Основные этапы записи модели линейного программирования. Решение задач линейного программирования графическим методом

Линейное программирование

Линейное программирование - математическая дисциплина, посвящённая теории и методам решения экстремальных задач на множествах -мерного векторного пространства , задаваемых системами линейных уравнений и неравенств.

Линейное программирование является частным случаем выпуклого программирования, которое в свою очередь является частным случаем математического программирования . Одновременно оно - основа нескольких методов решения задач целочисленного и нелинейного программирования . Одним из обобщений линейного программирования является дробно-линейное программирование .

Многие свойства задач линейного программирования можно интерпретировать также как свойства многогранников и таким образом геометрически формулировать и доказывать их.

История

Метод внутренних точек был впервые упомянут И. И. Дикиным в 1967 году .

Задачи

Основной (стандартной) задачей линейного программирования называется задача нахождения минимума линейной целевой функции (линейной формы) вида :

при условиях

, .

Задача линейного программирования будет иметь канонический вид , если в основной задаче вместо первой системы неравенств имеет место система уравнений :

,

Основную задачу можно свести к канонической путём введения дополнительных переменных.

Задачи линейного программирования наиболее общего вида (задачи со смешанными ограничениями: равенствами и неравенствами, наличием переменных, свободных от ограничений) могут быть приведены к эквивалентным (имеющим то же множество решений) заменами переменных и заменой равенств на пару неравенств .

Легко заметить, что задачу нахождения максимума можно заменить задачей нахождения минимума, взяв коэффициенты с обратным знаком.

Примеры задач

Максимальное паросочетание

Рассмотрим задачу о максимальном паросочетании в двудольном графе : есть несколько юношей и девушек, причём для каждых юноши и девушки известно, симпатичны ли они друг другу. Нужно поженить максимальное число пар со взаимной симпатией.

Введём переменные , которые соответствуют паре из -того юноши и -той девушки и удовлетворяют ограничениям:

с целевой функцией . Можно показать, что среди оптимальных решений этой задачи найдётся целочисленное. Переменные, равные 1, будут соответствовать парам, которые следует поженить.

Максимальный поток

Пусть имеется граф (с ориентированными рёбрами), в котором для каждого ребра указана его пропускная способность. И заданы две вершины: сток и исток. Нужно указать для каждого ребра, сколько через него будет протекать жидкости (не больше его пропускной способности) так, чтобы максимизировать суммарный поток из истока в сток (жидкость не может появляться или исчезать во всех вершинах, кроме стока и истока).

Возьмём в качестве переменных - количество жидкости, протекающих через -тое ребро. Тогда

,

где - пропускная способность -того ребра. Эти неравенства надо дополнить равенством количества втекающей и вытекающей жидкости для каждой вершины, кроме стока и истока. В качестве функции естественно взять разность между количеством вытекающей и втекающей жидкости в истоке.

Обобщение предыдущей задачи - максимальный поток минимальной стоимости. В этой задаче даны стоимости для каждого ребра и нужно среди максимальных потоков выбрать поток с минимальной стоимостью. Эта задача сводится к двум задачам линейного программирования: сначала нужно решить задачу о максимальном потоке, а потом добавить к этой задаче ограничение , где - величина максимального потока, и решить задачу с новой функцией - стоимостью потока.

Эти задачи могут быть решены быстрее, чем общими алгоритмами решения задач линейного программирования, за счёт особой структуры уравнений и неравенств.

Транспортная задача

Имеется некий однородный груз, который нужно перевести с складов на заводов. Для каждого склада известно, сколько в нём находится груза , а для каждого завода известна его потребность в грузе. Стоимость перевозки пропорциональна расстоянию от склада до завода (все расстояния от -го склада до -го завода известны). Требуется составить наиболее дешёвый план перевозки.

Решающими переменными в данном случае являются - количества груза, перевезённого из -го склада на -й завод. Они удовлетворяют ограничениям:

Целевая функция имеет вид: , которую надо минимизировать.

Игра с нулевой суммой

Есть матрица размера . Первый игрок выбирает число от 1 до , второй - от 1 до . Затем они сверяют числа и первый игрок получает очков, а второй очков ( - число, выбранное первым игроком, - вторым). Нужно найти оптимальную стратегию первого игрока.

