Самый высокий кпд солнечных панелей. Срок службы и окупаемость солнечных панелей. Кремниевые кристаллические фотомодули

Много путаницы сегодня существует вокруг понятия кпд гелиосистемы, что является важным критерием их стоимости. Понятие кпд солнечных батарей означает процент падающего на панель солнечного света, преобразованного в электричество, с дальнейшей возможностью использования. Разные материалы для солнечных панелей создают различный кпд, даже одинаковые компании – производители имеют различный показатель эффективности преобразования. Повышение кпд является лучшим способом снизить затраты на солнечную энергию.

КПД солнечной батареи зависит от чистоты пластин, которые используются в качестве сырья при изготовлении. Кроме того, очень важно, является ли панель монокристаллического или поликристаллического вида. Большинство крупных компаний концентрирует свои усилия именно на повышении эффективности, для сокращения расходов в беспощадном использовании солнечной энергетики.

Рассмотрим общий диапазон кпд солнечных батарей, исходя из разных типов элементов и различных технологий.

Бывают следующих - поликристаллического или монокристаллического кремния. Мульти-солнечные батареи имеют более низкую эффективность, чем батареи из монокристаллических элементов.

Кпд солнечной батареи может варьироваться от 12% до 20% для обычного монокристаллического кремния. В обычно устанавливаемых, расчетный кпд составляет 15% и зависит от вида исполнения самого кремния. Одни из мировых производителей постоянно повышают эффективность для того, чтобы снизить свои издержки и опередить соперников в этой конкурентной индустрии. Другие дают максимальную эффективность кристаллических солнечных элементов, используя крупные масштабы производства.

Поликристаллические фотоэлементы имеют более низкую стоимость, чем монокристаллические и кпд в диапазоне 14-17%.

Тонкопленочная технология, в отличие от углерод – кремниевых материалов, имеет ряд преимуществ.

Аморфные кремниевые технологии С-Si имеют самый низкий средний коэффициент эффективности, но они наиболее дешевые.

Наибольший потенциал в повышении эффективности имеют медь-индий-галлий-сульфидные (CIGS) и кадмий - теллур (Cd-Te). Многие изготовители продвигают вперед разработку этой технологии и представляют один из наиболее высоких показателей эффективности своих моделей, увеличив его на 19%. Они достигли этого значения, используя несколько методов, в том числе – применение отражающих покрытий, которые могут захватить больше света от угла.

Если обосновывать зависимость не от материала, а от габаритных размеров, то, чем выше эффективность, тем меньше необходимая площадь рабочей поверхности батарей.

Хотя средний процент может показаться немного низким, можно легко изменить оснащение, именно при установке, с достаточной мощностью, чтобы покрыть потребности в энергии.

Факторы, влияющие на кпд солнечных массивов, включают в себя:

Ориентация поверхности монтажа
Крыша в идеале должна смотреть на юг, но и качество дизайна зачастую может компенсировать другие направления.

Угол наклона
Высота и наклон поверхности может повлиять на количество часов солнечного света, полученных в среднем за день в течение года. Крупные коммерческие системы имеют системы солнечного слежения, которая автоматически изменяет угол падения луча солнца в течение дня. Обычно не используется для жилых установок.

Температура
Большинство панелей при эксплуатации нагреваются. Таким образом, обычно должны быть установлены несколько выше уровня крыши, для обеспечения достаточного потока охлаждаемого воздуха.

Тень
В принципе, тень - враг солнечной энергии.При выборе неудачного дизайна при монтировании, даже небольшое количество тени на одной панели может закрыть производство энергии на всех других элементах.Перед тем, как разработать систему, проводится детальный анализ затенения поверхности крепления, для выявления возможных форм тени и солнечного света в течение года. Затем проводится другой детальный анализ, проверяющий сделанные выводы.

Обычные солнечные батареи с высоким кпд гелиосистем промышленных масштабов устанавливаются на сваи над поверхностью земли на 80см, расположены по направления с востока на запад, вдоль движения солнца, под углом 25 градусов.

