SAS-диски: назначение, описание, технические характеристики устройства. Как правильно выбрать SAS, SATA или SSD диск, чтобы не переплатить и получить максимальную эффективность

Всем известны параметры производительности дисковых подсистем в теории. Но что на практике? Многие задают этот вопрос, некоторые строят свои гипотезы. Я решил провести серию тестов и определить «Who is who». Приступил к тестированию всеми известными утилитами dd, hdparm, далее перешел к fio, sysbench. Также был произведен ряд тестов используя UnixBench и несколько других аналогов. Было построено ряд графиков, но по мере дальнейшего тестирования было обнаружено что большинство этого ПО непригодно для адекватного сравнения разных дисков.
С помощью fio можно было составить сравнительную таблицу или график для SAS, SATA, но при тестировании SSD оказалось, что полученные результаты вовсе непригодны. Я конечно уважаю разработчиков этого всего софта, но в этот момент было принято решение создать ряд не синтетических тестов, а более близких к реальной обстановке.

Сразу скажу, что параметры теста и сами машинки были подобраны таким образом, чтобы результаты теста не были искажены типом процессора, его частотой или другими параметрами.

Тест 1
Создание файлов
В течении восьми циклов генерировалось создание небольших файлов с хаотическим содержанием и с постепенным ростом количества файлов на цикл. По каждому циклу измерялось время выполнения.

Из графика видно что большую скорость создания файлов имеют SSD KINGSTON SV300S3 и почти не зависят от их количества. Также стоит отметить что именно эти диски имеют более прямолинейную шкалу
По SAS дискам в Hardware RAID видно что скорость зависит от типа рейда, но совсем не зависит от количества дисков.
Но больше времени тратится не на создание файлов, как оказалось, а на их перезапись. По этому перейдем к второму тесту.

Тест 2
Перезапись файлов
Повторялись те что операции что в первом тесте, но файлы не создавались новые каждый раз, а использовался один и тот же файл, в который записывалась каждый раз новая информация.


Сразу бросается в глаза ужасная картина по дискам SATA 7,200 rpm MB2000GCVBR. Медленная запись и по 2x 300GB SAS SEAGATE. По этому решил выбросить их из графика для наглядности по остальным.


Самой быстрой подсистемой оказался одиночный SSD KINGSTON. Второе и третье место заняли 8x SEAGATE ST3300657SS и 4x SEAGATE ST3300657SS. Также видим что с ростом количества SSD в массиве скорость немного падает.
Тест 3
MySQL. Комбинирование sql-запросов INSERT, SELECT, UPDATE, DELETE
Была создана InnoDB таблица со следующей структурой:
CREATE TABLE `table` (
`id` int(10) unsigned NOT NULL AUTO_INCREMENT,
`time` int(11) NOT NULL,
`uid` int(11) NOT NULL,
`status` varchar(32) NOT NULL,
PRIMARY KEY (`id`),
FULLTEXT KEY `status` (`status`)
) ENGINE=InnoDB DEFAULT CHARSET=cp1251;

Одновременно генерировалось несколько запросов:
- INSERT;
- UPDATE с выборкой по PRIMARY KEY;
- UPDATE с выборкой по FULLTEXT (поиск по 4 символам из 24-х): WHERE `status` LIKE "%(string)%";
- DELETE FROM с выборкой по PRIMARY KEY;
- DELETE FROM с выборкой без использования ключа: WHERE `time`>(int);
- SELECT с выборкой без использования ключа: WHERE `time`>(int);
- SELECT с выборкой по PRIMARY KEY;
- SELECT с выборкой по FULLTEXT (поиск по 4 символам из 24-х): WHERE `status` LIKE "%(string)%";
- SELECT с выборкой без использования ключа: WHERE `uid`>(int).


И снова наблюдаем ту же картину что во втором тесте.

В следующих тестах использую утилиту sysbench, которая генерирует файлы большого объема:
128 файлов, общим размером 10 Гб, 30 Гб и 50 Гб.
Размер блока 4 Кб.
Сразу хочу обратить внимание, что на некоторых графиках, по некоторым серверам нету данных на 10 Гб. Это связано с тем что на данных машинах имеется оперативной памяти более 10 Гб и выполняется кэширование данных. Отсутствие некоторых результатов на 50 Гб обусловлено нехваткой дискового пространства, в случае с SSD KINGSTON SV300S3.

