Шифр простой одинарной перестановки. Шифр вертикальной перестановки. Анализ шифров перестановки

(см. также )

Большое влияние на развитие криптографии оказали появившиеся в середине XX века работы американского математика Клода Шеннона. В этих работах были заложены основы теории информации, а также был разработан математический аппарат для исследований во многих областях науки, связанных с информацией. Более того, принято считать, что теория информации как наука родилась в 1948 году после публикации работы К. Шеннона "Математическая теория связи".

В своей работе "Теория связи в секретных системах" Клод Шеннон обобщил накопленный до него опыт разработки шифров. Оказалось, что даже в очень сложных шифрах в качестве типичных компонентов можно выделить такие простые шифры как шифры замены, шифры перестановки или их сочетания .

В качестве первичного признака, по которому проводится классификация шифров, используется тип преобразования, осуществляемого с открытым текстом при шифровании. Если фрагменты открытого текста (отдельные буквы или группы букв) заменяются некоторыми их эквивалентами в шифртексте, то соответствующий шифр относится к классу шифров замены . Если буквы открытого текста при шифровании лишь меняются местами друг с другом, то мы имеем дело с шифром перестановки . С целью повышения надежности шифрования шифрованный текст, полученный применением некоторого шифра, может быть еще раз зашифрован с помощью другого шифра.


Рис. 6.1.

Всевозможные такие композиции различных шифров приводят к третьему классу шифров, которые обычно называют композиционными шифрами . Заметим, что композиционный шифр может не входить ни в класс шифров замены, ни в класс шифров перестановки ( рис. 6.1).

6.3 Шифры перестановки

Шифр перестановки, как видно из названия, осуществляет преобразование перестановки букв в открытом тексте. Типичным примером шифра перестановки является шифр "Сцитала". Обычно открытый текст разбивается на отрезки равной длины и каждый отрезок шифруется независимо. Пусть, например, длина отрезков равна и - взаимнооднозначное отображение множества в себя. Тогда шифр перестановки действует так: отрезок открытого текста преобразуется в отрезок шифрованного текста.

Классическим примером такого шифра является система, использующая карточку с отверстиями - решетку , которая при наложении на лист бумаги оставляет открытыми лишь некоторые его части. При зашифровке буквы сообщения вписываются в эти отверстия. При расшифровке сообщение вписывается в диаграмму нужных размеров, затем накладывается решетка, после чего на виду оказываются только буквы открытого текста.

Также возможны и другие варианты шифра перестановки, например, шифры столбцовой и двойной перестановки.

6.3.1 Шифр столбцовой перестановки

При расшифровывании буквы шифртекста записываются по столбцам в соответствии с последовательностью чисел ключа, после чего исходный текст считывается по строкам. Для удобства запоминания ключа применяют перестановку столбцов таблицы по ключевому слову или фразе, всем символам которых ставятся в соответствие номера, определяемые порядком соответствующих букв в алфавите.

При решении заданий на криптоанализ шифров перестановки необходимо восстановить начальный порядок следования букв текста. Для этого используется анализ совместимости символов, в чем может помочь таблица сочетаемости (см. ).

