает информацию, необходимую узлу сети для перенаправления (маршрутизации) пакетов в нужный канал. Возможна буферизация пакетов на узле.

    На рис. 5.13 показаны основные операции. Рабочая станция или другое сетевое устройство посылает сообщение (например, файл данных) в виде последовательности пакетов (а). Каждый пакет наряду с данными содержит управляющую и/или контрольную информацию, в частности, адрес станции назначения, или идентификатор маршрута. Пакет первоначально посылается на узел, к которому подключена передающая станция. Узел, получая пакет, опре­деляет по контрольной информации направление маршрута и на основание этого перенаправляет пакет в выходной порт соответствующего канала. Если связь между узлами по этому каналу исправна, пакет передается на соседний узел. Все пакеты последовательно “отрабатывают” свои пути, двигаясь через сеть к нужной станции назначения. Коммутация пакетов имеет несколько преимуществ над коммутацией каналов.

    1. Эффективность использования линии при пакетной коммутации выше, поскольку один сегмент от узла к узлу может динамически распределять свои ресурсы между многими пакетами от разных приложений. Если на передающем узле пакетов, предназначенных для отправки по определенному каналу, собирается больше, чем емкость этого канала, то пакеты помещаются в буфер, и устанавливается очередность передачи пакетов. Напротив, в сетях с коммутацией канала время, предназначенное для каждого приложения, выделяется в виде определенного тайм-слота на основе синхронного временного мультиплексирования. Максимальная скорость передачи определяется полосой этого тайм-слота, а не всей полосой канала.

    2. Сеть с пакетной коммутацией может осуществлять преобразование скорости передачи данных. Так способны обмениваться между собою пакетами станции, подключенные к соответствующим узлам сети каналами разной полосы пропускания.
    3. Когда поток через сеть с коммутацией каналов возрастает, сеть может оказаться перегруженной, и в установлении каналов связи между новыми станциями может быть отказано. При перегруженности телефонной сети попытка дозвона может быть блокирована. В сетях с пакетной коммутацией при большой загруженности передача пакетов сохраняется, хотя и могут возникать задержки с доставкой пакетов, или может уменьшаться скорость передачи.

    4. В сетях с пакетной коммутацией можно использовать систему приоритетов. Если узел хочет передать несколько пакетов, то он может, в первую очередь, передать пакеты имеющие наивысший приоритет. Пакеты с высоким приоритетом будут доставляться с меньшей задержкой, чем пакеты с низким приоритетом.
    Пусть одна станция хочет послать сообщение другой в виде файла, размер которого превосходит максимальный размер пакета. Станция распределяет содержимое файла между несколькими пакетами и последовательно направляет пакеты в сеть. И здесь возникает вопрос, каким образом сеть должна обрабатывать эту последовательность пакетов, чтобы доставить их нужному адресату. В современных сетях с коммутацией пакетов используются два различных подхода, получившие название: дейтаграммные сети и сети с виртуальными каналами;

    В дейтаграммной сети каждый пакет передается без ссылки на пакеты, которые идут до или после него, рис. 5.13.

    Каждый узел на основании контрольной информации заголовка пакета и собственных данных об окружающих узлах сети выбирает следующий узел, на который перенаправляется пакет. Пакеты с одним и тем же адресом назначения могут следовать от станции отправителя к станции назначения разными маршрутами. Конечный узел маршрута восстанавливает правильную последовательность пакетов и уже в этой последовательности передает их станции назначения. В некоторых дейтаграммных сетях может отсутствовать функция упорядочения пакетов на выходном узле – тогда эту функцию берет на себя станция назначения. Пакет может повредиться при передаче по сети. Например, если один из узлов в сети вышел из строя, то все пакеты, находящиеся на этом узле в очереди на передачу, будут потеряны. Опять же, функцию обнаружения потерянных пакетов может брать на себя как конечный узел маршрута, так и станция-получатель. В такой сети каждый пакет передается независимо от остальных и называется дейтаграммой.

    В сети с виртуальными каналами перед тем, как пакеты начинают идти, создается определенный маршрут следования. Это маршрут служит для поддержки логического соединения между удаленными станциями. Если маршрут установлен, то все пакеты между взаимодействующими станциями будут идти строго по этому маршруту, рис. 5.14. Поскольку на время логического соединения маршрут строго фиксирован, то такое логическое соединение в некоторой степени аналогично образованию канала в сетях с коммутацией каналов и называется виртуальным каналом. Каждый пакет теперь содержит идентификатор виртуального канала наряду с полем данных. Все узлы по маршруту знают, направлять такие пакеты – никакого решения по маршрутизации теперь эти узлы не принимают. В любое время каждая станция может установить один или несколько виртуальных каналов с другой станцией или станциями. Заметим, что виртуальный канал не является выделенным каналом, что было характерно для сетей с коммутацией каналов. Пакеты, двигаясь по виртуальному каналу, могут в случае перегруженности узла или сегмента помещаться в входные и выходные буферы на узлах. Главное различие с дейтаграммным подходом и классической маршрутизацией состоит в том, что в сетях с виртуальными каналами узел не принимает решение о отборе маршрута для каждого входящего пакета, а делает это (вернее, получает инструкцию перенаправлять пакеты с соответствующими идентификаторами маршрута) только один раз – на этапе формирования виртуального канала.