Тест 4
Линейная запись (создание файлов)


Видно что лучшие показатели имеются у всех вариациях с SSD KINGSTON SV300S3, а также у 8x SEAGATE ST3300657SS в RAID10. Очень хорошо просматривается рост скорости с увеличение количества дисков SAS.
Здесь тот самый момент, где отлично видно что SSD совершенно разные бывают. Разница в 4 раза!
Тест 5
Линейная запись (перезапись файлов)


Лидеры все те же. Если сравнивать 2x SSD от INTEL и 2x SAS разницы практически никакой.
Тест 6
Линейное чтение


Здесь же видим чуть иную картину. Лидируют 4x SSD KINGSTON RAID10, с минимальным изменением результатов при увеличении объема файлов, и 8x SEAGATE в RAID10, с постепенным спадом скорости, на скоростях 700 Мбит/сек и 600 Мбит/сек.
Линии по 1x SSD KINGSTON и 2x SSD KINGSTON RAID1 совпали. Проще говоря для линейного чтения лучше брать или RAID10 или одиночный диск. Использование RAID1 не оправдано.
Хорошо видно что показали 2x SAS RAID1 и 4x SAS RAID10 очень похожи. Но при увеличении количества дисков в два раза просматривается огромный прирост скорости.
2x SSD Intel RAID1 имеет не малое падение скорости на промежутке 10 Гб - 30 Гб, а далее идут на одной скорости с SATA RAID1.
Тест 7
Рандомное чтение


В лидерах все SSD:
- 4x KINGSTON RAID10;
- 2x KINGSTON RAID1, 2x INTEL RAID1;
- 1 KINGSTON.

Всех остальных скопировал на следующий график для наглядности.


Наивысшую скорость среди этих имеет естественно 8x SAS RAID10, но скорость резко падает. Но исходя из данных по 2x SAS и 4x SAS предположу что с дальнейшем ростом объемом скорость стабилизируется.

Тест 8
Рандомная запись


Отличные показатели имеет 2x 120GB SSD INTEL SSDSC2CT12 Hardware RAID1 SAS1068E со стабильной скоростью 30 Мбит/сек. По KINGSTON с ростом количества дисков скорость, как ни странно, падает. На четвертом месте 8x SAS SEAGATE.
Тест 9
Комбинированные операции рандомного чтения и записи
Все мы знаем, что ни на одном сервере нету только чтения или только записи. Всегда выполняются обе операции. И в большинстве случаев это как раз рандомные операции, а не линейные. И так, посмотрим, что у нас получилось.


За счет отличной скорости записи с большим отрывом идет 2x SSD INTEL, за которым следует SSD KINGSTON. Третье место разделили 2x SSD KINGSTON и 8x SAS SEAGATE.
Тест 10
После проведения всех этих тестов я решил что будет удобно вывести зависимость скорости от соотношения операций рандомного чтения и рандомной записи.


У кого рост скорости, у кого падение, а у 8x SAS RAID10 прямая линия.
Тест 11
Произвел также сравнение больших массивов из SAS дисков, по которому видно, что от скорости диска больше зависит, чем от их количества.

Пришло время подвести итоги.
Машин было много, но не достаточно. К сожалению мне не удалось определить являются ли показатели по SSD INTEL SSDSC2CT12 их особенностью или же особенностью рейдового контроллера. Но полагаю, что таки контроллера.