Таблица 6.1. Сочетаемость букв русского языка
Г С Слева Справа Г С
3 97 л, д, к, т, в, р, н А л, н, с, т, р, в, к, м 12 88
80 20 я, е, у, и, а, о Б о, ы, е, а, р, у 81 19
68 32 я, т, а, е, и, о В о, а, и, ы, с, н, л, р 60 40
78 22 р, у, а, и, е, о Г о, а, р, л, и, в 69 31
72 28 р, я, у, а, и, е, о Д е, а, и, о, н, у, р, в 68 32
19 81 м, и, л, д, т, р, н Е н, т, р, с, л, в, м, и 12 88
83 17 р, е, и, а, у, о Ж е, и, д, а, н 71 29
89 11 о, е, а, и 3 а, н, в, о, м, д 51 49
27 73 р, т, м, и, о, л, н И с, н, в, и, е, м, к, з 25 75
55 45 ь, в, е, о, а, и, с К о, а, и, р, у, т, л, е 73 27
77 23 г, в, ы, и, е, о, а Л и, е, о, а, ь, я, ю, у 75 25
80 20 я, ы, а, и, е, о М и, е, о, у, а, н, п, ы 73 27
55 45 д, ь, н, о, а, и, е Н о, а, и, е, ы, н, у 80 20
11 89 р, п, к, в, т, н О в, с, т, р, и, д, н, м 15 85
65 35 в, с, у, а, и, е, о П о, р, е, а, у, и, л 68 32
55 45 и, к, т, а, п, о, е Р а, е, о, и, у, я,ы, н 80 20
69 31 с, т, в, а, е, и, о С т, к, о, я, е, ь, с, н 32 68
57 43 ч, у, и, а, е, о, с Т о, а, е, и, ь, в, р, с 63 37
15 85 п, т, к, д, н, м, р У т, п, с, д, н, ю, ж 16 84
70 30 н, а, е, о, и Ф и, е, о, а, е, о, а 81 19
90 10 у, е, о, а, ы, и X о, и, с, н, в, п, р 43 57
69 31 е, ю, н, а, и Ц и, е, а, ы 93 7
82 18 е, а, у, и, о Ч е, и, т, н 66 34
67 33 ь, у, ы, е, о, а, и, в Ш е, и, н, а, о, л 68 32
84 16 е, б, а, я, ю Щ е, и, а 97 3
0 100 м, р, т, с, б, в, н Ы Л, х, е, м, и, в, с, н 56 44
0 100 н, с, т, л Ь н, к, в, п, с, е, о, и 24 76
14 86 с, ы, м, л, д, т, р, н Э н, т, р, с, к 0 100
58 42 ь, о, а, и, л, у Ю д, т, щ, ц, н, п 11 89
43 57 о, н, р, л, а, и, с Я в, с, т, п, д, к, м, л 16 84

При анализе сочетаемости букв друг с другом следует иметь в виду зависимость появления букв в открытом тексте от значительного числа предшествующих букв. Для анализа этих закономерностей используют понятие условной вероятности.

Систематически вопрос о зависимости букв алфавита в открытом тексте от предыдущих букв исследовался известным русским математиком А.А. Марковым (1856-1922). Он доказал, что появления букв в открытом тексте нельзя считать независимыми друг от друга. В связи с этим А.А. Марковым отмечена еще одна устойчивая закономерность открытых текстов, связанная с чередованием гласных и согласных букв. Им были подсчитаны частоты встречаемости биграмм вида гласная-гласная (г, г ), гласная-согласная (г, с ), согласная-гласная (с, г ), согласная-согласная (с, с ) в русском тексте длиной в знаков. Результаты подсчета отражены в следующей таблице:

Таблица 6.2. Чередование гласных и согласных
Г С Всего
Г 6588 38310 44898
С 38296 16806 55102

Пример 6.2 Открытый текст, сохраняя пробелы между словами, записали в таблицу. Начало было в первой строке, текст записывали слева направо, переходя со строки на следующую, шифрование заключалось в перестановке столбцов. Найдите открытый текст.

Шифрованный текст:

Д В Ы Т
Г О Е Р О
У Ь Д У Б
М М Я Ы Р П

Решение. Присвоим столбцам номера в порядке их следования. Наша задача - найти такой порядок столбцов, при котором текст будет осмысленным.

Составим таблицу:

1 2 3 4 5 6
1 Х
2 Х
3 Х
4 Х
5 Х
6 Х

Клетка (, ) в этой таблице означает, что столбец с номером следует за столбцом с номером . Знаком "Х" отметим невозможные случаи.

Сочетания столбцов 1, 2 и 5, 2 невозможны, так как гласная не может находиться перед мягким знаком. Невозможны и следования столбцов 2, 1 и 2, 5. Теперь из третьей строки следует, что 1, 5 и 5, 1 невозможны, так как УУ - нехарактерная для русского языка биграмма. Далее, два пробела подряд не могут быть в тексте, значит, ставим "Х" в клетках 3, 4 и 4, 3. Снова обратимся к третьей строке. Если бы столбец 2 следовал за столбцом 4, то слово начиналось бы с мягкого знака. Ставим "Х" в клетке 4, 2. Из первой строки: невозможна комбинация 4, 5, невозможна и 3, 5. Итог наших рассуждений представлен в таблице:

1 2 3 4 5 6
1 Х Х Х
2 Х Х Х
3 Х Х Х
4 Х Х Х Х
5 Х Х Х
6 Х

Итак, после столбца 6 обязательно следует столбец 5. Но тогда поставим "Х" в клетке 6, 2 и получим: столбец 2 следует за столбцом 3. Далее, мы вычеркнули 5, 1 и 2, 1, следовательно, надо проверить варианты: ...6532... и...65432... . Но (4, 3) вычеркнуто ранее. Итак, остались варианты расположения столбцов:

  • 1, 6, 5, 3, 2, 4
  • 6, 5, 3, 2, 4, 1
  • 4, 1, 6, 5, 3, 2
  • 1, 4, 6, 5, 3, 2

Запишем 6, 5, 3, 2 столбцы подряд:

6 5 3 2
т ы - в
о р о г
б у д ь
п р я м

Попытка поставить столбец 1 перед столбцом 6 приведет к биграмме МП в последней строке и сочетанию ДТЫ в первой. Остались варианты: 653241, 146532.

