Проводимые электротехнические измерения и используемые электрические машины. Меры, измерительные приборы и методы измерения. Ход выполнения работы

Государственное бюджетное образовательное учреждение среднего профессионального образования «Салаватский индустриальный колледж »

ЭЛЕКТРОТЕХНИЧЕСКИЕ ИЗМЕРЕНИЯ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

и задания для выполнения КОНТРОЛЬНЫх работ для студентов, обучающихся по заочной форме специальности

230113 Компьютерные системы и комплексы

Рассмотрена Утверждаю

на заседании цикловой комиссии Зам. директора по

энергостроительных дисциплин учебной работе

протокол №____от__________ _____________

Методические указания составлены

в соответствии с требованиями

Федерального государственного «______»______________

Образовательного стандарта по

специальности среднего

профессионального образования 230113

Компьютерные системы и комплексы

Председатель цикловой комиссии

Рецензент:

Преподаватель ФГОУ СПО «Салаватский индустриальный колледж»

Содержание

Введение 4

Паспорт рабочей программы учебной дисциплины

Структура и содержание учебной дисциплины

Объем учебной дисциплины и виды учебной работы

Тематический план и содержание учебной дисциплины

«Электротехнические измерения»

Условия реализации учебной дисциплины

Контроль и оценка результатов освоения учебной дисциплины

Методические указания по изучению учебного материала

Список вопросов и заданий к контрольной работе

Список вопросов к экзамену или зачету

Введение

Методические указания предназначены для изучения учебной дисциплины «Электротехнические измерения » студентами заочного отделения, обучающимися по специальности 230113 Компьютерные системы и комплексы (базовый уровень подготовки).

Целью методических указаний является реализация Федерального государственного образовательного стандарта по специальности 230113 Компьютерные системы и комплексы (базовый уровень подготовки) по заочной форме обучения.

Методические указания составлены составлена в объеме, необходимом для усвоения основ электротехнических измерений, принципа действия и основных характеристик средств измерения электрических величин, а также методов их измерения.

В результате изучения данной дисциплины студенты должны научиться выбирать нужный метод измерения, соответствующую измерительную и вспомогательную аппаратуру, приобрести навыки сборки электрических схем, наблюдения записи и обработки полученных результатов, научиться проверять электроизмерительные приборы, уметь составлять, читать, собирать схемы электрических цепей, измерять их параметры, правильно подбирать измерительные приборы для производства измерений.

Проведение измерений является одним из основных средств получения объективных знаний о мире, а накопленный экспериментальный материал это

база для обобщений и установления закономерностей его существования и

развития. Вместе с тем проведение измерений имеет безусловное практическое

значение, во многом на результатах измерений базируется и техническое

развитие, и взаимодействие между отдельными субъектами хозяйственной

деятельности. Среди всех измерений особое место занимают электрические

измерения в силу универсальности электрических сигналов и имеющихся

возможностей для их обработки и хранения, часто при измерении магнитных и

неэлектрических величин выходным сигналом преобразователя является

именно электрический сигнал.

Методические указания предусматривают изучение трех разделов:

Раздел 1. Государственная система обеспечения единства –

раскрываются общие подходы к измерениям вообще и включают сведения о единицах измерений и погрешностях, возникающих при проведении измерений, а также практические рекомендации по обработке результатов измерений, раскрывается соотношение между первичным преобразователем и измерительным прибором, приводится общая классификация электроизмерительных приборов

Раздел 2 Приборы и методы электрических измерений - характеризуются специальные технические средства, используемые при проведении измерений тока, напряжения сопротивления, емкости и индуктивности.

Раздел 3 Исследование формы сигналов – раскрываются методы изучения формы сигналов, а также методы их измерения, кроме этого раскрываются методы измерения фазового сдвига и методы измерения частоты.

Методическими указаниями предусмотрено выполнение лабораторных работ . Их цель – более глубоко усвоить и закрепить теоретический материал, приобрести навыки выполнения простых измерений электрических величин, работы с электроизмерительными приборами. Количество лабораторных работ соответствует учебному плану.

Для успешного усвоения данной дисциплины студент должен уметь самостоятельно изучать учебную литературу , уметь пользоваться словарями

Распределение учебных часов по разделам и темам дисциплины, а также тематика практических работ может быть изменена и обоснована решением методической комиссии при условии сохранения общего количества времени на дисциплину.

Обзорные и практические занятия проводятся в период экзаменационной сессии (а также в межсессионный период) с целью систематизировать, расширить и закрепить полученные знания и получить ответы на возникшие вопросы.

На установочных занятиях студентов знакомят с программой дисциплины, методикой работы над материалом и выполнения домашней контрольной работы.

Материал, выносимый на установочные и обзорные занятия, а также перечень выполняемых практических занятий определяются учебным заведением исходя из соответствующего учебного плана.

Учебным планом предусмотрено проведение контрольной работы, охватывающей все разделы учебной программы . Варианты контрольной работы составлены применительно к действующей программе по дисциплине. Выполнение домашней контрольной работы определяет степень усвоения студентами изучаемого материала и умения применять полученные знания при решении практических задач.

Ознакомление с тематическим планом и методическими указаниями по темам;

Составление ответов на вопросы самоконтроля, приведенные после каждой темы.

Усвоение программного материала дисциплины складывается из:

Самостоятельного изучения учебного материала по рекомендуемой литературе;

Вопросов для самоконтроля;

Выполнения практических работ;

Выполнения контрольной работы.

При изложении материала необходимо соблюдать единство терминологии, обозначений в соответствии с действующими стандартами.

После изучения материала студенты выполняют контрольную работу.

Контрольная работа составлена в 20 вариантах и состоит из двух зданий: теоретической и практической. Теоретическая часть включает 4 вопроса. Практическая часть – решение одной задачи. Номер варианта следует выбирать в соответствии с цифрой номера по списку в учебном журнале.

Контрольная работа выполняется в отдельной тетради в клетку, условия задач переписываются полностью;

В результате освоения учебной дисциплины обучающийся должен уметь:

Составлять схемы включения электроизмерительных приборов;

Выбирать средства электроизмерений;

Измерять с заданной точностью электрические величины;

Определять значение измеряемой величины и показатели точности измерений;

Использовать средства вычислительной техники для обработки и анализа результатов измерений.

В результате освоения учебной дисциплины обучающийся должен знать:

Основные методы и средства измерения электрических величин;

Устройство, принцип действия, назначение средств электрических измерений;

Влияние измерительных приборов на точность измерений;

Характеристики различных электрических сигналов;

Принципы действия, достоинства и недостатки аналоговых электромеханических и электроизмерительных приборов;

Правила включения и снятие показаний с приборов при измерении основных электрических величин;

Принципы действия, подготовку и правила пользования радиоизмерительными приборами: электронными вольтметрами, измерительными генераторами, электронными осциллографами, измерителями нелинейных искажений;

Условные обозначения и маркировку измерений.

1.2 Структура и содержание учебной дисциплины

1.2.1 Объем учебной дисциплины и виды учебной работы

Вид учебной работы

Количество часов

Обязательная аудиторная учебная нагрузка (всего)

в том числе:

лабораторные работы

практические занятия

Самостоятельная работа обучающегося (всего)

в том числе:

Самоподготовка по изучению разделов, тем учебников

Подготовка к лабораторным работам и практическим занятиям

Подготовка сообщений, презентаций

Итоговая аттестация в форме дифференциального зачета


1.2.2. Т ематический план и содержание учебной дисциплины «Электротехнические измерения»

Наименование разделов и тем

Объем часов

Уровень освоения

Раздел 1. Государственная система обеспечения единства

Тема 1.1. Основные виды и методы измерений, их классификация

Определение понятия «измерение». Единицы физических величин. Классификация методов измерений и их краткая характеристика. Прямой и косвенный методы. Методы непосредственной оценки и методы сравнения (дифференциальный, нулевой, замещения). Понятие о средствах измерений: меры основных электрических величин, электроизмерительные приборы, электроизмерительные установки, измерительные преобразователи, информационные системы . Классификация и маркировка электроизмерительных приборов.