  1. С ростом количества SAS дисков в массиве все показатели только улучшаются.
  2. Для MySQL медленные подсистемы это SATA RAID1 и SAS RAID1. По остальным отличия есть, но они не столь существенны.
  3. Для линейно записи хороши как большие массивы из SAS дисков в RAID10, так и SSD. Смысла использовать массивы из SSD нет. Стоимость растет, а производительность на месте.
  4. Для линейного чтения хороши любые большие массивы. Но на практике лин. чтение без записи у нас почти не встретить.
  5. Рандомное чтение за SSD одиночными или в Software RAID.
  6. Для рандомной записи лучше использовать Hardware RAID из SSD, хотя не сильно поступаются и одиночные SSD.
  7. Рандомные чтение/запись, то есть один из самых важных показателей, имеют лучшие результаты на Hardware RAID из SSD.
  8. Обобщая все вышесказанное, для большинства задач лучше использовать большие массивы (>=8) из SAS или Hardware RAID из SSD. Но для некоторых задач корректнее будет использовать одинарные SSD.
  9. Исходя из объемов SSD, которые преимущественно предлагаются на нашем рынке, под VDS-ноды стоит использовать максимальной производительности процессоры в паре с большими SAS массивами или же средненькие процессоры и одинарные SSD. Считаю что использование hw raid для двух SSD будет дороговато.
  10. Если вам необходима быстрая система и нет необходимости в большом дисковом пространстве 2x SSD в Hardware RAID будет лучшим выбором. Если желаете немного сэкономить в ущерб производительности, тогда можно взять одинарный SSD или два SSD в софтовом рейде.

Вопросы, которые остались без ответов:

  1. Что происходит при увеличении количества SSD в Hardware RAID?
  2. Что дешевле под виртуальные сервера: дорогие машинки и один большой массив из SAS или же несколько средненьких серверов с одинарными SSD? В этом вопросе также следует учесть надежность/долговечность SAS и SSD, так как по последним ходят разные слухи.

Кроме перечисленных тестов и серверов было еще множество, но они не попали в результаты, так как на них проводилась «калибровка» тестов и многие их них были признаны некорректными.
Также производилось тестирование RAMDisk. Показатели были довольно хорошие, но не лучшие. Вероятно из-за того что это была виртуальная машина.

Все тесты, кроме последнего, производились только на выделенных серверах.

02Фев

С каждым днем объемы информации только растут, поэтому надежная система хранения с высокой скоростью обработки информации становится необходимостью.

Для хранения данных применяются следующие типы дисков:

Оба вида накопителей широко используются, имеют свои особенности и решают разные задачи. Так какой же диск подходит под потребности бизнеса? Давайте разберемся.

Что отличает HDD-диски

Внутри такого накопителя несколько алюминиевых пластин. За счет их вращения и считывающей головки происходят все операции чтения и записи информации при скорости до 15 тыс. оборотов в минуту. В основном конечно используются диски с 7200 оборотов в минуту. Накопители этого типа отличает большой объем дискового пространства - до 10ТБ на одном диске и надежность при хранении и записи информации.

Подключение современного диска к серверу осуществляется с помощью интерфейсов SATA или SAS.

По названиям интерфейсов в профессиональной среде SATA и SAS принято называть и сами типы дисков для корпоративного применения. Так чем же отличаются SATA и SAS диски?

Применение того или иного типа дисков обусловлено типом решаемых задач.

SATA – Serial Advanced Technology Attachment -жёсткий диск для работы с большими объемами данных на относительно невысоких скоростях до 600 Мбит/с при пропускной способности 6 Гбит/с. SATA диски обычно применяются для создания хранилища данных или резервного копирования.

Через SATA можно подключить HDD диск практически на любой сервер Intel. Что касается SSD, то на таких дисках SATA-интерфейс способен передавать данные со скоростью до 6 Гбит/с.

SAS - Serial Attached SCSI – жесткий диск, подключаемый через набор команд SCSI, который работает на скорости до 1,2 ГБ/с, с пропускной способностью до 24 Гбит/с. SAS применяется для высокоскоростных операций с множественными циклами перезаписи информации, например, для управления базами данных (СУБД), для высоконагруженных веб-серверов и веб-приложений и серверных систем. Более того, системы на базе SAS просты в установке и легко масштабируются.

К недостаткам такого диска можно отнести его высокую цену, которая отчасти оправдана высокой производительностью.

Технологии развиваются, поэтому разъемы SAS уже совместимы с разъемами SATA, что активно используется на выделенных виртуальных серверах для сохранения скорости при увеличении емкости хранилища. То есть, в одной подсистеме можно объединять приложения с разной степенью производительности.