Постоянно осваивая все новые рубежи, солнечная энергетика движется вперед, поднимая значение КПД на новые уровни. Не секрет, что производительность, которую выдают , не может соперничать с устоявшимися источниками энергии . Виной всему низкая производительность существующих панелей.

Влияние на производительность различных факторов

Повышение коэффициента полезного действия - головная боль всех исследователей, работающих в данном направлении. На сегодняшний день КПД подобных устройств находится в пределах от 15 до 25 %. Процент очень низкий. Солнечные батареи являются крайне прихотливым устройством, стабильная работа которых зависит от множества причин.

К основным факторам, которые могут двояко влиять на производительность, можно отнести:

  • Материал основы солнечных батарей. Самым слабым в этом плане является поликристаллические солнечные батареи, имеющие КПД до 15 %. Перспективными же можно считать модули на основе индий-галлия или кадмий-теллура, имеющие до 20% производительности.
  • Ориентация приемника солнечного потока. В идеале, солнечные батареи своей рабочей поверхностью должны быть обращены к солнцу под прямым углом. В таком положении они должны находиться как можно больший период времени. Для увеличения продолжительности правильного позиционирования модулей в области солнца, более дорогие аналоги имеют в своем арсенале устройство слежения за солнцем, которое поворачивает батареи вслед за движением светила.
  • Перегрев установок. Повышенная температура негативно сказывается на выработке электроэнергии, поэтому при установке необходимо обеспечить достаточную вентиляцию и охлаждение панелей. Этого добиваются устройством вентилируемого зазора между панелью и поверхностью установки.
  • Тень отбрасываемая любым предметом, может значительно испортить показатели КПД всей системы.

Выполнив все требования, и по возможности установив панели в нужном положении, можно получить солнечные батареи с высоким КПД. Именно высоким, а не максимальным. Дело в том, что расчетный, или теоретический КПД, это величина, выведенная в лабораторных условиях, при средних параметрах продолжительности светового дня и количества пасмурных дней.

На практике, конечно же, процент полезного действия будет ниже.

Подбирая солнечные батареи для своего дома, лучше ориентироваться на нижний предел производительности, а не на верхний. Выбрав, таким образом, солнечные модули и все надлежащие для работы компоненты, можно быть уверенным в достаточной мощности устанавливаемой установки. Выбрав нижний предел производительности при расчетах, можно сэкономить на покупке дополнительных панелей, которые покупаются для перестраховки, на случай нехватки мощности.

Обнадеживающие перспективы развития

На сегодняшний день абсолютный рекорд КПД в солнечной энергетике принадлежит Американским разработчикам и составляет 42,8 %. Это значение на 2 % выше предыдущего рекорда 2010 года. Рекордное количество энергии удалось добиться при усовершенствовании солнечной батареи из кристаллического кремния. Уникальностью такого исследования служит тот факт, что все замеры были проведены исключительно в рабочих условиях, то есть не в лабораторных и тепличных помещениях, а в реальных местах предполагаемой установки.

В кулуарах все тех же технических лабораторий не прекращаются работы по увеличению последнего рекорда. Следующая цель разработчиков - граница КПД солнечных модулей в 50 %. С каждым днем человечество все ближе приближается к тому моменту, когда солнечная энергия полностью заменит вредные и дорогие, используемые в настоящее время, источники энергии, и станет в один ряд с такими гигантами как гидроэлектростанции.

Рекордсменом по КПД среди солнечных батарей, из числа так или иначе доступных на рынке сегодня, являются, разработанные Институтом гелиоэнергетических систем Общества имени Фраунгофера в Германии, солнечные батареи на базе многослойных фотоэлементов. Начиная с 2005 года, их коммерческим внедрением занимается компания Soitec.

Размер самих фотоэлементов не превышает 4 миллиметра, а фокусировка солнечного света на них достигается путем применения вспомогательных концентрирующих линз, благодаря которым насыщенный солнечный свет преобразуется в электричество с КПД достигающим 47%.