Самостоятельная работа студента - подготовка презентации о основных и дополнительных единицах измерения

Тема 1.2. Метрологические показатели средств измерения

Погрешности как характеристики средств измерений. Виды погрешностей и основные причины их возникновения. Определение приборной погрешности на основании класса точности прибора. Предел, цена деления, чувствительность электроизмерительного прибора. Типовая методика проверки электроизмерительных приборов. Общие сведения обработки результатов измерений.

Практическая работа 1 Определить погрешность измерительного прибора

Самостоятельная работа студента - подготовка к практической работе по теме 1.2

Раздел 2 Приборы и методы электрических измерений

Тема 2.1 Механизмы и измерительные цепи электромеханических приборов

Измерительные механизмы магнитоэлектрической, электромагнитной, электродинамической, ферродинамической, электростатической, индукционной систем. Общий принцип создания различных электроизмерительных механизмов. Принцип действия электромеханических приборов. Понятие об измерительных цепях. Измерительная цепь электроизмерительных приборов: вольтметров, амперметров, ваттметров. Условные обозначения, наносимые на приборы.

Самостоятельная работа студента - подготовка презентации по условным обозначениям приборов

Тема 2.2 Приборы и методы измерения напряжения

Методы измерений напряжения. Устройство, принцип действия, технические характеристики, разновидности (классификация), область применения: электромеханических вольтметров, электронных вольтметров, цифровых вольтметров, компенсаторов (концентраторов). Применение комбинированных приборов для измерения напряжения. Выбор прибора для измерения напряжения, включения в цепь, измерение, обработка результата измерения.

Лабораторная работа 1 Измерение напряжения

Самостоятельная работа студента - подготовка к лабораторной работе по теме 2.2

Тема 2.3 Приборы и методы измерения тока

Методы измерения токов. Устройство, принцип действия, технические характеристики, разновидности, область применения основных типов амперметров, токоизмерительных клещей. Расширение пределов измерения с помощью трансформаторов тока и шунтов. Применение комбинированных приборов для измерения тока. Выбор прибора для измерения тока, включение в цепь, измерение, обработка результата измерения.

Лабораторная работа 2 Измерение тока

Самостоятельная работа студента - подготовка к лабораторной работе по теме 1.5

Тема 2.4 Приборы и методы измерения мощности и энергии.

Методы измерения мощности т электроэнергии. Устройство, принцип действия, технические характеристики, разновидности, область применения: ваттметров и электросчётчиков. Выбор приборов для измерения мощности и электроэнергии, включение их в цепь, измерение, обработка результатов измерения. Расширение пределов измерения.

Лабораторная работа 3 Измерение мощности

Лабораторная работа 4 Измерение электрической энергии

Самостоятельная работа студента - подготовка к лабораторным работам по теме 2.4

Тема 2.5 Приборы и методы измерения параметров электрических цепей.

Измерение сопротивлений. Омметры. Метод вольтмет­ра и амперметра: схемы включения, их достоинства и не­достатки. Погрешности метода. Мостовые схемы. Теория одинарного моста постоянного тока. Двойной мост.

Измерение параметров конденсаторов и индуктивностей. Мостовые схемы. Резонансные схемы. Измерения ме­тодом замещения. Погрешности измерений.

Лабораторная работа 5 Измерение сопротивления

Самостоятельная работа студента - подготовка к лабораторной работе по теме 2.5

Тема 2.6 Универсальные и специальные электроизмерительные приборы.

Основные параметры и типы универсальных и специальных электроизмерительных приборов, краткая техническая характеристика. Мультиметры, вольтамперметры, комбинированные приборы. Схема измерительных цепей комбинированного прибора. Цифровые мультиметры, блок-схема, переключатели рода измерений и пределов измерений. Единицы измерений. Входное сопротивление мультиметра. Измерение сопротивлений, токов, напряжений, электрических емкостей, параметров полупроводниковых приборов.

Лабораторная работа 6 Измерение электрических величин (U, I, R) комбинированным прибором

Самостоятельная работа студента - подготовка к лабораторной работе по теме 2.6

Раздел 3 Исследование формы сигналов

Тема 3.1 Осциллографы

Общие сведения и классификация электронно-лучевых осциллографов. Устройство, принцип действия, назначение, технические характеристики, структурная схема электронно-лучевого осциллографа. Использование электронно-лучевого осциллографа для наблюдения электрического сигнала, для измерения амплитуды, частоты и периода периодического сигнала. Использование электроннолучевого осциллографа для измерения частоты и фазового сдвига. Типы осциллографов. Блок-схема электронного осциллографа. Подготовка, калибровка и измерение различных сигналов. Особенности подготовки, калибровки и измерений двухлучевыми, осциллографами-мультиметрами и осциллографами с запоминанием информации. Особенности измерения электронными осциллографами неэлектрических величин Аналоговые осциллографы, цифровые запоминающие осциллографы, цифровые люминофорные осциллографы, цифровые стробоскопические осциллографы, виртуальные осциллографы, портативные осциллографы

Практическая работа 2 Исследование формы сигналов на электронно-лучевом осциллографе

Самостоятельная работа студента - подготовка к лабораторной работе по теме 2.4

Тема 3.2 Приборы и методы измерения частоты и интервала времени

Методы измерения частоты и интервала времени. Устройство, принцип действия, технические характеристики, разновидности, область применения частотомеров. Измерение интервалов времени. Измерительные генераторы. Блок-схема. Генераторы R-C, L-C, на биениях, шума, стандартных сигналов, импульсные. Характеристики сигналов. Правила настройки и подключения. Согласующие устройства. Правила техники безопасности .

Лабораторная работа 7 Измерение частоты переменного тока

Самостоятельная работа студента - подготовка к лабораторной работе по теме 3.2

Тема 3.3 Приборы и методы измерения фазового сдвига.

Методы измерения фазового сдвига. Устройство, принцип действия, технические характеристики, разновидности, область применения фазометров.

Лабораторная работа 8 Измерение угла сдвига фаз

Самостоятельная работа студента - подготовка сообщения презентации о разновидностях фазометров

1.3 Условия реализации учебной дисциплины

Цель работы : изучить методы измерения электрических величин, принцип действия приборов магнитоэлектрической, электромагнитной, электродинамической и индукционной систем, рассчитать погрешность измерений.

Ход выполнения работы:

Объектами электрических измерений являются все электрические и магнитные величины: ток, напряжение, мощность, энергия, магнитный поток и т.д.

Электроизмерительные устройства широко применяются и для измерения неэлектрических величин (температуры, давления и т.д.), которые для этой цели преобразуются в пропорциональные им электрические величины. Такие методы измерений известны под общим названием электрических измерений неэлектрических величин. Применение электрических методов измерений дает возможность относительно просто передавать показания приборов на дальние расстояния (телеизмерение), управлять машинами и аппаратами (автоматическое регулирование), выполнять автоматически математические операции над измеряемыми величинами, записывать (например, на ленту) ход контролируемых процессов и т.д.

По типу отсчетного устройства различают аналоговые и цифровые приборы. В аналоговых приборах измеряемая или пропорциональная ей величина непосредственно воздействует на положение подвижной части, на которой расположено отсчетное устройство. В цифровых приборах подвижная часть отсутствует, а измеряемая или пропорциональная ей величина преобразуется в числовой эквивалент, регистрируемый цифровым индикатором. Микропроцессоры позволяют существенно повысить производительность и точность измерительных приборов, придавая им дополнительные функции обработки результатов измерений. Для исследования сложных объектов применяются автоматические измерительные системы представляющие собой совокупность датчиков, измерительных и регистрирующих приборов, устройств их сопряжения (интерфейс) и управления.

Измерение любой физической величины заключается в ее сравнении посредством физического эксперимента с принятым за единицу значением соответствующей физической величины, называемой мерой. Такое сравнение возможно при помощи либо прибора сравнения, либо прибора непосредственного отсчета, называемого также показывающим прибором. В последнем случае измеряемая величина определяется по шкале прибора, для градуировки которой необходима мера. В зависимости от того, как получаются результаты измерения, различают измерения прямые, косвенные и совокупные.