Плюсы и минусы SSD-диска

В основе SSD-дисков микросхемы памяти. Он обрабатывает файлы примерно в 80 раз быстрее, чем в SATA.

Но у такой высокой производительности есть свои минусы - каждый новый цикл перезаписи «сжигает» диск, существенно сокращая срок его службы. А любой сбой в работе такого диска может стоить записанной на нем информации. Поэтому для организации резервного хранилища SSD лучше не использовать.

SSD-диски необходимы для проектов, где критична скорость процессов записи и чтения. С такими дисками значительно увеличивается скорость работы сайта на любой CMS.

Какой диск выбрать под задачи бизнеса?

Важно понимать, что применение у этих дисков также различное, и не стоит их использовать для решения одних задач – это чревато сбоем в работе. Например, применение SSD для регулярной генерации потокового видео быстро приводит к его сгоранию и потере данных. При выборе диска SATA или SAS также следует учитывать задачи бизнеса:

Сколько запросов одновременно будет обрабатывать диск? Если стабильно большое число обращений множества пользователей, тогда стоит выбрать интерфейс SAS.

Какой объем хранилища необходим для дисковой подсистемы сервера? Если объем данных превышает 1 Тб, стоит обратить внимание на SATA-диск.

Планируется ли наращивание объема данных и дальнейшее масштабирование сервера? Для увеличения производительности сервера и повышения отказоустойчивости стоит обратить внимание на SAS-диск.

Таблица 1 Выбор диска под решаемую задачу

Оптимальное решение для бизнеса, где одинаково важна скорость загрузки и обработки информации, и надежность в хранении данных, - комбинация дисков. То есть в сети компании для больших архивов и резервного копирования применять накопители типа SATA, для эффективного управления базами данных рекомендован более быстрый тип диска SAS, а для работы сетевых порталов и систем файлового обмена - SSD.

В ряде случаев применяется и гибридное решение для хранения, SATA+SSD на разных интерфейсах – это обеспечивает стабильное хранение данных и высокую скорость передачи и обработки информации.

В арсенале сервиса аренды выделенных серверов SmileServer.ru представлены все варианты хранилищ, полностью обеспечивающих задачи хранения и доступа к данным как малого, так и крупного бизнеса.

В современных компьютерных системах для подключения основных жестких дисков используются интерфейсы SATA и SAS. Как правило, первый вариант устраивает домашние рабочие станции, второй – серверные, поэтому технологии между собой не конкурируют, отвечая разным требованиям. Значительная разница в стоимости и объеме памяти заставляет пользователей задаваться вопросом, чем отличается SAS от SATA, и искать компромиссные варианты. Посмотрим, так ли это целесообразно.

SAS (Serial Attached SCSI) – последовательный интерфейс подключения устройств хранения данных, разработанный на основе параллельного SCSI для исполнения того же набора команд. Используется преимущественно в серверных системах.

SATA (Serial ATA) – последовательный интерфейс обмена данными, базирующийся на основе параллельного PATA (IDE). Применяется в домашних, офисных, мультимедийных ПК и ноутбуках.

Если говорить о HDD, то, несмотря на различающиеся технические характеристики и разъемы, кардинальных расхождений между устройствами нет. Обратная односторонняя совместимость дает возможность подключать к серверной плате диски и по одному, и по второму интерфейсу.

Стоит заметить, что оба варианта подключения реальны и для SSD, но весомое отличие SAS от SATA в этом случае будет в стоимости накопителя: первый может быть дороже в десятки раз при сопоставимом объеме. Поэтому сегодня такое решение если уже и не редкое, то в достаточной мере взвешенное, и предназначено для быстрых центров обработки данных корпоративного уровня.

Разница между SAS и SATA

Как мы уже знаем, SAS находит применение в серверах, SATA – в домашних системах. На практике это означает, что к первым одновременно обращается много пользователей и решается множество задач, со вторыми же имеет дело один человек. Соответственно, серверная нагрузка намного выше, поэтому диски должны быть достаточно отказоустойчивыми и быстрыми. Протоколы SCSI (SSP, SMP, STP), реализованные в SAS, позволяют обрабатывать больше операций ввода/вывода одновременно.