Ответ: 653241 - ключ, открытый текст: ты\_в\_дороге\_будь\_упрямым (строка из популярной в 1970-е годы песни).

Приведем еще один пример криптоанализа шифра столбцовой перестановки.

Пример 6.3 Расшифровать: СВПООЗЛУЙЬСТЬ\_ЕДПСОКОКАЙЗО

Решение. Текст содержит 25 символов, что позволяет записать его в квадратную матрицу 5х5. Известно, что шифрование производилось по столбцам, следовательно, расшифровывание следует проводить, меняя порядок столбцов.

Шифр, преобразования из которого изменяют только порядок следования символов исходного текста, но не изменяют их самих, называется шифром перестановки

Рассмотрим преобразование из ШП, предназначенное для зашифрования сообщения длиной символов. Его можно представить с помощью таблицы

где номер места шифртекста, на которое попадает первая буква исходного сообщения при выбранном преобразовании, номер места для второй буквы и т. д. В верхней строке таблицы выписаны по порядку числа от 1 до а в нижней - те же числа, но в произвольном порядке. Такая таблица называется подстановкой степени

Зная подстановку, задающую преобразование, можно осуществить как зашифрование, так и расшифрование текста. Например, если для преобразования используется подстановка

и в соответствии с ней зашифровывается слово то получится Попробуйте расшифровать сообщение полученное в результате преобразования с помощью указанной выше подстановки.

В качестве упражнения читателю предлагается самостоятельно выписать подстановки, задающие преобразования в описанных ниже трех

примерах шифров перестановки. Ответы помещены в конце раздела.

Читатель, знакомый с методом математической индукции, может легко убедиться в том, что существует (обозначается читается факториал») вариантов заполнения нижней строки таблицы (6). Таким образом, число различных преобразований шифра перестановки, предназначенного для зашифрования сообщений длины меньше либо равно (заметим, что в это число входит и вариант преобразования, оставляющий все символы на своих местах!).

С увеличением числа значение растет очень быстро. Приведем таблицу значений для первых 10 натуральных чисел:

(см. скан)

При больших для приближенного вычисления можно пользоваться известной формулой Стирлинга

Примером ШП, предназначенного для зашифрования сообщений длины является шифр, в котором в качестве множества ключей взято множество всех подстановок степени а соответствующие им преобразования шифра задаются, как было описано выше. Число ключей такого шифра равно

Для использования на практике такой шифр не удобен, так как при больших значениях приходится работать с длинными таблицами.

Широкое распространение получили шифры перестановки, использующие некоторую геометрическую фигуру. Преобразования из этого шифра состоят в том, что в фигуру исходный текст вписывается по ходу одного «маршрута», а затем по ходу другого выписывается с нее. Такой шифр называют маршрутной перестановкой. Например, можно вписывать исходное сообщение в прямоугольную таблицу, выбрав такой маршрут: по горизонтали, начиная с левого верхнего угла поочередно слева направо и справа налево. Выписывать же сообщение будем по другому маршруту: по вертикали, начиная с верхнего правого угла и двигаясь поочередно сверху вниз и снизу вверх.

Зашифруем, например, указанным способом фразу:

используя прямоугольник размера

(см. скан)

Зашифрованная фраза выглядит так:

Теоретически маршруты могут быть значительно более изощренными, однако запутанность маршрутов усложняет использование таких шифров.

Ниже приводятся описания трех разновидностей шифров перестановки, встречавшихся в задачах олимпиад.

Шифр «Сцитала». Одним из самых первых шифровальных приспособлений был жезл («Сцитала»), применявшийся еще во времена войны Спарты против Афин в V веке до н. э. Это был цилиндр, на который виток к витку наматывалась узкая папирусная лента (без просветов и нахлестов), а затем на этой ленте вдоль его оси записывался необходимый для передачи текст. Лента сматывалась с цилиндра и отправлялась адресату, который, имея цилиндр точно такого же диаметра, наматывал ленту на него и прочитывал сообщение. Ясно, что такой способ шифрования осуществляет перестановку местами букв сообщения.