Пусть в оптимальной стратегии, например, первого игрока число нужно выбирать с вероятностью . Тогда оптимальная стратегия является решением следующей задачи линейного программирования:

, , (),

в которой нужно максимизировать функцию . Значение в оптимальном решении будет математическим ожиданием выигрыша первого игрока в наихудшем случае.

Алгоритмы решения

Наиболее известным и широко применяемым на практике для решения общей задачи линейного программирования (ЛП) является симплекс-метод . Несмотря на то, что симплекс-метод является достаточно эффективным алгоритмом, показавшим хорошие результаты при решении прикладных задач ЛП, он является алгоритмом с экспоненциальной сложностью . Причина этого состоит в комбинаторном характере симплекс-метода, последовательно перебирающего вершины многогранника допустимых решений при поиске оптимального решения.

Первый полиномиальный алгоритм , метод эллипсоидов , был предложен в 1979 году советским математиком Л. Хачияном , разрешив таким образом проблему, долгое время остававшуюся нерешённой. Метод эллипсоидов имеет совершенно другую, некомбинаторную, природу, нежели симплекс-метод. Однако в вычислительном плане этот метод оказался неперспективным. Тем не менее, сам факт полиномиальной сложности задач привёл к созданию целого класса эффективных алгоритмов ЛП - методов внутренней точки , первым из которых был алгоритм Н. Кармаркара, предложенный в 1984 году . Алгоритмы этого типа используют непрерывную трактовку задачи ЛП, когда вместо перебора вершин многогранника решений задачи ЛП осуществляется поиск вдоль траекторий в пространстве переменных задачи, не проходящих через вершины многогранника. Метод внутренних точек, который, в отличие от симплекс-метода, обходит точки из внутренней части области допустимых значений, использует методы логарифмических барьерных функций нелинейного программирования , разработанные в 1960-х годах Фиако (Fiacco) и МакКормиком (McCormick).

См. также

  • Графический метод решения задачи линейного программирования

Примечания

Литература

  • Томас Х. Кормен и др. Глава 29. Линейное программирование // Алгоритмы: построение и анализ = INTRODUCTION TO ALGORITHMS. - 2-е изд. - М .: «Вильямс», 2006. - С. 1296. - ISBN 5-8459-0857-4
  • Акулич И.Л. Глава 1. Задачи линейного программирования, Глава 2. Специальные задачи линейного программирования // Математическое программирование в примерах и задачах. - М .: Высшая школа, 1986. - 319 с. - ISBN 5-06-002663-9
  • Карманов В. Г. Математическое программирование. - 3-е издание. - М .: Наука, 1986. - 288 с.
  • Данциг Джордж Бернард «Воспоминания о начале линейного программирования»

Ссылки

  • - Бесплатный оптимизационный пакет, предназначенный для решения задач линейного, целочисленного и целевого программирования.
  • Вершик А. М. «O Л. В. Канторовиче и линейном программировании »
  • Большакова И. В., Кураленко М. В. «Линейное программирование. Учебно-методическое пособие к контрольной работе ».
  • Барсов А. С. «Что такое линейное программирование », Популярные лекции по математике , Гостехиздат, 1959.
  • М. Н. Вялый Линейные неравенства и комбинаторика . - МЦНМО , 2003.

Wikimedia Foundation . 2010 .

  • Зальтен, Феликс
  • Глагов, Мартина

Смотреть что такое "Линейное программирование" в других словарях:

    линейное программирование - — линейное программирование Область математического программирования, посвященная теории и методам решения экстремальных задач, характеризующихся линейной зависимостью между… … Справочник технического переводчика

    Линейное программирование

    Линейное программирование - область математического программирования, посвященная теории и методам решения экстремальных задач, характеризующихся линейной зависимостью между переменными. В самом общем виде задачу Л.п. можно записать так. Даны… … Экономико-математический словарь

Назначение сервиса . Онлайн-калькулятор предназначен для решения задач линейного программирования симплексным методом путем перехода к КЗЛП и СЗЛП . При этом задача на минимум целевой функции сводятся к задаче на поиск максимума через преобразование целевой функции F*(X) = -F(X) . Также имеется возможность составить двойственную задачу .