Непосредственно для HDD скорость обращения определяется в первую очередь скоростью вращения шпинделя. Для desktop-систем и ноутбуков необходимо и достаточно 5400 – 7200 RPM. Соответственно, найти SATA-диск с 10000 RPM почти невозможно (разве что посмотреть серию WD VelociRaptor, предназначенную, опять же, для рабочих станций), а все, что выше, – абсолютно недостижимо. SAS HDD раскручивает минимум 7200 RPM, стандартом можно считать 10000 RPM, а достаточным максимумом – 15000 RPM.

Считается, что диски с последовательным SCSI надежнее, у них выше показатели наработки на отказ. На практике стабильность достигается больше за счет функции проверки контрольных сумм. Накопители SATA же страдают от «тихих ошибок», когда данные записываются частично либо повреждены, что приводит к появлению .

На отказоустойчивость системы работает и главное достоинство SAS – два дуплексных порта, позволяющих подключить одно устройство по двум каналам. Обмен информацией в этом случае будет вестись одновременно в обоих направлениях, а надежность обеспечивается технологией Multipath I/O (два контроллера страхуют друг друга и разделяют нагрузку). Очередь помеченных команд выстраивается глубиной до 256. У большинства дисков SATA один полудуплексный порт, а глубина очереди по технологии NCQ – не более 32.

Интерфейс SAS предполагает использование кабелей длиной до 10 м. К одному порту через расширители можно подключить до 255 устройств. SATA ограничивается 1 м (2 м для eSATA), и поддерживает подключение только одного устройства по типу «точка – точка».

Перспективы дальнейшего развития – то, в чем разница между SAS и SATA тоже ощущается достаточно остро. Пропускная способность интерфейса SAS достигает 12 Гбит/с, а производители анонсируют поддержку скорости обмена данными 24 Гбит/с. Последняя ревизия SATA остановилась на 6 Гбит/с и эволюционировать в этом отношении не будет.

Накопители SATA в пересчете на стоимость 1 Гб обладают очень привлекательным ценником. В системах, где скорость доступа к данным не имеет решающего значения, а объем хранимой информации велик, целесообразно использовать именно их.

Сравнительная таблица

SAS SATA
Для серверных систем Преимущественно для настольных и мобильных систем
Использует набор команд SCSI Использует набор команд ATA
Минимальная скорость вращения шпинделя HDD 7200 RPM, максимальная – 15000 RPM Минимум 5400 RPM, максимум 7200 RPM
Поддерживается технология проверки контрольных сумм при записи данных Большой процент ошибок и bad-секторов
Два дуплексных порта Один полудуплексный порт
Поддерживается Multipath I/O Подключение по типу «точка – точка»
Очередь команд до 256 Очередь команд до 32
Можно использовать кабели до 10 м Длина кабелей не более 1 м
Пропускная способность шины до 12 Гбит/с (в перспективе – 24 Гбит/с) Пропускная способность 6 Гбит/с (SATA III)
Стоимость накопителей выше, иногда значительно Дешевле в пересчете на цену за 1 Гб

Звоните или прямо на сайте! Наши специалисты с удовольствием помогут Вам!

Мы останавливаемся перед выбором: какой вид винчестеров установить. Наиболее популярными являются следующие типы жестких дисков: SAS, SATA и NL-SAS. Эти три вида относятся к самым быстрым носителям информации, на них хранится большая часть данных в мире. Наша статья посвящена первому типу. Мы рассмотрим, что представляют собой SAS-диски, каковы их параметры, и в чем заключается разница между основными типами упомянутых устройств.

Технические характеристики

SAS-диски пришли на смену SCSI-типу. Они стали новым стандартом в хранении информации корпоративного класса. Из трех перечисленных видов SAS-диски считаются наиболее надежными, они способны поддерживать производительность в весьма сложных эксплуатационных условиях. Жесткие диски SASработают намного лучше винчестеров типа NL или SATA. Показателем их надежности выступает такой параметр, как коэффициент ошибок. Он определяет, с какой вероятностью один бит ошибки может возникнуть в медиа-данных. Коэффициент ошибок для винчестеров типа SAS обычно составляет единицу из 10 16 бит. То есть это значит, что вероятность ошибки может возникнуть в одном из десяти квадрильонов бит. Для примера можно сравнить этот показатель со значением ошибки в жестких дисках типа SATA, где он составляет единицу из 10 15 (или на один квадрильон). Как видно, защита SATA-винчестеров тоже довольно высока, однако, когда встает вопрос о защите сохраняемой информации, то разница на один порядок весьма существенна.