Шифр «Сцитала», как видно из решения задачи 2.1, реализует не более перестановок по прежнему, - длина сообщения). Действительно, этот шифр, как нетрудно видеть, эквивалентен следующему шифру маршрутной перестановки: в таблицу, состоящую из столбцов, построчно записывают сообщение, после чего выписывают буквы по столбцам. Число задействованных столбцов таблицы не может превосходить длины сообщения.

Имеются еще и чисто физические ограничения, накладываемые реализацией шифра «Сцитала». Естественно предположить, что диаметр жезла не должен превосходить 10 сантиметров. При высоте строки в 1 сантиметр на одном витке такого жезла уместится не более 32 букв Таким образом, число перестановок, реализуемых «Сцита-лой», вряд ли превосходит 32.

Шифр «Поворотная решетка». Для использования шифра, называемого поворотной решеткой, изготавливается трафарет из прямоугольного листа клетчатой бумаги размера клеток. В трафарете вырезано тк клеток так, что при наложении его на чистый лист бумаги того же размера четырьмя возможными способами его вырезы полностью покрывают всю площадь листа.

Буквы сообщения последовательно вписываются в вырезы трафарета (по строкам, в каждой строке слева направо) при каждом из четырех его возможных положений в заранее установленном порядке.

Поясним процесс шифрования на примере. Пусть в качестве ключа используется решетка приведенная на рис. 1.

Зашифруем с ее помощью текст

Наложив решетку на лист бумаги, вписываем первые 15 (по числу

вырезов) букв сообщения: Сняв решетку, мы увидим текст, представленный на рис. 2. Поворачиваем решетку на 180°. В окошечках появятся новые, еще не заполненные клетки. Вписываем в них следующие 15 букв. Получится запись, приведенная на рис. 3. Затем переворачиваем решетку на другую сторону и зашифровываем остаток текста аналогичным образом (рис. 4, 5).

Получатель сообщения, имеющий точно такую же решетку, без труда прочтет исходный текст, наложив решетку на шифртекст по порядку четырьмя способами.

Можно доказать, что число возможных трафаретов, то есть количество ключей шифра «решетка», составляет (см. задачу 1.1). Этот шифр предназначен для сообщений длины Число всех перестановок в тексте такой длины составит что во много раз

больше числа Однако, уже при размере трафарета число возможных решеток превосходит 4 миллиарда.

Широко распространена разновидность шифра маршрутной перестановки, называемая «шифром вертикальной перестановки» (ШВП). В нем снова используется прямоугольник, в который сообщение вписывается обычным способом (по строкам слева направо). Выписываются буквы по вертикали, а столбцы при этом берутся в порядке, определяемом ключом. Пусть, например, этот ключ таков: (5,4,1,7,2,6,3), и с его помощью надо зашифровать сообщение:

Впишем сообщение в прямоугольник, столбцы которого пронумерованы в соответствии с ключом:

(см. скан)

Теперь, выбирая столбцы в порядке, заданном ключом, и выписывая последовательно буквы каждого из них сверху вниз, получаем такую криптограмму:

Число ключей ШВП не более где число столбцов таблицы. Как правило, гораздо меньше, чем длина текста (сообщение укладывается в несколько строк по букв), а, значит, и много меньше

Пользуясь приведенной выше формулой Стирлинга при больших попытайтесь оценить, во сколько раз число возможных перестановок столбцами меньше числа всех перестановок на тексте длины кратном

В случае, когда ключ ШВП не рекомендуется записывать, его можно извлекать из какого-то легко запоминающегося слова или предложения. Для этого существует много способов. Наиболее распространенный состоит в том, чтобы приписывать буквам числа в соответствии с обычным алфавитным порядком букв. Например, пусть ключевым словом будет Присутствующая в нем буква А получает номер 1. Если какая-то буква входит несколько раз, то ее появления нумеруются последовательно слева направо. Поэтому второе вхождение буквы А получает номер 2. Поскольку буквы в этом слове нет, то буква В получает номер 3 и так далее. Процесс продолжается до тех

пор, пока все буквы не получат номера. Таким образом, мы получаем следующий ключ:

Перейдем к вопросу о методах вскрытия шифров перестановки. Проблема, возникающая при восстановлении сообщения, зашифрованного ШП, состоит не только в том, что число возможных ключей велико даже при небольших длинах текста. Если и удастся перебрать все допустимые варианты перестановок, не всегда ясно, какой из этих вариантов истинный. Например, пусть требуется восстановить исходный текст по криптограмме и нам ничего не известно, кроме того, что применялся шифр перестановки. Какой вариант «осмысленного» исходного текста признать истинным: или А может быть Приведем пример еще более запутанной ситуации. Пусть требуется восстановить сообщение по криптограмме

полученной шифром перестановки. Возможны, как минимум, два варианта исходного сообщения:

Эти варианты имеют прямо противоположный смысл и в имеющихся условиях у нас нет возможности определить, какой из вариантов истинный.