Батарея содержит четыре p-n перехода, чтобы четыре различные звена фотоэлемента могли эффективно принимать и преобразовывать излучение с конкретной длиной волны, из солнечного света, сконцентрированного в 297,3 раза, в диапазоне длин волн от инфракрасного до ультрафиолетового.

Исследователи под руководством Франка Димирота изначально поставили перед собой задачу вырастить многослойный кристалл, и решение было найдено, - они срастили подложки для выращивания, и в результате был получен кристалл с различными полупроводниковыми слоями, с четырьмя фотоэлектрическими подъячейками.

Многослойные фотоэлементы давно используются на космических аппаратах, но теперь на их основе запущены и солнечные станции уже в 18 странах. Это становится возможным благодаря совершенствованию и удешевлению технологии. В итоге, количество стран, снабженных новыми солнечными станциями, будет расти, и налицо тенденция к конкуренции на рынке промышленных солнечных батарей.

На втором месте - солнечные батареи на базе трехслойных фотоэлементов Sharp, КПД которых достиг 44,4%. Фосфид индия-галлия - первый слой фотоэлемента, арсенид галлия - второй, арсенид индия-галлия - третий слой. Три слоя разделены диэлектриком, который служит для достижения туннельного эффекта.

Концентрация света на фотоэлемент достигается благодаря линзе Френеля, как и у немецких разработчиков, - свет солнца концентрируется в 302 раза, и преобразуется трехслойным полупроводниковым фотоэлементом.

Научные исследования по развитию этой технологии непрерывно велись Sharp, начиная с 2003 года при поддержке NEDO - японской организации общественного управления, содействующей научным исследованиям и развитию, а также распространению промышленных, энергетических и экологических технологий. К 2013 году Sharp был достигнут рекорд в 44,4%.

За два года до Sharp, в 2011 году, американская компания Solar Junction уже выпустила аналогичные батареи, но с КПД 43,5%, элементы которых обладали размером 5 на 5 мм, и фокусировка также производилась линзами, концентрируя свет солнца в 400 раз. Фотоэлементы были трехпереходными на основе германия, и группа планировала даже создать пяти и шестипереходные фотоэлементы, чтобы лучше захватить спектр. Исследования ведутся компанией и по сей день.

Таким образом, максимально рекордным КПД обладают солнечные батареи, выполненные в сочетании с концентраторами, которые, как мы видим, производят и в Европе, и в Азии, и в Америке. Но эти батареи в основном изготавливаются для постройки наземных солнечных электростанций крупных масштабов и для эффективного электроснабжения космических аппаратов.

Недавно был поставлен рекорд в сфере обычных потребительских солнечных панелей, которые доступны большинству желающих снабдить ими, например, крышу дома.

В середине осени 2015 года компания Илона Маска «SolarCity» представила наиболее эффективные потребительские солнечные панели, КПД которых превышает 22%.

Этот показатель подтвердили замеры, проведенные лабораторией Renewable Energy Test Center. Завод в Баффало уже ставит план производства на каждый день - от 9 до 10 тысяч солнечных панелей, точные характеристики которых пока не сообщаются. Компания уже планирует снабжать своими батареями не менее 200000 домов ежегодно.

Дело в том, что оптимизированный технологический процесс позволил предприятию значительно снизить стоимость производства, при этом повысив КПД в 2 раза по сравнению с широко распространенными потребительскими кремниевыми солнечными панелями. Маск уверен, что именно его солнечные панели будут пользоваться наибольшей популярностью у домовладельцев в ближайшем будущем.

Всем прекрасно известно, что чем больше коэффициент полезного действия, тем лучше. Это правило распространяется и на КПД солнечных батарей. Благодаря новым технологиям и способам производства КПД фотоэлементов постоянно растет, правда очень медленно, но главное - прогресс не стоит на месте.

Ниже приведен график достижений эффективности разных производителей, с течением времени. Начиная с середины и до самого верха - полупроводники разрабатывались для новых рекордов и космических задач, стоимость соответствующая. Все что ниже уже доступно и реально приобрести в наше время.

Всем известно про КПД, но мало кто понимает откуда берутся эти значения в процентах и как они рассчитываются. Давайте попробуем разобраться.