SAS-диски производят, придерживаясь более строгих стандартов, чем при разработке других типов винчестеров. Так, данная технология характеризуется средним временем наработки на отказ, составляющим 1,6 миллиона часов, а SATA-технология - 1,2 миллиона. Кроме перечисленных параметров, контроллеры и диски рассматриваемого типа имеют много дополнительных команд, предназначенных для диагностики. Эти функции делают эту технологию более эффективной, чем SATA. Особенно это проявляется в форс-мажорных ситуациях.

NL-винчестеры

Это технология является "новым игроком" на рынке. NL-диски представляют собой гибрид: SATA-винчестер с разъемом типа SAS. То есть скорость, начинка и головка взяты от SATA-технологии, а интерфейс полностью совместим с SAS. NL-технология уступает рассматриваемым дискам в производительности (из-за относительно низкой скорости вращения). Однако она полностью соответствует им в очередности команд, а также многопоточной передаче данных и поддержке нескольких хостов.

Тагированная очередность отправки команд и многопоточная передача

Одновременная координация нескольких комплектов инструкций хранения, а также упорядоченная контроллером хранения информация передается наиболее эффективно. SAS-технология предусматривает несколько полнодуплексных каналов которые обеспечивают быстрый доступ к сохраняемой информации. Одним винчестером SAS-типа можно управлять сразу с нескольких персональных компьютеров без применения свитчей.

Заключение

По сути, технологии SAS и SATA предназначены для различных целей: первая для отказоустойчивости и производительности, а вторая - для обеспечения емкости. Поэтому они не должны конкурировать между собой.

Интерфейс SAS.

Интерфейс SAS или Serial Attached SCSI обеспечивает подключение по физическому интерфейсу, аналогичному SATA , устройств, управляемых набором команд SCSI . Обладая обратной совместимостью с SATA , он даёт возможность подключать по этому интерфейсу любые устройства, управляемые набором команд SCSI - не только жёсткие диски, но и сканеры, принтеры и др. По сравнению с SATA, SAS обеспечивает более развитую топологию, позволяя осуществлять параллельное подключение одного устройства по двум или более каналам. Также поддерживаются расширители шины, позволяющие подключить несколько SAS устройств к одному порту.

Протокол SAS разработан и поддерживается комитетом T10. SAS был разработан для обмена данными с такими устройствами, как жёсткие диски, накопители на оптических дисках и им подобные. SAS использует последовательный интерфейс для работы с непосредственно подключаемыми накопителями, совместим с интерфейсом SATA. Хотя SAS использует последовательный интерфейс в отличие от параллельного интерфейса, используемого традиционным SCSI, для управления SAS-устройствами по-прежнему используются команды SCSI. Команды (рис. 1), посылаемые в устройство SCSI представляют собой последовательность байт определенной структуры (блоки дескрипторов команд).

Рис. 1.

Некоторые команды сопровождаются дополнительно "блоком параметров", который следует за блоком дескриптора команды, но передается уже как "данные".

Типичная система с интерфейсом SAS состоит из следующих компонентов:

1) Инициаторы. Инициатор - это устройство, которое порождает запросы на обслуживание для целевых устройств и получает подтверждения по мере исполнения запросов.

2) Целевые устройства . Целевое устройство содержит логические блоки и целевые порты, которые осуществляют приём запросов на обслуживание, исполняет их; после того, как закончена обработка запроса, инициатору запроса отсылается подтверждение выполнения запроса. Целевое устройство может быть как отдельным жёстким диском, так и целым дисковым массивом.

3) Подсистема доставки данных . Является частью системы ввода-вывода, которая осуществляет передачу данных между инициаторами и целевыми устройствами. Обычно подсистема доставки данных состоит из кабелей, которые соединяют инициатор и целевое устройство. Дополнительно, кроме кабелей в состав подсистемы доставки данных могут входить расширители SAS.