Если результат измерения непосредственно дает искомое значение исследуемой величины, то такое измерение принадлежит к числу прямых, например, измерение тока амперметром.

Если измеряемую величину приходится определять на основании прямых измерений других физических величин, с которыми измеряемая величина связана определенной зависимостью, то измерение относится к косвенным , как, например, измерение сопротивления элемента электрической цепи при измерении напряжения вольтметром и тока амперметром. Следует иметь в виду, что при косвенном измерении возможно существенное снижение точности по сравнению с точностью при прямом измерении из-за сложения погрешностей прямых измерений величин, входящих в расчетные уравнения.

В зависимости от способа применения приборов и мер принято различать следующие основные методы измерения: непосредственный, нулевой и дифференциальный.

При пользовании методом непосредственного измерения (или непосредственного отсчета) измеряемая величина определяется путем непосредственного отсчета показания измерительного прибора или непосредственного сравнения с мерой данной физической величины (измерение тока амперметром, измерение длины метром). В этом случае точность измерения определяется точностью показывающего прибора.

При измерении нулевым методом значение образцовой (известной) величины (или эффект ее действия) регулируется до равенства со значением измеряемой величины (или эффектом ее действия), которая фиксируется измерительным прибором. Прибор должен быть высокой чувствительности, он именуется нулевым прибором , или нуль – индикатором . Точность измерения нулевым методом очень высока и в основном зависит от точности образцовых мер и чувствительности нулевых приборов. Важнейшие среди нулевых методов электрических измерений – мостовые и компенсационные.



Еще большая точность может быть достигнута при дифференциальных методах измерения. В этих случаях измеряемая величина уравновешивается известной величиной не до полного равновесия, а путем прямого отсчета, измеряется разность измеряемой и известной величин. Дифференциальные методы применяются для сравнения двух величин, значения которых мало различаются.

Точность измерения характеризуется его возможными погрешностями. Эти погрешности при каждом конкретном измерении, не должны превышать некоторого определенного значения. В зависимости от способа числового выражения различают погрешности абсолютные и относительные, а применительно к показывающим приборам – еще и приведенные.

Абсолютная погрешность ∆А это разность между измеренным А из и действительным значениями измеряемой величины:

∆А =А из - А (1)

Например, амперметр показывает А из =9 А , а действительное значение тока А = 8,9 А , следовательно, ∆А = 0,1 А .

Чтобы определить действительное значение величины нужно к измеренному значению прибавить поправку – абсолютную погрешность, взятую с обратным знаком.

Точность измерения оценивается обычно не абсолютной, а относительной погрешностью – выраженным в процентах отношением абсолютной погрешности к действительному значению измеряемой величины:

А так как разница между А и А из обычно относительно мала, то практически в большинстве случаев можно считать, что

. (3)

Для приведенного примера измерения тока относительная погрешность

.

Для оценки точности самих показывающих измерительных приборов служит их приведенная погрешность . Так называется выраженное в процентах отношение абсолютной погрешности показания ∆А к А ном – номинальному значению, соответствующему наибольшему показанию прибора:

, (4)

Если в рассмотренном примере предел измерения амперметра А ном = 10 А , то его приведенная погрешность

Погрешности прибора обуславливаются недостатками самого прибора и внешними влияниями. Приведенная погрешность, зависящая лишь от самого прибора, называется основной погрешностью .

Допускаемая основная погрешность электроизмерительного прибора определяет его класс точности. Обозначением класса точности служит допускаемая основная погрешность приборов, принадлежащих к этому классу: 0,05; 0,1; 0,2; 0,5; 1; 1,5; 2,5; 4. Принадлежность прибора к определенному классу указывает, что основная погрешность прибора на всех делениях шкалы не превышает значения, определяемого классом точности этого прибора (например, у прибора класса 1 допускаемая основная погрешность 1%). Отклонение внешних условий от нормальных вызывает дополнительные погрешности.

В зависимости от чувствительности к внешним магнитным или электрическим полям электроизмерительные приборы делятся на две категории: 1-приборы менее чувствительные и 2 – приборы более чувствительные.

Любой прибор непосредственного отсчета состоит из двух основных частей: измерительного механизма и измерительной цепи (измерительной схемы).

Назначение измерительного механизма – преобразование подводимой к нему электрической энергии в механическую энергию перемещения подвижной части и связанного с ней указателя. Измерительная цепь преобразует измеряемую электрическую величину (напряжение, ток, мощность и т.д.) в пропорциональную ей величину, непосредственно воздействующую на измерительный механизм. Например, в вольтметре измерительная цепь состоит из катушки измерительного механизма и добавочного резистора. При постоянстве сопротивления измерительной цепи ток в измерительном механизме вольтметра пропорционален измеряемому напряжению.

Один и тот же измерительный механизм в соединении с различными измерительными цепями может служить для измерения различных величин.

В зависимости от принципа действия измерительного механизма различают несколько систем показывающих приборов (магнитоэлектрическая, электромагнитная, электродинамическая, индукционная и др.).

В измерительных механизмах магнитоэлектрической системы вращающий момент создается взаимодействием измеряемого постоянного тока в катушке механизма с полем постоянного магнита. Существует два основных типа приборов магнитоэлектрической системы: приборы с подвижной катушкой (подвижной рамкой) и приборы с подвижным магнитом, причем первые применяются значительно чаще, чем вторые.

В магнитоэлектрическом механизме с подвижной катушкой (рис.1) последняя установлена на опорах и может поворачиваться в воздушном зазоре магнитной цепи постоянного магнита 1.

Магнитную цепь измерительного механизма образуют магнитопровод 2, полюсные наконечники 3 и цилиндрический сердечник 4, которые изготовляются из магнитомягкого материала.

Угол между направлениями вектора магнитной индукции В в воздушном зазоре и тока I в активной части проводников длиной l подвижной катушки равен 90 0 . Следовательно, на каждый из проводников действует электромагнитная сила:

а на подвижную часть механизма – вращающий момент:

где d – диаметр каркаса катушки с числом витков ω и площадью поперечного сечения S = l d; k вр = ω S d – коэффициент пропорциональности.

Так как противодействующий момент, создаваемый спиральными пружинами, прямо пропорционален углу закручивания, т.е. М пр = k пр α , то угол поворота катушки при равенстве моментов М вр = М пр прямо пропорционален измеряемому току:

,

где С пр – постоянная прибора («цена деления»).

Постоянный магнит создает сильное магнитное поле в воздушном зазоре магнитной цепи прибора (0,2-0,3 Тл), и даже при малых значениях измеряемых токов можно получить достаточный вращающий момент. Поэтому магнитоэлектрические приборы весьма чувствительны, внешние магнитные поля влияют на их показания, и их собственное потребление энергии относительно мало.

Для расширения пределов измерения приборы магнитоэлектрической системы, а также приборы других систем снабжают набором резисторов для делителей измеряемых величин. Резистор, включаемый последовательно с катушкой измерительного механизма, называется добавочным резистором ; резистор, который включается параллельно с катушкой измерительного механизма или с ветвью, содержащей катушку и добавочный резистор, называется шунтом .

При изменении направления тока изменяется и направление вращающего момента. При переменном токе на подвижную часть прибора действуют быстро чередующиеся вращающие моменты противоположного направления. Их результирующее действие не изменит положение подвижной части прибора. Для измерения переменного тока магнитоэлектрический измерительный механизм должен быть соединен с преобразователем. Преобразователем может быть, например, двухполупериодный выпрямитель.

В измерительных механизмах электромагнитной системы вращающий момент обусловлен действием магнитного поля измеряемого тока в неподвижной катушке прибора на подвижный ферромагнитный якорь. Механические силы в подобном устройстве стремятся переместить якорь так, чтобы энергия магнитного поля устройства стала возможно большей.

Магнитное поле прибора возбуждается самим измеряемым током и относительно слабое, так как большая часть пути магнитного потока происходит в воздухе. По этой причине у измерительного механизма электромагнитной системы малая чувствительность. Из-за слабости собственного магнитного поля прибор приходится защищать от внешних магнитных влияний. Для этого применяют ферромагнитные экраны или же измерительные механизмы изготовляются астатическими.