Как правило, завод изготовитель указывает эффективность своих собранных модулей и эффективность отдельных солнечных элементов, из которых состоит солнечная батарея. Эти параметры, как и другие характеристики, указываются при так называемых стандартных условиях - STS, основными из них является инсоляция 1000Вт/м² и температура элементов 25°С при которых и снимаются технические характеристики, в том числе и эффективность.

В настоящее время добросовестные изготовители стали тестировать каждую произведенную ими солнечную батареи после сборки и делать распечатку индивидуальных параметров, которую вкладывают к каждой батарее. Делается это для подтверждения качества своих изделий.

Ниже приведена распечатка одной из солнечных батарей SY-100 от Suoyang energy:

Каждый модуль имеет свои индивидуальные характеристики. Если взять две одинаковые панели одной модели они все равно будут иметь немного разные параметры.

Солнечные батареи данного производителя имеют положительную толерантность, в итоге мы имеем 104,617 Вт и эффективность 15,74% (отдельный элемент 18,7%). Как он получил это значение?

Формула расчета эффективности солнечных батарей выглядит следующим образом:

КПД = Pсб/Sсб/10, где:

Pсб – мощность СБ;

Sсб – площадь СБ.

Подставим значения в формулу:

КПД = 104,617/(1,2*0,554)/10 = 15,74%

Все сходится, но возникает еще один вопрос: почему тогда КПД отдельных фотоэлементов выше? Ответ прост – все дело в том, что солнечная батарея состоит из множества фотоэлементов и между ними есть небольшое расстояние, которое не используется для выработки энергии, плюс алюминиевая рама тоже «занимает место», соответственно площадь увеличивается, а КПД при этом снижается.

Ниже приведены фотографии и видео некоторых попыток получения большей эффективности фотоэлементов, с помощью создания элементов сложной формы, принудительного охлаждения солнечных элементов и фокусирования света с помощью линз. Возможно новинки хорошо покажут себя, их пустят в массовое производство, и они станут доступными для нас с вами.

Это гибридная солнечная батарея Vitru, в борьбе за эффективность производитель борется с нагревом элементов. Вода в колбе охлаждает элементы, в следствие чего не снижается напряжение и не падает мощность.

Новинка пока не продается и находится в стадии тестирования, но как заявляет V3Solar, весь секрет в конусной форме и вращения конструкции, благодаря этому ячейки не успевают нагреваться и КПД не снижается в течении всего дня.

Самые эффективные солнечные батареи для дома сегодня — это не что-то сверхнеобычное и новое, а просто отличный альтернативный источник энергии. Но чем больше устройств такого типа появляется на рынке, тем чаще люди задаются вопросом: а какое из них стоит выбрать? Эффективность какой солнечной панели максимально высокая? Но для каждого это понятие звучит словно по-разному, так как характеризуется оно целым рядом отдельных потребностей, об этом и будем говорить дальше.

Начнем с того, что главным вопросом должен быть не «Какие естьсамые эффективные солнечные панели?», а «Где оптимальное сочетание цены и качества? » Скажем, на крыше вашего дома или предприятия имеется свободное пространство, на котором можно поместить около десятка солнечных панелей, а сами вы предстали перед выбором: покупать устройства с первым классом энергоэффективности, то есть «А», или отдать предпочтение более дешевым, но менее эффективным панелям класса «В»? Возможно, ответ вас удивит, но более целесообразным в большинстве случаев будет как раз второй вариант. Если говорить проще, то основная наша задача заключается сейчас в том, чтобы определить, какой из солнечных источников энергии наиболее выгодно использовать в той или иной ситуации.