Иногда, за счет особенностей реализации шифра, удается получить информацию об использованном преобразовании (перестановке). Рассмотрим шифр «Сцитала» из задачи 2.1. Выше уже рассматривался вопрос о количестве перестановок, реализуемых «Сциталой». Их оказалось не более 32. Это число невелико, поэтому можно осуществить перебор всех вариантов. При достаточной длине сообщения, мы, скорее всего, получим единственный читаемый вариант текста. Однако, используя информацию о расположении линий, оставленных шифровальщиком, удается определить диаметр стержня, а значит, и возникающую перестановку букв (см. задачу 2.1).

В рассмотренном примере шифровальщик по неосторожности оставил на папирусе следы, позволяющие нам легко прочитать сообщение. Возможны и другие ситуации, когда не очень «грамотное» использование шифра облегчает вскрытие переписки.

В задаче 5.2 содержится пример текста, зашифрованного ШВП. По условию пробелы между словами при записи текста в таблицу опускались. Поэтому заключаем, что все столбцы, содержащие пробел в последней строке, должны стоять в конце текста. Таким образом, возникает разбиение столбцов на две группы (содержащие 6 букв, и

Аналогичная ситуация возникает и при «неполном» использовании шифра «решетка» (см. задачу 4.1). Пусть имеется решетка размера и зашифрованное с ее помощью сообщение длины к, не содержащее пробелов. Незаполненные к мест в решетке при условии, что к соответствуют вырезам в четвертом положении решетки. На основе такой информации, происходит резкое уменьшение числа допустимых решеток (их будет Читателю предлагается самостоятельно подсчитать число допустимых решеток при

На примере решения задачи 5.2 продемонстрируем еще один подход к вскрытию шифров вертикальной перестановки - лингвистический. Он основан на том, что в естественных языках некоторые комбинации букв встречаются очень часто, другие - гораздо реже, а многие вообще не встречаются (например -

Будем подбирать порядок следования столбцов друг за другом так, чтобы во всех строках этих столбцов получались «читаемые» отрезки текста. В приведенном решении задачи восстановление текста начинается с подбора цепочки из трех столбцов первой группы, содержащей в последней строке сочетание так как естественно предположить, что сообщение заканчивается точкой. Далее подбираются столбцы, продолжающие участки текста в других строках, и т. д.

Сочетание лингвистического метода с учетом дополнительной информации довольно быстро может привести к вскрытию сообщения.

В заключение рассказа о шифрах перестановки приведем историю с зашифрованным автографом А. С. Пушкина, описанную в романе В. Каверина «Исполнение желаний».

Главный герой романа - студент-историк Трубачевский, - занимавшийся работой в архиве своего учителя - академика Бауэра С. И., - нашел в одном из секретных ящиков пушкинского бюро фрагмент недописанной X главы «Евгения Онегина». Это был перегнутый вдвое полулист плотной голубоватой бумаги с водяным знаком 1829 года. На листе было написано следующее.

(см. скан)

(см. скан)

Без особых усилий Трубачевский прочитал рукопись, и ничего не понял. Он переписал ее, получилась бессвязная чепуха, в которой одна строка, едва начавшая мысль, перебивается другой, а та - третьей, еще более бессмысленной и бессвязной. Он попробовал разбить рукопись на строфы, - опять не получилось. Стал искать рифмы, - как будто и рифм не было, хотя на белый стих все это мало похоже. Просчитал строку - четырехстопный ямб, размер, которым написан «Евгений Онегин».

Трубачевский с азартом взялся за рукопись, пытался читать ее, пропуская по одной строке, потом по две, по три, надеясь случайно угадать тайную последовательность, в которой были записаны строки. У него ничего не получалось. Тогда он стал читать третью строку вслед за первой, пятую за третьей, восьмую за пятой, предположив, что пропуски должны увеличиваться в арифметической прогрессии. Все то же! Отчаявшись, он бросил эту затею. Однако, она не давала ему покоя ни на лекции, ни в трамвае... Как шахматист, играющий в уме, он не только знал наизусть каждую строчку, он видел ее в десяти комбинациях сразу.