Общий принцип астатического устройства измерительной системы заключается в следующем. Число катушек в механизме удваивается, причем обе катушки в равной мере участвуют в образовании вращающего момента, но их собственные магнитные поля имеют противоположные направления. Всякое внешнее однородное магнитное поле, усиливая магнитное поле одной катушки, настолько же ослабляет магнитное поле второй катушки. В результате внешнее магнитное поле не изменяет общий вращающий момент измерительного механизма.

Класс точности электромагнитных приборов обычно не выше 1,5, главным образом из-за влияния гистерезиса (остаточного намагничивания), что особенно сказывается при измерениях постоянного тока, и потерь энергии на перемагничивание при измерениях переменного тока.

Электромагнитный измерительный механизм обладает рядом ценных свойств. Неподвижную катушку с током легко выполнить с достаточным запасом сечения проводов на случай перегрузок. Приборы этой системы допускают большие перегрузки, дешевы и просты по устройству. Электромагнитными приборами измеряют преимущественно переменные напряжения и токи (невысоких частот). В промышленных установках переменного тока низкой частоты большинство амперметров и вольтметров – приборы электромагнитной системы.

В электродинамических измерительных механизмах для создания вращающего момента используется взаимодействие двух катушек с токами.

Измерительный механизм этой системы состоит в основном из неподвижной и подвижной катушек. Противодействующий момент создают специальные пружины, которые вместе с тем служат для подвода тока в подвижную катушку. Последняя под действием электромагнитных сил стремится занять такое положение, при котором направление его магнитного поля совпадает с направлением поля неподвижной катушки (максимальная энергия суммарного магнитного поля).

Так как в приборе две катушки, то можно существенно расширить область применения этого механизма. В зависимости от назначения прибора изменяется и характер его шкалы.

В вольтметре обе катушки с большими числами витков обычно соединяются последовательно между собой и последовательно с добавочным резистором.

В электродинамических амперметрах на токи до 0,5 А подвижная и неподвижная катушки соединяются последовательно. При большем значении измеряемого тока I подвижная и неподвижная катушки соединяются параллельно.

Электродинамические приборы пригодны для измерений в цепях как постоянного, так и переменного тока, причем в обоих случаях шкала у приборов одна и та же.

В электродинамическом приборе измеряемые токи возбуждают относительно слабое магнитное поле в воздухе. Поэтому для получения достаточного вращающего момента нужны катушки измерительного механизма с большими числами витков и собственное потребление энергии прибором относительно велико. Из-за слабого магнитного поля прибор чувствителен к внешним магнитным влияниям; для защиты от этих влияний приборы имеют экраны. Так как условия охлаждения плохие (теплоотдача через слой воздуха), то электродинамические механизмы не допускают сколько-нибудь значительной перегрузки (в особенности амперметры). Наконец приборы этой системы дорогие. Однако благодаря отсутствию в магнитном поле ферромагнитных сердечников – элементов с нелинейными свойствами – точность электродинамического прибора может быть высокой – класса 0,2 и даже 0,1.

Индукционная измерительная система основана на использовании вращающегося магнитного поля. Если синусоидальные токи в двух катушках, определенным образом ориентированных в пространстве, не совпадают по фазе, то в части пространства результирующее магнитное поле этих двух катушек будет вращающимся вокруг некоторой оси. Если на этой оси находится тело из материала с малым удельным сопротивлением, то в нем возникнут вихревые токи. Взаимодействие вихревых токов с вращающимся магнитным полем создает вращающий момент, под действием которого тело придет в движение.

В индукционном измерительном механизме вращающий момент создается воздействием результирующего магнитного поля двух электромагнитов переменного тока на подвижную часть – алюминиевый диск, в котором это поле индуктирует вихревые токи. Электромагниты возбуждаются измеряемыми переменными токами. Поэтому значение вращающего момента зависит от значений токов в обоих электромагнитах и угла сдвига фаз между ними. Это ценное свойство индукционного измерительного механизма положено в основу построения приборов для измерения мощности и энергии в цепях переменного тока.

Контрольные вопросы и задания

Перечислите области применения электрических методов измерений.

В чем различие между аналоговыми и цифровыми приборами?

Что понимают под измерением физической величины?

Какие измерения относят к прямым, какие к косвенным?

Поясните сущность непосредственного, нулевого и дифференциального методов измерения.

Запишите определения и формулы абсолютной и относительной погрешностей.

Что означает класс точности прибора?

Из каких основных частей состоит прибор непосредственного отсчета?

Поясните принципы действия приборов магнитоэлектрической, электромагнитной, электродинамической и индукционной системы.

Определите абсолютную и приведенную погрешность вольтметра, рассчитанного на 250 В, если действительное значение напряжения 200 В, а вольтметр показывает 206,25 В.