    Преимущества сети с виртуальными каналами. Если две станции желают обмениваться Ними на протяжении длительного времени, то подход с использованием виртуальных каналов имеет определенные преимущества. Первое, сеть может поддерживать ряд служб, связанных с виртуальными каналами, включая порядок следования, контроль ошибок и контроль потока. Правильный порядок следования легко поддерживается, поскольку все пакеты двигаются одним и тем же маршрутом и прибывают в первоначально установленной последовательности. Служба контроля ошибок гарантирует не только то, что пакеты прибывают в нужной последовательности, но и то, что все пакеты на приемной стороне корректны. Например, если один из пакетов в последовательности, двигаясь от узла 4 к узлу 6 (рис. 5.14) потерялся или пришел на узел 6 с ошибкой, то узел 6 может послать запрос на узел 4 с просьбой по­вторить “соответствующий пакет последовательности. Служба контроля потока гарантирует, что отправитель не может “завалить” получателя данными. Например, если станция Е буферизует данные от станции А и видит, что приемный буфер близок к переполнению, то она может просигнализировать через обратный виртуальный канал о необходимости уменьшить или временно прекратить передачу данных от станции А. Второе преимущество этой сети со­стоит в том, что пакеты передаются через узел быстрее, когда узел не принимает решения о маршрутизации пакета.

    Преимущества дейтаграммной сети. Первое – при передаче пакетов в дейтаграммной сети отсутствует фаза установления логического виртуального канала. Второе – дейтаграммная служба более примитивна и допускает большую гибкость. Например, если один из узлов в сети с использованием виртуальных каналов становится перегруженным, то “открытые” виртуальные каналы, проходящие через этот узел, невозможно перестроить. В дейтаграммной сети при перегрузке одного из узлов другие узлы могут перенаправить приходящие пакеты в обход перегруженного узла. Третье – доставка самой дейтаграммы более надежна. При использовании виртуальных каналов, если узел повреждается, все проходящие через него виртуальные каналы также разрушаются.

    26 вопрос. Технологии беспроводных сетей включают в себя широкий диапазон решений, начиная от глобальных сетей передачи голоса и данных, позволяющих пользователю устанавливать беспроводные соединения на значительных расстояниях, и заканчивая технологиями инфракрасной и радиосвязи, используемыми на небольших расстояниях. Технологии беспроводных сетей применяются в портативных и настольных компьютерах, карманных компьютерах, сотовых телефонах и др.

    1)Wi-Fi (Wireless Fidelity -«беспроводная точность») -стандарт на оборудование Wireless LAN, разработанный консорциумом Wi-Fi Alliance на базе стандартов IEEE 802.11.

    WECA-объединение крупнейших производителей компьютерной техники и беспроводных устройств Wi-Fi

    · Ad Hoc –децентрализованная Wi-Fi сеть (без точки доступа)

    · Назначение: оперативное (временное)соединение компьютеров, объединение компьютеров в малом офисе/дома

    Достоинства: простота организации, экономичность

    Недостатки: низкая защищённость, невозможность подключения к составным сетям, до 256 абонентов

    Инфраструктура – беспроводная сеть с использованием точки беспроводного доступа

    · Возможности:

    · -Подключение к другим сетям (в т.ч. проводным)

    · -Выход в Интернет

    · -До 2048 абонентов

    Точка беспроводного доступа –сетевое устройство, являющееся центром беспроводной сети и выполняющее функции беспроводного концентратора

    Шифрование Wi-Fi:

    - 2)IrDA (Infrared Data Association) –группа стандартов, описывающая протоколы передачи данных с использованием инфракрасного диапазона световых волн в качестве носителя

    Реализация:

    Передатчик – светодиод

    Приёмник(и) –фотодиод(ы)

    3)Bluetooth -производственная спецификация беспроводных персональных сетей.

    0 Скорость передачи:64 Кбит/с–2.1 Мбит/с

    2При установке соединения –Bluetooth PIN (вводится на обоих устройствах)

    3-Вычисление первичного ключа шифрования на основе PIN

    4-Шифрование кадров по алгоритму E0

    Открытые сведения: имя устройства, тип устройства, список услуг, технические сведения

    1)Беспроводные глобальные сети (WWAN)

    2)Беспроводные городские сети (WMAN)

    3)Беспроводные локальные сети (WLAN)

    4)Беспроводные персональные сети (WPAN)


    Похожая информация.