Прошло время. Однажды, когда он смотрел на светлые пятна окон подходящего к перрону поезда, каким-то внутренним зрением он

увидел перед собой всю рукопись - и с такой необыкновенной отчетливостью, как это бывает только во сне.

Шифры перестановки

Этот метод заключается в том, что символы шифруемого текста переставляются по определенным правилам внутри шифруемого блока символов, т.е. преобразования приводят к изменению только порядка следования символов исходного сообщения. Рассмотрим некоторые наиболее часто встречающиеся разновидности этого метода - простую, усложненную по таблице и усложненную по маршрутам перестановку.

Шифрование простой перестановкой (вертикальной перестановкой) осуществляется следующим образом:

1) выбирается ключевое слово с неповторяющимися символами;

2) шифруемый текст записывается последовательными строками под символами ключевого слова;

3) зашифрованный текст выписывается колонками в той последовательности, в которой располагаются в алфавите буквы ключа (или в порядке следования цифр в натуральном ряду, если ключ цифровой).

В качестве иллюстрации приведем пример шифрования способом простой перестановки сообщения: «БУДЬТЕ ОСТОРОЖНЫ С ПРЕДСТАВИТЕЛЕМ ФИРМЫ "ФЕНИКС". При этом применим цифровой ключ 5 – 8 – 1 – 3 – 7 – 4 – 6 – 2. В исходном тексте вместо пробелов используется буква а.

Б У Д Ь Т Е а О
С Т О Р О Ж Н Ы
А С а П Р Е Д С
Т А В И Т Е Л Е
М а Ф И Р М Ы а
Ф Е Н И К С а а

Выписывая текст по колонкам и группируя символы по пять, получаем зашифрованный текст в виде:

ДО ВФ НОЫСЕ ЬРП ИИИЕЖ ЕЕМСБ С ТМФ НДЛЫ TOPT РКУТС A E .

Расшифрование выполняется в следующем порядке:

1) подсчитываем число знаков в зашифрованном тексте и делим на число знаков ключа;

2) выписываем ключевое слово и под его знаками в соответствующей последовательности выписываем символы зашифрованного текста в определенном выше количестве;

3) по строкам таблицы читаем исходный текст.

Число ключей не более m!, где m - число столбцов таблицы.

Слабость шифрования простой перестановкой обуславливается тем, что при большой длине шифруемого текста в зашифрованном тексте могут проявиться закономерности символов ключа. Для устранения этого недостатка можно менять ключ после зашифровки определенного числа знаков. При достаточно частой смене ключа стойкость шифрования можно существенно повысить. При этом, однако, усложняется организация процесса шифрования и расшифрования.

Для получения и запоминания числового ключа существуют различные методы. Один из самых распространенных состоит в том, чтобы приписывать буквам числа в соответствии с алфавитным порядком букв. Возьмем, например, слово ПЕРЕСТАНОВКА. Присутствующая в нем буква А получает №1. Если какая-то буква входит несколько раз, то ее появления нумеруются последовательно слева направо. Поэтому второе вхождение буквы А получает №2. Буквы Б в этом слове нет, то буква В получает №3, и т.д.:

П Е Р Е С Т А Н О В К А

Усложнение перестановки по таблице заключается в том, что для записи символов шифруемого текста используется специальная таблица, в которую введены некоторые усложняющие элементы. Усложнение состоит в том, что определенное число клеток таблицы не используется (на рисунке они пусты). Количество и расположение неиспользуемых элементов является дополнительным ключом шифрования. Шифруемый текст блоками по m х n – s элементов (m х n размеры таблицы,s – число неиспользуемых элементов) записывается в таблицу. Далее шифрование аналогична простой перестановке.

Б У Д Ь Т Е а О С
Т О Р О Ж Н Ы а
С а О Р Е Д С Т А
В И Т Е Л Е М а Ф
И Р М Ы а Ф Е Н И
К С а а а а А а а

Зашифрованный текст будет выглядеть так: ДОПР БСВИК РРТМ ОЫ Н ЕНСЕФ УТ И СС АФ И ЬОЕ ЕЫ Т МЕ ТЖ ДЛ .

При расшифровании знаки зашифрованного текста записываются столбцами таблицы в последовательности знаков ключа с пропуском неиспользуемых элементов. Исходный текст считывается по строкам. Варьируя размерами таблицы, последовательностью символов ключа, количеством и расположением неиспользуемых элементов, можно получить требуемую стойкость зашифрованного текста.