Модели самых энергоэффективных солнечных батарей

  • Sharp . Показатель эффективности у моделей данной фирмы составляет 44,4 %. Производитель Sharp считается абсолютным мировым лидером по производству солнечных панелей. Эти устройства довольно сложно устроены, солнечные модули здесь трехслойные, на разработку технологии их создания производители потратили несколько лет, за такой период проведя множество исследований и испытаний собственной продукции. Есть и другие, упрощенные модели. Технология создания некоторых панелей Sharp обеспечивает им КПД величиной 37,9 %, что тоже немало. Цена устройств ниже за счет того, что в них не используются технические приспособления для концентрации солнечного света на модуль.
  • Панели от испанского исследовательского института (IES) . Эффективность их работы составляет 32,6 %. Такие современные солнечные батареи с высоким КПД представляют собой устройства с двухслойными модулями, стоимость такого энергоисточника по сравнению с предыдущим производителем низкая, но для обычных жилых домов все равно это чересчур дорого и в каком-то роде бессмысленно.

На самом деле этот список можно продолжать долго, беря во внимание все более и более дешевые модели с понижающимся показателем КПД. Но все остается стандартно: высокая эффективность — соответствующая цена, низкая эффективность — стоит дешево. Случается, что по бешеной стоимости предлагают довольно простенькие модели, вы заметите это при выборе, но вернемся к нашей теме.

Знаменитые фирмы по выпуску солнечных модулей

Бытует мнение, что сегодня изучению работы солнечных панелей посвящается все меньше времени, а на передний план вышло исследование неких фотоэлементов, которые являются главными составными любой альтернативной батареи. Но в этом и суть, что никого не заинтересуют панели со слабыми солнечными модулями, на это ведь в первую очередь обращают внимание большинство покупателей. На давно устоявшемся рынке этих самых модулей уже определились лидеры, стоит сказать и о них.

  1. Одними из первых вспомним устройства, имеющие КПД 36 %, их выпускает фирма Amonix , продукция которой есть практически в каждом магазине с товарами такого рода. Для бытовых целей подобные модули фирмы Amonix обычно не применяются, так как производят их с использованием специальных концентрирующих устройств.
  2. Нельзя пройти мимо солнечных модулей с показателем энергоэффективности 21,5 %, их производителем является известная американская марка Sun Power , существующая на рынке уже довольно давно. В какой-то степени этому предприятию удалось установить своеобразный рекорд эффективности. Например, модель Sun Power SPR-327NE-WHT-D была признана лучшей после полевых испытаний. Причем следующие две позиции в рейтинге списка лучших тоже заняла продукция этой фирмы.
  3. Вспомним и о тонкопленочных модулях с КПД 17,4 % - продукт от Q-Cells . Устройства этой немецкой компании в какой-то момент перестали быть популярными и востребованными, Q-Cells разорилась, но потом ее выкупило корейское предприятие Hanwha и сегодня модули марки снова набирают обороты в плане продаж.
  4. Движемся дальше, то есть к солнечным модулям с меньшей эффективностью. 16,1 % нам дают устройства от First Solar , их производят на основе особенного кадмий-теллурового преобразования. На жилых домах приспособления такого типа не устанавливают, однако это ни в коей мере не влияет на обороты компании, а они очень широкие. First Solar в большей степени популярна на американском рынке: сама компания родом из США. Модули данного бренда используются во многих отраслях промышленности, так что фирма имеет отличные обороты и получила всеобщее признание, ведь создает реально надежный продукт.
  5. В качестве последнего из примеров здесь станут солнечные модули с КПД 15,5 % от фирмы под названием MiaSole . Устройства этой марки признаны лучшими среди гибких модулей. Да, именного такого типа устройства порой просто необходимы для установки в тех или иных сооружениях.

Когда вы ищете мощные солнечные батареидля дома или большого производственного цеха, ориентируйтесь не только на соотношение цена/качество, но и на марку. Производителям, которые зарекомендовали себя как лучшие, стоит доверять в таких серьезных вопросах. Если вы не специалист в сборке и установке солнечных панелей, то с какой тщательностью к выбору ни подходи, исследовать каждую модель на прочность, долговечность, экономность и прочие параметры невозможно, поэтому лучше доверять имени.

На сегодняшний день также было проведено множество экспериментов, их результаты однозначно смогут вам помочь. При поиске солнечных батарей ориентируйтесь также на собственные потребности и платежеспособность - ни к чему устанавливать на жилой дом устройство, разработка которого была сделана для НАСА.