Практическая работа № 10

ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ
измерение электрических величин, таких, как напряжение, сопротивление, сила тока, мощность. Измерения производятся с помощью различных средств - измерительных приборов, схем и специальных устройств. Тип измерительного прибора зависит от вида и размера (диапазона значений) измеряемой величины, а также от требуемой точности измерения. В электрических измерениях используются основные единицы системы СИ: вольт (В), ом (Ом), фарада (Ф), генри (Г), ампер (А) и секунда (с).
ЭТАЛОНЫ ЕДИНИЦ ЭЛЕКТРИЧЕСКИХ ВЕЛИЧИН
Электрическое измерение - это нахождение (экспериментальными методами) значения физической величины, выраженного в соответствующих единицах (например, 3 А, 4 В). Значения единиц электрических величин определяются международным соглашением в соответствии с законами физики и единицами механических величин. Поскольку "поддержание" единиц электрических величин, определяемых международными соглашениями, сопряжено с трудностями, их представляют "практическими" эталонами единиц электрических величин. Такие эталоны поддерживаются государственными метрологическими лабораториями разных стран. Например, в США юридическую ответственность за поддержание эталонов единиц электрических величин несет Национальный институт стандартов и технологии. Время от времени проводятся эксперименты по уточнению соответствия между значениями эталонов единиц электрических величин и определениями этих единиц. В 1990 государственные метрологические лаборатории промышленно развитых стран подписали соглашение о согласовании всех практических эталонов единиц электрических величин между собой и с международными определениями единиц этих величин. Электрические измерения проводятся в соответствии с государственными эталонами единиц напряжения и силы постоянного тока, сопротивления постоянному току, индуктивности и емкости. Такие эталоны представляют собой устройства, имеющие стабильные электрические характеристики, или установки, в которых на основе некоего физического явления воспроизводится электрическая величина, вычисляемая по известным значениям фундаментальных физических констант. Эталоны ватта и ватт-часа не поддерживаются, так как более целесообразно вычислять значения этих единиц по определяющим уравнениям, связывающим их с единицами других величин. См. также ЕДИНИЦЫ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ВЕЛИЧИН .
ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ
Электроизмерительные приборы чаще всего измеряют мгновенные значения либо электрических величин, либо неэлектрических, преобразованных в электрические. Все приборы делятся на аналоговые и цифровые. Первые обычно показывают значение измеряемой величины посредством стрелки, перемещающейся по шкале с делениями. Вторые снабжены цифровым дисплеем, который показывает измеренное значение величины в виде числа. Цифровые приборы в большинстве измерений более предпочтительны, так как они более точны, более удобны при снятии показаний и, в общем, более универсальны. Цифровые универсальные измерительные приборы ("мультиметры") и цифровые вольтметры применяются для измерения со средней и высокой точностью сопротивления постоянному току, а также напряжения и силы переменного тока. Аналоговые приборы постепенно вытесняются цифровыми, хотя они еще находят применение там, где важна низкая стоимость и не нужна высокая точность. Для самых точных измерений сопротивления и полного сопротивления (импеданса) существуют измерительные мосты и другие специализированные измерители. Для регистрации хода изменения измеряемой величины во времени применяются регистрирующие приборы - ленточные самописцы и электронные осциллографы, аналоговые и цифровые.
ЦИФРОВЫЕ ПРИБОРЫ
Во всех цифровых измерительных приборах (кроме простейших) используются усилители и другие электронные блоки для преобразования входного сигнала в сигнал напряжения, который затем преобразуется в цифровую форму аналого-цифровым преобразователем (АЦП). Число, выражающее измеренное значение, выводится на светодиодный (СИД), вакуумный люминесцентный или жидкокристаллический (ЖК) индикатор (дисплей). Прибор обычно работает под управлением встроенного микропроцессора, причем в простых приборах микропроцессор объединяется с АЦП на одной интегральной схеме. Цифровые приборы хорошо подходят для работы с подключением к внешнему компьютеру. В некоторых видах измерений такой компьютер переключает измерительные функции прибора и дает команды передачи данных для их обработки.
Аналого-цифровые преобразователи. Существуют три основных типа АЦП: интегрирующий, последовательного приближения и параллельный. Интегрирующий АЦП усредняет входной сигнал по времени. Из трех перечисленных типов это самый точный, хотя и самый "медленный". Время преобразования интегрирующего АЦП лежит в диапазоне от 0,001 до 50 с и более, погрешность составляет 0,1-0,0003%. Погрешность АЦП последовательного приближения несколько больше (0,4-0,002%), но зато время преобразования - от ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ10мкс до ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ1 мс. Параллельные АЦП - самые быстродействующие, но и наименее точные: их время преобразования порядка 0,25 нс, погрешность - от 0,4 до 2%.
Методы дискретизации. Сигнал дискретизируется по времени путем быстрого измерения его в отдельные моменты времени и удержания (сохранения) измеренных значений на время преобразования их в цифровую форму. Последовательность полученных дискретных значений может выводиться на дисплей в виде кривой, имеющей форму сигнала; возводя эти значения в квадрат и суммируя, можно вычислять среднеквадратическое значение сигнала; их можно использовать также для вычисления времени нарастания, максимального значения, среднего по времени, частотного спектра и т.д. Дискретизация по времени может производиться либо за один период сигнала ("в реальном времени"), либо (с последовательной или произвольной выборкой) за ряд повторяющихся периодов.
Цифровые вольтметры и мультиметры. Цифровые вольтметры и мультиметры измеряют квазистатическое значение величины и указывают его в цифровой форме. Вольтметры непосредственно измеряют только напряжение, обычно постоянного тока, а мультиметры могут измерять напряжение постоянного и переменного тока, силу тока, сопротивление постоянному току и иногда температуру. Эти самые распространенные контрольно-измерительные приборы общего назначения с погрешностью измерения от 0,2 до 0,001% могут иметь 3,5- или 4,5-значный цифровой дисплей. "Полуцелый" знак (разряд) - это условное указание на то, что дисплей может показывать числа, выходящие за пределы номинального числа знаков. Например, 3,5-значный (3,5-разрядный) дисплей в диапазоне 1-2 В может показывать напряжение до 1,999 В.
Измерители полных сопротивлений. Это специализированные приборы, измеряющие и показывающие емкость конденсатора, сопротивление резистора, индуктивность катушки индуктивности или полное сопротивление (импеданс) соединения конденсатора или катушки индуктивности с резистором. Имеются приборы такого типа для измерения емкости от 0,00001 пФ до 99,999 мкФ, сопротивления от 0,00001 Ом до 99,999 кОм и индуктивности от 0,0001 мГ до 99,999 Г. Измерения могут проводиться на частотах от 5 Гц до 100 МГц, хотя ни один прибор не перекрывает всего диапазона частот. На частотах, близких к 1 кГц, погрешность может составлять лишь 0,02%, но точность снижается вблизи границ диапазонов частоты и измеряемых значений. Большинство приборов могут показывать также производные величины, такие, как добротность катушки или коэффициент потерь конденсатора, вычисляемые по основным измеренным значениям.
АНАЛОГОВЫЕ ПРИБОРЫ
Для измерения напряжения, силы тока и сопротивления на постоянном токе применяются аналоговые магнитоэлектрические приборы с постоянным магнитом и многовитковой подвижной частью. Такие приборы стрелочного типа характеризуются погрешностью от 0,5 до 5%. Они просты и недороги (пример - автомобильные приборы, показывающие ток и температуру), но не применяются там, где требуется сколько-нибудь значительная точность.
Магнитоэлектрические приборы. В таких приборах используется сила взаимодействия магнитного поля с током в витках обмотки подвижной части, стремящаяся повернуть последнюю. Момент этой силы уравновешивается моментом, создаваемым противодействующей пружиной, так что каждому значению тока соответствует определенное положение стрелки на шкале. Подвижная часть имеет форму многовитковой проволочной рамки с размерами от 3ґ5 до 25ґ35 мм и делается как можно более легкой. Подвижная часть, установленная на каменных подшипниках или подвешенная на металлической ленточке, помещается между полюсами сильного постоянного магнита. Две спиральные пружинки, уравновешивающие крутящий момент, служат также токопроводами обмотки подвижной части. Магнитоэлектрический прибор реагирует на ток, проходящий по обмотке его подвижной части, а потому представляет собой амперметр или, точнее, миллиамперметр (так как верхний предел диапазона измерений не превышает примерно 50 мА). Его можно приспособить для измерения токов большей силы, присоединив параллельно обмотке подвижной части шунтирующий резистор с малым сопротивлением, чтобы в обмотку подвижной части ответвлялась лишь малая доля полного измеряемого тока. Такое устройство пригодно для токов, измеряемых многими тысячами ампер. Если последовательно с обмоткой присоединить добавочный резистор, то прибор превратится в вольтметр. Падение напряжения на таком последовательном соединении равно произведению сопротивления резистора на ток, показываемый прибором, так что его шкалу можно проградуировать в вольтах. Чтобы сделать из магнитоэлектрического миллиамперметра омметр, нужно присоединять к нему последовательно измеряемые резисторы и подавать на это последовательное соединение постоянное напряжение, например от батареи питания. Ток в такой схеме не будет пропорционален сопротивлению, а потому необходима специальная шкала, корректирующая нелинейность. Тогда можно будет производить по шкале прямой отсчет сопротивления, хотя и с не очень высокой точностью.
Гальванометры. К магнитоэлектрическим приборам относятся и гальванометры - высокочувствительные приборы для измерения крайне малых токов. В гальванометрах нет подшипников, их подвижная часть подвешена на тонкой ленточке или нити, используется более сильное магнитное поле, а стрелка заменена зеркальцем, приклеенным к нити подвеса (рис. 1). Зеркальце поворачивается вместе с подвижной частью, а угол его поворота оценивается по смещению отбрасываемого им светового зайчика на шкале, установленной на расстоянии около 1 м. Самые чувствительные гальванометры способны давать отклонение по шкале, равное 1 мм, при изменении тока всего лишь на 0,00001 мкА.

РЕГИСТРИРУЮЩИЕ ПРИБОРЫ
Регистрирующие приборы записывают "историю" изменения значения измеряемой величины. К таким приборам наиболее распространенных типов относятся ленточные самописцы, записывающие пером кривую изменения величины на диаграммной бумажной ленте, аналоговые электронные осциллографы, развертывающие кривую процесса на экране электронно-лучевой трубки, и цифровые осциллографы, запоминающие однократные или редко повторяющиеся сигналы. Основное различие между этими приборами - в скорости записи. Ленточные самописцы с их движущимися механическими частями наиболее подходят для регистрации сигналов, изменяющихся за секунды, минуты и еще медленнее. Электронные осциллографы же способны регистрировать сигналы, изменяющиеся за время от миллионных долей секунды до нескольких секунд.
ИЗМЕРИТЕЛЬНЫЕ МОСТЫ
Измерительный мост - это обычно четырехплечая электрическая цепь, составленная из резисторов, конденсаторов и катушек индуктивности, предназначенная для определения отношения параметров этих компонентов. К одной паре противоположных полюсов цепи подключается источник питания, а к другой - нуль-детектор. Измерительные мосты применяются только в тех случаях, когда требуется наивысшая точность измерения. (Для измерений со средней точностью лучше пользоваться цифровыми приборами, поскольку они проще в обращении.) Наилучшие трансформаторные измерительные мосты переменного тока характеризуются погрешностью (измерения отношения) порядка 0,0000001%. Простейший мост для измерения сопротивления носит имя своего изобретателя Ч.Уитстона.
Двойной измерительный мост постоянного тока. К резистору трудно подсоединить медные провода, не привнеся при этом сопротивления контактов порядка 0,0001 Ом и более. В случае сопротивления 1 Ом такой токоподвод вносит ошибку порядка всего лишь 0,01%, но для сопротивления 0,001 Ом ошибка будет составлять 10%. Двойной измерительный мост (мост Томсона), схема которого представлена на рис. 2, предназначен для измерения сопротивления эталонных резисторов малого номинала. Сопротивление таких четырехполюсных эталонных резисторов определяют как отношение напряжения на их потенциальных зажимах (р1, р2 резистора Rs и р3, p4 резистора Rx на рис. 2) к току через их токовые зажимы (с1, с2 и с3, с4). При такой методике сопротивление присоединительных проводов не вносит ошибки в результат измерения искомого сопротивления. Два дополнительных плеча m и n исключают влияние соединительного провода 1 между зажимами с2 и с3. Сопротивления m и n этих плеч подбирают так, чтобы выполнялось равенство M/m = N/n. Затем, изменяя сопротивление Rs, сводят разбаланс к нулю и находят Rx = Rs(N /M).