Решение происходит в три этапа:

  1. Переход к КЗЛП. Любая ЗЛП вида ax ≤ b , ax ≥ b , ax = b (F(X) → extr) сводится к виду ax = b , F(X) → max ;
  2. Переход к СЗЛП. КЗЛП вида ax = b сводится к виду ax ≤ b , F(X) → max ;
  3. Решение симплексным методом;

Инструкция . Выберите количество переменных и количество строк (количество ограничений). Полученное решение сохраняется в файле Word .

Количество переменных 2 3 4 5 6 7 8 9 10
Количество строк (количество ограничений) 1 2 3 4 5 6 7 8 9 10

Переход от задачи минимизации целевой функции к задаче максимизации

Задача минимизации целевой функции F(X) легко может быть сведена к задаче максимизации функции F*(X) при тех же ограничениях путем введения функции: F*(X) = -F(X) . Обе задачи имеют одно и то же решение X*, и при этом min(F(X)) = -max(F*(X)) .
Проиллюстрируем этот факт графически:
F(x) → min
F(x) → max
Для оптимизации функции цели используем следующие понятия и методы.
Опорный план – план с определёнными через свободные базисными переменными.
Базисный план – опорный план с нулевыми базисными переменными.
Оптимальный план – базисный план, удовлетворяющий оптимальной функции цели (ФЦ).

Ведущий (разрешающий) элемент – коэффициент свободной неизвестной, которая становится базисной, а сам коэффициент преобразуется в единицу.
Направляющая строка – строка ведущего элемента, в которой расположена с единичным коэффициентом базисная неизвестная, исключаемая при преобразовании (строка с минимальным предельным коэффициентом, см. далее).
Направляющий столбец – столбец ведущего элемента, свободная неизвестная которого переводится в базисную (столбец с максимальной выгодой, см. далее).

Переменные x 1 , …, x m , входящие с единичными коэффициентами только в одно уравнение системы, с нулевыми - в остальные, называются базисными или зависимыми . В канонической системе каждому уравнению соответствует ровно одна базисная переменная. Переход осуществляется с помощью метода Гаусса-Жордана . Основная идея этого метода состоит в сведении системы m уравнений с n неизвестными к каноническому виду при помощи элементарных операций над строками.
Остальные n-m переменных (x m +1 ,…, x n) называются небазисными или независимыми переменными .

Базисное решение называется допустимым базисным решением , если значения входящих в него базисных переменных x j ≥0, что эквивалентно условию неотрицательности b j ≥0.
Допустимое базисное решение является угловой точкой допустимого множества S задачи линейного программирования и называется иногда опорным планом .
Если среди неотрицательных чисел b j есть равные нулю, то допустимое базисное решение называется вырожденным (вырожденной угловой точкой) и соответствующая задача линейного программирования называется вырожденной .

Пример №1 . Свести задачу линейного программирования к стандартной ЗЛП.
F(X) = x 1 + 2x 2 - 2x 3 → min при ограничениях:
4x 1 + 3x 2 - x 3 ≤10
- 2x 2 + 5x 3 ≥3
x 1 + 2x 3 =9
Для приведения ЗЛП к канонической форме необходимо:
1. Поменять знак у целевой функции. Сведем задачу F(X) → min к задаче F(X) → max. Для этого умножаем F(X) на (-1). В первом неравенстве смысла (≤) вводим базисную переменную x 4 ; во втором неравенстве смысла (≥) вводим базисную переменную x 5 со знаком минус.
4x 1 + 3x 2 -1x 3 + 1x 4 + 0x 5 = 10
0x 1 -2x 2 + 5x 3 + 0x 4 -1x 5 = 3
1x 1 + 0x 2 + 2x 3 + 0x 4 + 0x 5 = 9
F(X) = - x 1 - 2x 2 + 2x 3
Переход к СЗЛП .
Расширенная матрица системы ограничений-равенств данной задачи:

4 3 -1 1 0 10
0 -2 5 0 -1 3
1 0 2 0 0 9

Приведем систему к единичной матрице методом жордановских преобразований.
1. В качестве базовой переменной можно выбрать x 4 .
2. В качестве базовой переменной выбираем x 2 .
Разрешающий элемент РЭ=-2. Строка, соответствующая переменной x 2 , получена в результате деления всех элементов строки x 2 на разрешающий элемент РЭ=-2. На месте разрешающего элемента получаем 1. В остальных клетках столбца x 2 записываем нули. Все остальные элементы определяются по правилу прямоугольника. Представим расчет каждого элемента в виде таблицы:
4-(0 3):-2 3-(-2 3):-2 -1-(5 3):-2 1-(0 3):-2 0-(-1 3):-2 10-(3 3):-2
0: -2 -2: -2 5: -2 0: -2 -1: -2 3: -2
1-(0 0):-2 0-(-2 0):-2 2-(5 0):-2 0-(0 0):-2 0-(-1 0):-2 9-(3 0):-2

Получаем новую матрицу:
4 0 6 1 / 2 1 -1 1 / 2 14 1 / 2
0 1 -2 1 / 2 0 1 / 2 -1 1 / 2
1 0 2 0 0 9

3. В качестве базовой переменной выбираем x 3 .
Разрешающий элемент РЭ=2. Строка, соответствующая переменной x 3 , получена в результате деления всех элементов строки x 3 на разрешающий элемент РЭ=2. На месте разрешающего элемента получаем 1. В остальных клетках столбца x 3 записываем нули. Все остальные элементы определяются по правилу прямоугольника. Представим расчет каждого элемента в виде таблицы:
4-(1 6 1 / 2):2 0-(0 6 1 / 2):2 6 1 / 2 -(2 6 1 / 2):2 1-(0 6 1 / 2):2 -1 1 / 2 -(0 6 1 / 2):2 14 1 / 2 -(9 6 1 / 2):2
0-(1 -2 1 / 2):2 1-(0 -2 1 / 2):2 -2 1 / 2 -(2 -2 1 / 2):2 0-(0 -2 1 / 2):2 1 / 2 -(0 -2 1 / 2):2 -1 1 / 2 -(9 -2 1 / 2):2
1: 2 0: 2 2: 2 0: 2 0: 2 9: 2

Получаем новую матрицу:
3 / 4 0 0 1 -1 1 / 2 -14 3 / 4
1 1 / 4 1 0 0 1 / 2 9 3 / 4
1 / 2 0 1 0 0 4 1 / 2

Поскольку в системе имеется единичная матрица, то в качестве базисных переменных принимаем X = (4,2,3).
Соответствующие уравнения имеют вид:
3 / 4 x 1 + x 4 - 1 1 / 2 x 5 = -14 3 / 4
1 1 / 4 x 1 + x 2 + 1 / 2 x 5 = 9 3 / 4
1 / 2 x 1 + x 3 = 4 1 / 2
Выразим базисные переменные через остальные:
x 4 = - 3 / 4 x 1 + 1 1 / 2 x 5 -14 3 / 4
x 2 = - 1 1 / 4 x 1 - 1 / 2 x 5 +9 3 / 4
x 3 = - 1 / 2 x 1 +4 1 / 2
Подставим их в целевую функцию:
F(X) = - x 1 - 2(- 1 1 / 4 x 1 - 1 / 2 x 5 +9 3 / 4) + 2(- 1 / 2 x 1 +4 1 / 2)
или

Система неравенств:
- 3 / 4 x 1 + 1 1 / 2 x 5 -14 3 / 4 ≥ 0
- 1 1 / 4 x 1 - 1 / 2 x 5 +9 3 / 4 ≥ 0
- 1 / 2 x 1 +4 1 / 2 ≥ 0
Приводим систему неравенств к следующему виду:
3 / 4 x 1 - 1 1 / 2 x 5 ≤ -14 3 / 4
1 1 / 4 x 1 + 1 / 2 x 5 ≤ 9 3 / 4
1 / 2 x 1 ≤ 4 1 / 2
F(X) = 1 / 2 x 1 + x 5 -10 1 / 2 → max
Упростим систему.
3 / 4 x 1 - 1 1 / 2 x 2 ≤ -14 3 / 4
1 1 / 4 x 1 + 1 / 2 x 2 ≤ 9 3 / 4
1 / 2 x 1 ≤ 4 1 / 2
F(X) = 1 / 2 x 1 + x 2 -10 1 / 2 → max