Еще один вариант - шифр "Поворотная решетка" . предназначен для сообщений длины 4mk. Берется трафарет размером 2m*2k клеток, вырезается m*k клеток так, что при наложении его на лист бумаги того же размера 4 различными способами (поворачивая на 90°) его вырезы полностью покрывают всю площадь листа. Буквы сообщения последовательно вписываются в вырезы трафарета по строкам, в каждой строке слева направо, при каждом из 4-х его возможных положений в заранее установленном порядке. Число возможных трафаретов, т.е. количество ключей этого шифра составляет 4 mk (при размере трафарета 8*8 число вариантов превосходит 4 миллиарда).

Весьма высокую стойкость шифрования можно обеспечить усложнением перестановок по маршрутам типа гамильтоновских. При этом для записи символов шифруемого текста используются вершины некоторого гиперкуба, а знаки зашифрованного текста считываются по маршрутам Гамильтона, причем используется несколько различных маршрутов. Для примера рассмотрим шифрование по маршругам Гамильтона при n =3. Структура и три маршрута показаны на Рис. 7, а пример шифрования – на Рис. 8.объемной (многомерной) перестановки . В 1992 – 94 гг. идея применения объемной перестановки для шифрования открытого текста получила дальнейшее развитие. Усовершенствованная схема перестановок по принципу кубика Рубика, в которой наряду с открытым текстом перестановке подвергаются и функциональные элементы самого алгоритма шифрования, легла в основу системы «Рубикон». В качестве прообразов пространственных многомерных структур, на основании объемных преобразований которых осуществляются перестановки, в ней используются трехмерный куб и тетраэдр.

по разным путям геометрической фигуры.

Простейшим примером перестановки является перестановка с фиксированным периодом d . В этом методе сообщение делится на блоки по d символов и в каждом блоке производится одна и та же перестановка . Правило, по которому производится перестановка , является ключом и может быть задано некоторой перестановкой первых d натуральных чисел. В результате сами буквы сообщения не изменяются, но передаются в другом порядке.

Например, для d=6 в качестве ключа перестановки можно взять 436215 . Это означает, что в каждом блоке из 6 символов четвертый символ становится на первое место , третий – на второе, шестой – на третье и т.д. Пусть необходимо зашифровать такой текст:

Количество символов в исходном сообщении равно 24, следовательно, сообщение необходимо разбить на 4 блока. Результатом шифрования с помощью перестановки 436215 будет сообщение

ОЕТЭТ_ТЛСКДИШР_ЯФНАЯВОИ

Теоретически, если блок состоит из d символов, то число возможных перестановок d!=1*2*...*(d-1)*d . В последнем примере d=6 , следовательно, число перестановок равно 6!=1*2*3*4*5*6=720 . Таким образом, если противник перехватил зашифрованное сообщение из рассмотренного примера, ему понадобится не более 720 попыток для раскрытия исходного сообщения (при условии, что размер блока известен противнику).

Для повышения криптостойкости можно последовательно применить к шифруемому сообщению две или более перестановки с разными периодами.

Другим примером методов перестановки является перестановка по таблице . В этом методе производится запись исходного текста по строкам некоторой таблицы и чтение его по столбцам этой же таблицы. Последовательность заполнения строк и чтения столбцов может быть любой и задается ключом.

Рассмотрим пример. Пусть в таблице кодирования будет 4 столбца и 3 строки (размер блока равен 3*4=12 символов). Зашифруем такой текст:

Количество символов в исходном сообщении равно 24, следовательно, сообщение необходимо разбить на 2 блока. Запишем каждый блок в свою таблицу по строчкам ( таблица 2.9).

Таблица 2.9. Шифрование методом перестановки по таблице
1 блок
Э Т О
Т Е К С
Т Д Л
2 блок
Я Ш И
Ф Р О В
А Н И Я

Затем будем считывать из таблицы каждый блок последовательно по столбцам:

ЭТТТЕ ОКД СЛЯФА РНШОИИВЯ

Можно считывать столбцы не последовательно, а, например, так: третий, второй, первый, четвертый:

ОКДТЕ ЭТТ СЛШОИ РНЯФАИВЯ

В этом случае порядок считывания столбцов и будет ключом.

В случае, если размер сообщения не кратен размеру блока, можно дополнить сообщение какими-либо символами, не влияющими на смысл, например, пробелами. Однако это делать не рекомендуется, так как это дает противнику в случае перехвата криптограммы информацию о размере используемой таблицы перестановок (длине блока). После определения длины блока противник может найти длину ключа (количество столбцов таблицы) среди делителей длины блока.