Измерительные мосты переменного тока. Наиболее распространенные измерительные мосты переменного тока рассчитаны на измерения либо на сетевой частоте 50-60 Гц, либо на звуковых частотах (обычно вблизи 1000 Гц); специализированные же измерительные мосты работают на частотах до 100 МГц. Как правило, в измерительных мостах переменного тока вместо двух плеч, точно задающих отношение напряжений, используется трансформатор. К исключениям из этого правила относится измерительный мост Максвелла - Вина.
Измерительный мост Максвелла - Вина. Такой измерительный мост позволяет сравнивать эталоны индуктивности (L) с эталонами емкости на не известной точно рабочей частоте. Эталоны емкости применяются в измерениях высокой точности, поскольку они конструктивно проще прецизионных эталонов индуктивности, более компактны, их легче экранировать, и они практически не создают внешних электромагнитных полей. Условия равновесия этого измерительного моста таковы: Lx = R2R3C1 и Rx = (R2R3) /R1 (рис. 3). Мост уравновешивается даже в случае "нечистого" источника питания (т.е. источника сигнала, содержащего гармоники основной частоты), если величина Lx не зависит от частоты.



Трансформаторный измерительный мост. Одно из преимуществ измерительных мостов переменного тока - простота задания точного отношения напряжений посредством трансформатора. В отличие от делителей напряжения, построенных из резисторов, конденсаторов или катушек индуктивности, трансформаторы в течение длительного времени сохраняют постоянным установленное отношение напряжений и редко требуют повторной калибровки. На рис. 4 представлена схема трансформаторного измерительного моста для сравнения двух однотипных полных сопротивлений. К недостаткам трансформаторного измерительного моста можно отнести то, что отношение, задаваемое трансформатором, в какой-то степени зависит от частоты сигнала. Это приводит к необходимости проектировать трансформаторные измерительные мосты лишь для ограниченных частотных диапазонов, в которых гарантируется паспортная точность.



где Т - период сигнала Y(t). Максимальное значение Yмакс - это наибольшее мгновенное значение сигнала, а среднее абсолютное значение YAA - абсолютное значение, усредненное по времени. При синусоидальной форме колебаний Yэфф = 0,707Yмакс и YAA = 0,637Yмакс.
Измерение напряжения и силы переменного тока. Почти все приборы для измерения напряжения и силы переменного тока показывают значение, которое предлагается рассматривать как эффективное значение входного сигнала. Однако в дешевых приборах зачастую на самом деле измеряется среднее абсолютное или максимальное значение сигнала, а шкала градуируется так, чтобы показание соответствовало эквивалентному эффективному значению в предположении, что входной сигнал имеет синусоидальную форму. Не следует упускать из виду, что точность таких приборов крайне низка, если сигнал несинусоидален. Приборы, способные измерять истинное эффективное значение сигналов переменного тока, могут быть основаны на одном из трех принципов: электронного умножения, дискретизации сигнала или теплового преобразования. Приборы, основанные на первых двух принципах, как правило, реагируют на напряжение, а тепловые электроизмерительные приборы - на ток. При использовании добавочных и шунтовых резисторов всеми приборами можно измерять как ток, так и напряжение.
Электронное умножение. Возведение в квадрат и усреднение по времени входного сигнала в некотором приближении осуществляются электронными схемами с усилителями и нелинейными элементами для выполнения таких математических операций, как нахождение логарифма и антилогарифма аналоговых сигналов. Приборы такого типа могут иметь погрешность порядка всего лишь 0,009%.
Дискретизация сигнала. Сигнал переменного тока преобразуется в цифровую форму с помощью быстродействующего АЦП. Дискретизированные значения сигнала возводятся в квадрат, суммируются и делятся на число дискретных значений в одном периоде сигнала. Погрешность таких приборов составляет 0,01-0,1%.
Тепловые электроизмерительные приборы. Наивысшую точность измерения эффективных значений напряжения и тока обеспечивают тепловые электроизмерительные приборы. В них используется тепловой преобразователь тока в виде небольшого откачанного стеклянного баллончика с нагревательной проволочкой (длиной 0,5-1 см), к средней части которой крохотной бусинкой прикреплен горячий спай термопары. Бусинка обеспечивает тепловой контакт и одновременно электроизоляцию. При повышении температуры, прямо связанном с эффективным значением тока в нагревательной проволочке, на выходе термопары возникает термо-ЭДС (напряжение постоянного тока). Такие преобразователи пригодны для измерения силы переменного тока с частотой от 20 Гц до 10 МГц. На рис. 5 показана принципиальная схема теплового электроизмерительного прибора с двумя подобранными по параметрам тепловыми преобразователями тока. При подаче на вход схемы напряжения переменного тока Vас на выходе термопары преобразователя ТС1 возникает напряжение постоянного тока, усилитель А создает постоянный ток в нагревательной проволочке преобразователя ТС2, при котором термопара последнего дает такое же напряжение постоянного тока, и обычный прибор постоянного тока измеряет выходной ток.



С помощью добавочного резистора описанный измеритель тока можно превратить в вольтметр. Поскольку тепловые электроизмерительные приборы непосредственно измеряют токи лишь от 2 до 500 мА, для измерения токов большей силы необходимы резисторные шунты.
Измерение мощности и энергии переменного тока. Мощность, потребляемая нагрузкой в цепи переменного тока, равна среднему по времени произведению мгновенных значений напряжения и тока нагрузки. Если напряжение и ток изменяются синусоидально (как это обычно и бывает), то мощность Р можно представить в виде P = EI cosj, где Е и I - эффективные значения напряжения и тока, а j - фазовый угол (угол сдвига) синусоид напряжения и тока. Если напряжение выражается в вольтах, а ток в амперах, то мощность будет выражена в ваттах. Множитель cosj, называемый коэффициентом мощности, характеризует степень синхронности колебаний напряжения и тока. С экономической точки зрения, самая важная электрическая величина - энергия. Энергия W определяется произведением мощности на время ее потребления. В математической форме это записывается так:

Если время (t1 - t2) измеряется в секундах, напряжение е - в вольтах, а ток i - в амперах, то энергия W будет выражена в ватт-секундах, т.е. джоулях (1 Дж = 1 ВтЧс). Если же время измеряется в часах, то энергия - в ватт-часах. На практике электроэнергию удобнее выражать в киловатт-часах (1 кВт*ч = 1000 ВтЧч).
Счетчики электроэнергии с разделением времени. В счетчиках электроэнергии с разделением времени используется весьма своеобразный, но точный метод измерения электрической мощности. Такой прибор имеет два канала. Один канал представляет собой электронный ключ, который пропускает или не пропускает входной сигнал Y (или обращенный входной сигнал -Y) на фильтр нижних частот. Состоянием ключа управляет выходной сигнал второго канала с отношением временных интервалов "закрыто"/"открыто", пропорциональным его входному сигналу. Средний сигнал на выходе фильтра равен среднему по времени произведению двух входных сигналов. Если один входной сигнал пропорционален напряжению на нагрузке, а другой - току нагрузки, то выходное напряжение пропорционально мощности, потребляемой нагрузкой. Погрешность таких счетчиков промышленного изготовления составляет 0,02% на частотах до 3 кГц (лабораторных - порядка всего лишь 0,0001% при 60 Гц). Как приборы высокой точности они применяются в качестве образцовых счетчиков для поверки рабочих средств измерения.
Дискретизирующие ваттметры и счетчики электроэнергии. Такие приборы основаны на принципе цифрового вольтметра, но имеют два входных канала, дискретизирующих параллельно сигналы тока и напряжения. Каждое дискретное значение e(k), представляющее мгновенные значения сигнала напряжения в момент дискретизации, умножается на соответствующее дискретное значение i(k) сигнала тока, полученное в тот же момент времени. Среднее по времени таких произведений есть мощность в ваттах:


Сумматор, накапливающий произведения дискретных значений с течением времени, дает полную электроэнергию в ватт-часах. Погрешность счетчиков электроэнергии может составлять всего лишь 0,01%.
Индукционные счетчики электроэнергии. Индукционный счетчик представляет собой не что иное, как маломощный электродвигатель переменного тока с двумя обмотками - токовой и обмоткой напряжения. Проводящий диск, помещенный между обмотками, вращается под действием крутящего момента, пропорционального потребляемой мощности. Этот момент уравновешивается токами, наводимыми в диске постоянным магнитом, так что частота вращения диска пропорциональна потребляемой мощности. Число оборотов диска за то или иное время пропорционально полной электроэнергии, полученной за это время потребителем. Число оборотов диска считает механический счетчик, который показывает электроэнергию в киловатт-часах. Приборы такого типа широко применяются в качестве бытовых счетчиков электроэнергии. Их погрешность, как правило, составляет 0,5%; они отличаются большим сроком службы при любых допустимых уровнях тока.
Большая советская энциклопедия

электрические измерения - — [В.А.Семенов. Англо русский словарь по релейной защите] Тематики релейная защита EN electrical measurementelectricity metering … Справочник технического переводчика

Э. измерительными аппаратами называют приборы и приспособления, служащие для измерения Э., а также и магнитных величин. Большая часть измерений сводится к определению силы тока, напряжения (разности потенциалов) и количества электричества.… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Процесс нахождения опытным путём значений физических величин в аэродинамическом эксперименте с помощью соответствующих технических средств. Различают 2 типа И. а.: статические и динамические. При статических И. а. определяются постоянные или… … Энциклопедия техники - Рис. 1. измерения аэродинамические — процесс нахождения опытным путём значений физических величин в аэродинамическом эксперименте с помощью соответствующих технических средств. Различают 2 типа И. а.: статические и динамические. При… … Энциклопедия «Авиация»

измерения аэродинамические - Рис. 1. измерения аэродинамические — процесс нахождения опытным путём значений физических величин в аэродинамическом эксперименте с помощью соответствующих технических средств. Различают 2 типа И. а.: статические и динамические. При… … Энциклопедия «Авиация»

Электрические - 4. Электрические нормы проектирования радиотрансляционных сетей. М., Связьиздат, 1961. 80 с.

ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ И ПРИБОРЫ

3.1. Роль измерений в электротехнике

В любой области знаний измерения имеют исключительно боль­шое значение, но особенно важны они в электротехнике.

Механические, тепловые, световые явления человек ощущает при помощи своих органов чувств. Мы, хотя и приблизительно, можем оценить размеры предметов, скорость их движения, яркость светящихся тел. Долгое время именно так люди изучали звездное небо.

Но мы с вами совершенно одинаково реагируем на проводник, ток которого равен 10 мА или 1 А (т. е. в 100 раз больше).

Мы видим форму проводника, его цвет, но наши органы чувств не позволяют оценить величину тока. Точно так же мы совершенно равнодушны к магнитному полю, созданному катушкой, электри­ческому полю между обкладками конденсатора. Медицина устано­вила определенное влияние электрических и магнитных полей на организм человека, но это влияние мы не ощущаем, и величину электромагнитного поля оценить не можем.

Исключение составляют только очень сильные поля. Но и здесь неприятное покалывание, которое можно заметить, гуляя око высоковольтной линии передачи, не позволит нам даже приблизительно оценить величину электрического напряжения в линии.

Все это заставило физиков и инженеров с первых шагов исследования и применения электричества пользоваться электроизмерительными приборами.

Приборы - глаза и уши инженера-электрика. Без них он глух и слеп и совершенно беспомощен. Миллионы электроизмерительных приборов установлены на заводах, в научно-исследовательских ла­бораториях. В каждой квартире тоже есть измерительный прибор - электрический счетчик.

Показания (сигналы) электроизмерительных приборов исполь­зуют для оценки работы различных электротехнических устройств и состояния электрооборудования, в частности состояния изоляции. Электроизмерительные приборы отличаются высокой чувствительностью, точностью измерений, надежностью и простотой исполне­ния.

Успехи электроприборостроения привели к тому что его услугами стали пользоваться и другие отрасли. Электрические методы стали при­менять для определения размеров, скоростей, массы, температуры. Появилась даже самостоятельная дисциплина “Электрические изме­рения неэлектрических величин ”.

Показания электроизмерительных приборов можно передавать на дальние расстояния (телеизмерение), они могут использоваться для непосредственного воздействия на производственные процессы (ав­томатическое регулирование); с их помощью регистрируют ход кон­тролируемых процессов, например путем записи на ленте и т.д.

Применение полупроводниковой техники существенно расши­рило применение электроизмерительных приборов.

Измерить какую-либо физическую величину - значит найти ее значение опытным путем с помощью специальных технических средств.

Стендовые испытания новейшего оборудования немыслимы без электрических измерений.Так, при испытании турбогенератора мощностью 1200 МВт на заводе “Электросила” измерения производились в 1500 его точках.

Развитие электроизмерительных приборов привело к использо­ванию в них микроэлектроники, что позволяет измерять физичес­кие величины с погрешностью не более 0,005-0,0005 %.

3.2. Основные понятия, термины и определения

Результаты теоретической деятельности без проверки экспери­ментом недостоверны. Измерительная техника при эксперименте дает результаты, которые указывают на качество и количество про­дукции, правильность ведения технологических процессов, распре­деления, потребления и изготовления. При этом электрические из­мерения за счет малого потребления энергии, возможности передачи измерительных величин на расстояние, большой скорости измере­ний и передачи, а также высокой точности и чувствительности ока­зались предпочтительнее.

Электрические измерения и приборы, методы и средства обес­печения их единства, способы достижения требуемой точности - все это относится к метрологии, а принципы и методы установления оптимальных норм и правил взаимодействия - к стандартизации .

В Российской Федерации стандартизация и метрология объедине­ны в единой государственной службе - Государственном комитете стандартов. В 1963 г. ГОСТ 9867-61 ввел Международную систему единиц (СИ) на базе метра (м ), килограмма (кг ), секунды (с ), ам­пера (А ), кельвина (К ) и канделы (кд ).

Вопросы электрических измерений и приборов проще воспри­нимаются, если известны содержание терминов и определений.

Метрология - наука об измерениях, методах и средствах обеспе­чения их единства, способах достижения требуемой точности.

Измерение - нахождение значения физической величины опыт­ным путем с помощью специальных технических средств.

Результат измерения - значение физической величины, найден­ной путем измерения.

Мера - средство измерений, предназначенное для воспроизве­дения физической величины заданного размера (например, едини­цы измерения света - кд).

Измерительный преобразователь - средство измерений для выра­ботки сигнала измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки (или хранения), но не поддающейся непосредственному восприятию наблюдателем. Первичный измерительный преобразователь - датчик.

Измерительный прибор - средство измерений, предназначенное для выработки сигнала измерительной информации в форме, дос­тупной для непосредственного восприятия наблюдателем.