Пример №2 . Найдите сначала графическим методом, а затем симплекс-методом решение задачи
F(X) = x 1 + x 2 - x 3 + x 5 +15 → max (min) при ограничениях:
-3x 1 + x 2 + x 3 =3
4x 1 + 2x 2 - x 4 =12
2x 1 - x 2 + x 5 =2
x 1 ≥ 0, x 2 ≥ 0, x 3 ≥ 0, x 4 ≥ 0, x 5 ≥ 0

Линейное программирование сформировалось как отдельный раздел прикладной математики в 40 – 50-х гг. ХХ в. благодаря работам советского ученого, лауреата Нобелевской премии Л.В. Канторовича. В 1939 году им была опубликована работа «Математические методы организации и планирования производства», в которой он с использованием математики решил экономические задачи о наилучшей загрузке машин, раскрое материалов с наименьшими расходами, распределении грузов по нескольким видам транспорта и другие, предложив метод разрешающих множителей 8 .

Л.В. Канторович впервые сформулировал такие широко используемые экономико-математические понятия, как оптимальный план, оптимальное распределение ресурсов, объективно обусловленные оценки, указав многочисленные области экономики, где они могут быть применены.

Понятие линейного программирования было введено американским математиком Д. Данцигом, который в 1949 г. предложил алгоритм решения задачи линейного программирования, получивший название «симплексный метод».

Математическое программирование, в которое входит линейное программирование, в настоящее время является одним из направлений исследования операций. В зависимости от вида решаемых задач в нем выделяют такие области, как линейное, нелинейное, дискретное, динамическое программирование и др. Термин «программирование» введен в связи с тем, что неизвестные переменные, которые находятся в процессе решения задачи, обычно определяют программу или план работы некоторого экономического объекта.

В классическом математическом анализе исследуются общая постановка задачи определения условного экстремума. Однако в связи с развитием промышленного производства, транспорта, агропромышленного комплекса, банковского сектора традиционных результатов математического анализа оказалось недостаточно. Потребности практики и развитие вычислительной техники привели к необходимости определения оптимальных решений при анализе сложных экономических систем.

Главным инструментом для решения таких задач является математическое моделирование. При этом сначала строится простая модель, затем проводится ее исследование, позволяющее понять, какие из интегрирующих свойств объекта не улавливаются формальной схемой, после чего за счет усложнения модели обеспечивается большая ее адекватность реальности. Во многих случаях первым приближением к действительности является модель, в которой все зависимости между переменными, характеризующими состояние объекта, являются линейными. Практика показывает, что достаточное количество экономических процессов достаточно полно описывается линейными моделями. Следовательно, линейное программирование как аппарат, позволяющий отыскивать условный экстремум на множестве, заданном линейными уравнениями и неравенствами, играет важную роль при анализе этих процессов.

Линейное программирование получило широкое развитие в связи с тем, что было установлено: ряд задач сферы планирования и управления может быть сформулирован в виде задач линейного программирования, для решения которых имеются эффективные методы. По оценкам специалистов примерно 80–85 % всех решаемых на практике задач оптимизации относится к задачам линейного программирования.

Созданный математический аппарат в сочетании с компьютерными программами, производящими трудоемкие расчеты, позволяет широко использовать модели линейного программирования в экономической науке и практике.

Определение 1 9 . Линейное программирование (ЛП) – это область математического программирования, являющегося разделом математики и изучающего методы поиска экстремальных (наибольших и наименьших) значений линейной функции конечного числа переменных, на неизвестные которой наложены линейные ограничения.

Эта линейная функция называется целевой, а ограничения, которые представляют количественные соотношения между переменными, выражающие условия и требования экономической задачи и математически записываются в виде уравнений или неравенств, называются системой ограничений.

К задачам линейного программирования сводится широкий круг вопросов планирования экономических процессов, где ставится задача поиска наилучшего (оптимального) решения.