3.1) Расширители. Расширители SAS - устройства, входящие в состав подсистемы доставки данных и позволяют облегчить передачи данных между устройствами SAS, например, позволяет соединить несколько целевых устройств SAS к одному порту инициатора. Подключение через расширитель является абсолютно прозрачным для целевых устройств.

SAS поддерживает подключение устройств с интерфейсом SATA. SAS использует последовательный протокол передачи данных между несколькими устройствами, и, таким образом, использует меньшее количество сигнальных линий. SAS использует команды SCSI для управления и обмена данными с целевыми устройствами. Интерфейс SAS использует соединения точка-точка - каждое устройство соединено с контроллером выделенным каналом. В отличии от SCSI, SAS не нуждается в терминации шины пользователем. Интерфейс SCSI использует общую шину - все устройства подключены к одной шине, и с контроллером одновременно может работать только одно устройство. В SCSI скорость передачи информации по разным линиям, составляющим параллельный интерфейс, может отличаться. Интерфейс SAS лишён этого недостатка. SAS поддерживает очень большое количество устройств, в то время как интерфейс SCSI поддерживает 8, 16, или 32 устройства на шине. SAS поддерживает высокие скорости передачи данных (1,5, 3,0 или 6,0 Гбит/с). Такая скорость может быть достигнута при передаче информации на каждом соединении, в то время как на шине SCSI пропускная способность шины разделена между всеми подключёнными к ней устройствами.

SATA использует набор команд ATA и поддерживает жёсткие диски и накопители на оптических дисках, в то время как SAS поддерживает более широкий набор устройств, в том числе жёсткие диски, сканеры и принтеры. SATA-устройства идентифицируются номером порта контроллера интерфейса SATA, в то время как устройства SAS идентифицируются их WWN идентификаторами (World Wide Name). Устройства SATA (версии 1) не поддерживали очередей команд, в то время как устройства SAS поддерживают теггированные очереди команд. Устройства SATA с версии 2 поддерживают Native Command Queuing (NCQ).

Аппаратура SAS поддерживает связь с целевыми устройствами по нескольким независимым линиям , что повышает отказоустойчивость системы (интерфейс SATA такой возможности не имеет). В то же время, интерфейс SATA версии 2 использует дубликаторы портов для достижения аналогичной возможности.

SATA преимущественно используется в некритических приложениях, например в домашних компьютерах. Интерфейс SAS, благодаря своей надёжности, может быть использован в критически важных серверах. Выявление ошибок и обработка ошибочных ситуаций определено в SAS гораздо лучше чем в SATA. SAS считают надмножеством SATA, и не конкурирует с ним.

Разъёмы SAS гораздо меньше разъёмов традиционного параллельного интерфейса SCSI, что позволяет использовать разъёмы SAS для подключения компактных накопителей типоразмером 2,5 дюйма. SAS поддерживает передачу информации со скоростью от 3 Гбит/с до 10 Гбит/с. Существует несколько вариантов разъёмов SAS:

SFF 8482 - вариант, совместимый с разъёмом интерфейса SATA;

SFF 8484 - внутренний разъём с плотной упаковкой контактов; позволяет подключить до 4 устройств;

SFF 8470 - разъём с плотной упаковкой контактов для подключения внешних устройств; позволяет подключить до 4 устройств;

SFF 8087 - уменьшенный разъём Molex iPASS, содержит разъём для подключения до 4 внутренних устройств; поддерживает скорость 10 Гбит/с;

SFF 8088 - уменьшенный разъём Molex iPASS, содержит разъём для подключения до 4 внешних устройств; поддерживает скорость 10 Гбит/с.

Разъём SFF 8482 позволяет подключать устройства SATA к контроллерам SAS, что избавляет от необходимости устанавливать дополнительный контроллер SATA только потому, что необходимо, к примеру, подключить устройство для записи дисков DVD. Наоборот, устройства SAS не могут подключаться к интерфейсу SATA, и на них устанавливается разъём, предотвращающий их подключение к интерфейсу SATA.