3.3. Методы измерений. Погрешность измерений

Для различных измеряемых электрических величин существуют свои средства измерений , так называемые меры. Например, мерами ЭДС служат нормальные элементы, мерами электрического сопротивления - измерительные резисторы, мерами индуктивности измерительные катушки индуктивности, мерами электрической емкости - конденсаторы постоянной емкости и т. д.

На практике для измерения различных физических величин применяют различные методы. Последние в зависимости от способа получения результата делятся на прямые и косвенные . При прямом измерении значение величины получают непосредственно из опыт­ных данных. При косвенном измерении искомое значение величины находят путем подсчета с использованием известной зависимости между этой величиной и величинами, получаемыми на основании прямых измерений. Так, определить сопротивление участка цепи можно путем измерения протекающего по нему тока и приложенно­го напряжения с последующим подсчетом этого сопротивления из закона Ома. Наибольшее распространение в электроизмерительной технике получили методы прямого измерения, так как они обычно проще и требуют меньших затрат времени.

В электроизмерительной технике используют также метод срав­нения , в основе которого лежит сравнение измеряемой величины с воспроизводимой мерой. Метод сравнения может быть компенса­ционным и мостовым. Примером применения компенсационного метода служит измерение напряжения путем сравнения его значе­ния со значением ЭДС нормального элемента. Примером мостово­го метода является измерение сопротивления с помощью четырех-плечной мостовой схемы. Измерения компенсационным и мостовым методами очень точные, но для их проведения требуется более сложная измерительная техника.

Учебное пособие предназначено для студентов образовательных учреждений среднего профессионального образования, обучающихся по специальности «Монтаж, наладка и эксплуатация электрооборудования предприятий и гражданских зданий». Оно может быть полезно студентам смежных специальностей, программа образования которых включает вопросы измерений в энергетических системах с напряжением до 1000 В и в низкочастотных электрических цепях.

Определение и классификация измерений, методов и средств измерений. Единицы физических величин.
Федеральный закон «Об обеспечении единства измерений» от 27.04.1993 осуществляет регулирование отношений, связанных с обеспечением единства измерений в Российской Федерации, в соответствии с Конституцией РФ.
Основные статьи Закона устанавливают:
основные понятия, применяемые в Законе;
организационную структуру государственного управления обеспечением единства измерений;
нормативные документы по обеспечению единства измерений;
единицы величин и государственные эталоны единиц величин;
средства и методики измерений.
Закон определяет Государственную метрологическую службу и другие службы обеспечения единства измерений, метрологические службы государственных органов управления и юридических лиц, а также виды и сферы распределения государственного метрологического контроля и надзора. Отдельные статьи Закона содержат положения по калибровке и сертификации средств измерений и устанавливают виды ответственности за нарушение Закона. Становление рыночных отношений наложило отпечаток на статью Закона, которая определяет основы деятельности метрологических служб государственных органов управления и юридических лиц. Вопросы деятельности структурных подразделений метрологических служб на предприятиях стимулируются чисто экономическими методами.

В тех сферах, которые не контролируются государственными органами, создается Российская система калибровки, также направленная на обеспечение единства измерений. Госстандарт РФ назначил центральным органом Российской системы калибровки Управление технической политики в области метрологии.

Оглавление
Введение
Глава 1. ОСНОВНЫЕ СВЕДЕНИЯ О МЕТРОЛОГИИ. МЕТОДЫ ИЗМЕРЕНИЙ И ПОГРЕШНОСТИ
1.1.Определение и классификация измерений, методов и средств измерений. Единицы физических величин
1.2.Погрешности измерений
1.3.Систематические погрешности
1.4.Случайные погрешности
1.5.Правила и формы представления результатов измерений
1.6.Характеристики электроизмерительных приборов
Глава 2. ЕДИНСТВО ИЗМЕРЕНИЙ. МЕРЫ ОСНОВНЫХ ЭЛЕКТРИЧЕСКИХ ВЕЛИЧИН
2.1.Обеспечение единства измерений
2.2.Поверка средств измерений
2.3.Калибровка средств измерений
2.4.Методы поверки (калибровки) и поверочные схемы
2.5.Сертификация средств измерений
2.6.Классификация мер
2.7.Меры единиц электрических величин
2.8.Эталоны единиц электрических величин
Глава 3. ОБЩИЕ СВЕДЕНИЯ ОБ АНАЛОГОВЫХ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫХ ПРИБОРАХ
3.1.Общие вопросы
3.2.Технические требования
3.3.Отсчетные устройства
3.4.Опорные устройства и устройства для создания противодействующего момента
3.5.Устройства для создания успокаивающего момента
Глава 4. ПРЕОБРАЗОВАТЕЛИ ТОКОВ И НАПРЯЖЕНИЙ
4.1.Шунты и добавочные резисторы
4.2.Измерительные трансформаторы. Гальваническая развязка
4.3.Измерительные трансформаторы тока
4.4.Измерительные трансформаторы напряжения
4.5.Датчики Холла
Глава 5. ИЗМЕРИТЕЛЬНЫЕ МЕХАНИЗМЫ ПРИБОРОВ И ИХ ПРИМЕНЕНИЕ
5.1.Общие сведения
5.2.Магнитоэлектрические механизмы
5.3.Амперметры и вольтметры магнитоэлектрической системы
5.4.Электродинамические и ферродинамические механизмы
5.5.Амперметры и вольтметры электродинамической и ферродинамической систем
5.6.Ваттметры электродинамической и ферродинамической систем
5.7.Механизмы электромагнитной системы
5.8.Электростатические механизмы и их применение
Глава 6. ЭЛЕКТРИЧЕСКИЕ ИЗМЕРИТЕЛЬНЫЕ ЦЕПИ
6.1. Общие сведения
6.2.Основные уравнения и свойства измерительных преобразователей
6.3.Измерительная цепь как преобразователь
6.4.Методы коррекции погрешностей
6.5.Мостовые цепи
6.6.Компенсационные цепи
Глава 7. ЭЛЕКТРОННЫЕ ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ
7.1.Электронные аналоговые вольтметры
7.2.Электронно-лучевые осциллографы
7.3.Цифровые осциллографы
Глава 8. ЦИФРОВЫЕ ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ И АНАЛОГО-ЦИФРОВЫЕ ПРЕОБРАЗОВАТЕЛИ
8.1.Основные понятия
8.2.Аналого-цифровые преобразователи и цифровые вольтметры
Глава 9. ИЗМЕРЕНИЕ ТОКОВ И НАПРЯЖЕНИЙ
9.1.Методы измерения постоянных токов и напряжений
9.2.Методы измерения переменных токов и напряжений промышленной частоты
Глава 10. ИЗМЕРЕНИЕ ПАРАМЕТРОВ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ И КОМПОНЕНТОВ
Глава 11. ИЗМЕРЕНИЕ МОЩНОСТИ
11.1. Общие сведения
11.2.Измерение мощности в цепях постоянного тока
11.3.Измерение активной мощности в цепях переменного тока
Глава 12. ИЗМЕРЕНИЕ ЭНЕРГИИ
12.1.Одноэлементный индукционный счетчик
12.2.Двух- и трехэлементные индукционные счетчики
12.3.Схемы включения счетчиков
12.4.Электронные счетчики
Глава 13. ИЗМЕРЕНИЕ ФАЗОВОГО СДВИГА, ЧАСТОТЫ И ПОКАЗАТЕЛЕЙ КАЧЕСТВА ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ. ЭЛЕКТРОМАГНИТНАЯ СОВМЕСТИМОСТЬ
13.1.Измерение фазового сдвига
13.2.Измерение частоты
13.3.Электромагнитная совместимость. Измерение показателей качества электрической энергии
Глава 14. ИЗМЕРИТЕЛЬНО-ИНФОРМАЦИОННЫЕ СИСТЕМЫ
14.1.Общие сведения
14.2.Основные структуры ИИС
14.3.Комплекс КАМАК (САМАС)
14.4.Приборный интерфейс МЭК 625.1
Литература.

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Электротехнические измерения, Хромоин П.К., 2008 - fileskachat.com, быстрое и бесплатное скачивание.