Общая задача линейного программирования (ЗЛП) состоит в нахождении экстремального значения (максимума или минимума) линейной функции, называемой целевой 10:

от n переменных x 1 , x 2 , …, х n при наложенных функциональных ограничениях:

(3.2)

и прямых ограничениях (требовании неотрицательности переменных)

, (3.3)

где a ij , b i , c j – заданные постоянные величины.

В системе ограничений (3.2) знаки «меньше или равно», «равно», «больше или равно» могут встречаться одновременно.

ЗЛП в более краткой записи имеет вид:

,

при ограничениях:

;

.

Вектор `Х = (x 1 , x 2 , …, х n ) компоненты которого удовлетворяют функциональным и прямым ограничениям задачи называют планом (или допустимым решением ) ЗЛП.

Все допустимые решения образуют область определения задачи линейного программирования, или область допустимых решений (ОДР). Допустимое решение, которое доставляет максимум или минимум целевой функции f (`X ), называется оптимальным планом задачи и обозначается f (`X * ), где ` Х * =(x 1 * , x 2 * , …, х n * ).

Еще одна форма записи ЗЛП:

,

где f (`X * ) есть максимальное (минимальное) значение f (С , х ), взятое по всем решениям, входящим в множество возможных решений Х .

Определение 2 11 . Математическое выражение целевой функции и ее ограничений называются математической моделью экономической задачи.

Для составления математической модели необходимо:

1) обозначить переменные;

2) составить целевую функцию исходя из цели задачи;

3) записать систему ограничений, учитывая имеющие в условии задачи показатели и их количественные закономерности.

Аннотация: Данная лекция раскрывает ряд вопросов, посвященных линейному программированию как одному из разделов математического программирования; в частности, формулирует основные виды задач линейного программирования, раскрывает отличия данных задач от классических задач математического анализа; знакомит с различными формами записи данных задач, осуществляет их постановку и исследование структуры. Наиболее полно раскрыт вопрос о решении задач линейного программирования симплекс-методом.

1. Понятие математического программирования

– это математическая дисциплина, в которой разрабатываются методы отыскания экстремальных значений целевой функции среди множества ее возможных значений, определяемых ограничениями.

Наличие ограничений делает задачи принципиально отличными от классических задач математического анализа по отысканию экстремальных значений функции. Методы математического анализа для поиска экстремума функции в задачах математического программирования оказываются непригодными.

Для решения задач математического программирования разработаны и разрабатываются специальные методы и теории. Так как при решении этих задач приходится выполнять значительный объем вычислений, то при сравнительной оценке методов большое значение придается эффективности и удобству их реализации на ЭВМ.

Можно рассматривать как совокупность самостоятельных разделов, занимающихся изучением и разработкой методов решения определенных классов задач.

В зависимости от свойств целевой функции и функции ограничений все задачи математического программирования делятся на два основных класса:

  • задачи линейного программирования,
  • задачи нелинейного программирования .

Если целевая функция и функции ограничений – линейные функции, то соответствующая задача поиска экстремума является задачей линейного программирования. Если хотя бы одна из указанных функций нелинейна, то соответствующая задача поиска экстремума является задачей нелинейного программирования .

2. Понятие линейного программирования. Виды задач линейного программирования

Линейное программирование (ЛП) – один из первых и наиболее подробно изученных разделов математического программирования . Именно линейное программирование явилось тем разделом, с которого и начала развиваться сама дисциплина " математическое программирование ". Термин "программирование" в названии дисциплины ничего общего с термином "программирование (т.е. составление программы) для ЭВМ" не имеет, т.к. дисциплина " линейное программирование " возникла еще до того времени, когда ЭВМ стали широко применяться для решения математических, инженерных, экономических и др. задач.

Термин " линейное программирование " возник в результате неточного перевода английского " linear programming ". Одно из значений слова "programming" - составление планов, планирование. Следовательно, правильным переводом английского " linear programming " было бы не " линейное программирование ", а "линейное планирование", что более точно отражает содержание дисциплины. Однако, термины линейное программирование , нелинейное программирование, математическое программирование и т.д. в нашей литературе стали общепринятыми и поэтому будут сохранены.