Посмотрим, как зашифровать и расшифровать сообщение, имеющее длину, не кратной размеру таблицы перестановки. Зашифруем слово

ПЕРЕМЕНКА

Количество символов в исходном сообщении равно 9. Запишем сообщение в таблицу по строкам ( таблица 2.10), а последние три ячейки оставим пустыми.

Затем будем считывать из таблицы последовательно по столбцам:

ПМАЕЕРНЕК

Для расшифрования вначале определяют число полных столбцов, то есть количество символов в последней строке. Для этого делят размер сообщения (в нашем примере – 9) на количество столбцов или размер ключа (в примере – 4). Остаток от деления будет числом полных столбцов: 9 mod 4 = 1 . Следовательно, в нашем примере был 1 полный столбец и три коротких. Теперь можно поставить буквы сообщения на свои места и расшифровать сообщение. Так как ключом при шифровании было число 1234 (столбцы считывались последовательно), то при расшифровании первые три символа (ПМА ) записываются в первый столбец таблицы перестановки, следующие два (ЕЕ ) – во второй столбец, следующие два (РН ) – в третий, и последние два (ЕК ) – в четвертый. После заполнения таблицы считываем строки и получаем исходное сообщение ПЕРЕМЕНКА .

Существуют и другие способы перестановки, которые можно реализовать программным и аппаратным путем. Например, при передаче данных, записанных в двоичном виде, удобно использовать аппаратный блок, который перемешивает определенным образом с помощью соответствующего электрического монтажа биты исходного n-разрядного сообщения. Так, если принять размер блока равным восьми битам, можно, к примеру, использовать такой блок перестановки, как на

Широкое применение получили так называемые мар­шрутные перестановки, основанные на некоторой геометри­ческой фигуре. Отрезок открытого текста записывается в та­кую фигуру по некоторой траектории. Шифрованным текстом является последовательность, полученная при выписывании текста по другой траектории. Например, можно записывать сообщение в прямоугольную таблицу, выбрав такой маршрут: будем двигаться по горизонтали, начиная с левого верхнего угла, поочередно слева направо и справа налево. Списывать же сообщение будем по другому маршруту: по вертикалям, начиная с верхнего правого угла и двигаясь поочередно свер­ху вниз и снизу вверх.

Пример (маршрутной перестановки)

Зашифруем указанным выше способом фразу пример маршрутной перестановки, используя прямоугольную табли­цу размером 4х7:

п р и м е р м
н т у р ш р а
о й п е р е с
и к в о н а т

Зашифрованная фраза выглядит следующим образом:

мастаеррешрноермиупвкйтрпнои

Обращение описанных шагов при расшифровании не представляет труда.

Широкое распространение получила разновидность мар­шрутной перестановки, называемая вертикальной переста­новкой. В этой системе также используется прямоугольная таблица, в которую сообщение записывается обычным обра­зом (по строкам слева направо). Выписывается же сообщение по вертикалям (сверху вниз), при этом столбцы выбираются в порядке, определяемом числовым ключом.

Пример (вертикальной перестановки)

Зашифруем фразу вот пример шифра вертикальной пере­становки, используя прямоугольник размером 6 х 7 и число­вой ключ (5,1,4,7,2,6,3).

Отметим, что нецелесообразно заполнять последнюю строку прямоугольника "нерабочими" буквами, так как это дало бы противнику, получившему в свое распоряжение дан­ную криптограмму, сведения о длине числового ключа. В са­мом деле, в этом случае длину ключа следовало бы искать среди делителей длины сообщения.

Теперь, выписывая буквы по столбцам в порядке, указан­ном числовым ключом, получим такую криптограмму:

ореьекрфийамааеотшрнсивевлрвиркпнпитот

При расшифровании, в первую очередь, надо определить число длинных столбцов, то есть число букв в последней строке прямоугольника. Для этого нужно разделить число букв в сообщении на длину числового ключа. Ясно, что оста­ток от деления и будет искомым числом. Когда это число оп­ределено, буквы криптограммы можно водворить на их соб­ственные места, и сообщение будет прочитано естественным образом.

В нашем примере 38=7×5+3, поэтому в заполненной таблице имеется 3 длинных и 4 коротких столбца.

Более сложные маршрутные перестановки могут исполь­зовать другие геометрические фигуры и более "хитрые" мар­шруты, как, например, при обходе шахматной доски "ходом коня", пути в некотором лабиринте и т.п. Возможные вариан­ты зависят от фантазии составителя системы и, конечно, есте­ственного требования простоты ее использования.