Итак, линейное программирование возникло после второй мировой войны и стало быстро развиваться, привлекая внимание математиков, экономистов и инженеров благодаря возможности широкого практического применения, а также математической стройности.

Можно сказать, что линейное программирование применимо для решения математических моделей тех процессов и систем, в основу которых может быть положена гипотеза линейного представления реального мира.

Линейное программирование применяется при решении экономических задач, в таких задачах как управление и планирование производства; в задачах определения оптимального размещения оборудования на морских судах, в цехах; в задачах определения оптимального плана перевозок груза (транспортная задача); в задачах оптимального распределения кадров и т.д.

Задача линейного программирования (ЛП), как уже ясно из сказанного выше, состоит в нахождении минимума (или максимума) линейной функции при линейных ограничениях.

Общая форма задачи имеет вид: найти при условиях

Наряду с общей формой широко используются также каноническая и стандартная формы. Как в канонической, так и в стандартной форме

Т.е. все переменные в любом допустимом решении задачи должны принимать неотрицательные значения (такие переменные принято называть неотрицательные в отличие от так называемых свободных переменных, на область значений которых подобное ограничение не накладывается). Отличие же между этими формами состоит в том, что в одном случае I 2 = 0 , а в другом - I 1 = 0 .

Задача ЛП в канонической форме.

Линейное программирование представляет собой один из наиболее значимых разделов математики, где осуществляется изучение теоретических и методических основ решения определенных задач. Данная математическая дисциплина широко используется в последние годы в разнообразных экономических и технических областях, где не последняя роль отведена математическому планированию и использованию автоматических систем вычисления. Этот раздел науки посвящен изучению линейных оптимизационных моделей. То есть линейное программирование посвящено числам. Впервые данный термин был предложен Т. Купмансом в 1951 году. Оптимальный план каждой линейной программы необходимо автоматически связывать с оптимальным уровнем цен, то есть с объективно обусловленными оценками.

Линейное программирование: методы

При помощи методики удается решить немалое количество экстремальных задач, что связаны с экономикой. В данном случае обычно требуется найти крайние значения некоторых функций переменной величины. В качестве основы линейного программирования выражено решение системы преобразуемых в уравнения и неравенства. Данный вид программирования характеризуется математической формулировкой переменных величин, последовательностью и определенным порядком расчетов, а также логическим анализом. Это применимо:

Если имеется математическая определенность и количественная ограниченность между изучаемыми факторами и переменными величинами;

Если имеется взаимозаменяемость факторов благодаря последовательности расчетов;

В случае если математическая логика совмещена с пониманием сущности явлений, которые изучаются.

Линейное программирование в способствует исчислению оптимальной производительности всех машин, поточных линий, агрегатов, а также решению задач рационального применения имеющихся материалов.

В сельском хозяйстве при помощи данного метода определяется минимальная стоимость рациона кормежки с учетом имеющегося количества корма. При этом учитываются виды и содержание в них определенных полезных веществ.

В литейном производстве данная методика позволяет найти решение транспортной задачи и задачи о смесях, которые входят в состав металлургической шихты. Суть транспортной задачи в данном случае подразумевает оптимальное прикрепление потребляющих предприятий к предприятиям, которые заняты производством продукции.

Линейное программирование: задачи

Отличительной чертой всех экономических задач, которые решаются посредством методики линейного программирования, является выбор определенных вариантов решения, а также ограничивающих условий. Благодаря решению такой задачи удается найти оптимальное решение из всех альтернативных вариантов.

Значительной ценностью использования методики линейного программирования в экономике служит выбор самого оптимального варианта из большого количества всех вариантов, которые считаются допустимо возможными. Подобные задачи почти нереально решить иными способами, так как только они позволяют найти степень рациональности применения При помощи линейного программирования разрешается такая основная задача, как транспортная, которая должна минимизировать грузооборот продукции широкого потребления в процессе их доставки от производителя.

Линейное программирование в Excel

В процессе решения таких задач для начала необходимо составить модель, что подразумевает формулировку условий на математическом языке. После этого этапа можно найти решение посредством графического метода. Для этого в программе Excel существует специальная функция «Поиск решения».

Как уже понятно из вышесказанного, линейное программирование имеет весьма обширную сферу применения.