Око планеты информационно-аналитический портал. А внутри пустота: почему наш мозг совсем не похож на компьютер

Если вы пренебрегаете принципами, которые должны помогать вашему мозгу активно работать, то не сомневайтесь, что он вам обязательно отомстит и просто откажется работать. Иногда мы забываем слова, иногда не можем собраться, иногда мыслей в голове просто как будто нет. Как же улучшить мыслительный процесс? Всем известно, что мозгу для работы требуется кислород, а чем еще мы можем разбудить расслабившийся мозг, чтобы взяться за дело?

Итак, Ваш мозг не будет работать, если:

1. Вы не высыпаететсь

Кроме того, что хронический недосып может вызвать массу проблем со здоровьем, он серьезно ухудшает концентрацию внимания и работу мозга. Большинству людей ежедневно необходимо минимум 8 часов сна, но эта цифра индивидуальна. Кроме длительности сна важно его качество - он должен быть непрерывным. Фаза, в которой мы видим сны (фаза быстрого сна или REM-фаза), оказывает сильное влияние на наше самочувствие в часы бодрствования. Если сон часто прерывается, мозг проводит меньше времени в этой фазе, в результате чего мы чувствуем себя вялыми и испытываем затруднения с памятью и концентрацией.

2. Вы не умеете справляться со стрессом

Существует много доступных способов борьбы со стрессом, в том числе медитация, ведение дневника, работа с психологом, йога, дыхательные практики, тай чи и т.д. Все они имеют свои преимущества с точки зрения помощи в работе мозга.

3. Вы недостаточно двигаетесь

Физические нагрузки позволяют усилить кровоток, а вместе с тем - и приток кислорода и питательных веществ во все ткани тела. Регулярная физическая активность стимулирует выработку веществ, которые помогают соединению и даже образованию нервных клеток.

Если работа у вас сидячая, периодически отвлекайтесь и разминайте шею - делайте наклоны в стороны. Любую умственную деятельность чередуйте с физической. Посидели за компьютером - присядьте 10 раз или пройдитесь по коридорам и лестницам.


4. Вы не выпиваете нужное количество воды

Наше тело примерно на 60% состоит из воды, а мозг содержит еще больше воды - 80%. Без воды мозг дает сбои - от обезвоживания начинаются головокружения, галлюцинации, обмороки. Если пить недостаточно воды, то вы станете раздражительным и даже агрессивным, а ваша способность принимать правильные решения снизится. Представляете, как важна вода для ума? Часто постоянное желание спать, усталость, туман в голове - связаны именно с тем, что мы недостаточно пьем. То есть, пить-то мы можем много - газировки, кофе, сладкие чаи, фруктовые соки. Но многие из этих напитков, наоборот, только лишают клетки организма жидкости, как раз приводя к обезвоживанию. Особенно напитки содержащие кофеин (чай, кофе кока-кола). Как в анекдоте, «мы пьем все больше, а нам все хуже». Так что пить нужно именно воду - питьевую воду. Но «вливать» в себя воду тоже не стоит. Просто пейте по мере необходимости. Пусть у вас под рукой всегда будет питьевая вода. Постарайтесь выпивать хотя бы пол стакана теплой воды в час в течение дня.

5. Вы не употребляете достаточное количество глюкозы

Для нас еда - это и зелень салата, и безобидная куриная грудка. А для мозга все это никакая не еда. Мозгу подавай глюкозу! А основные поставщики глюкозы - это углеводы. Курица с овощами не даст вам упасть в голодный обморок, но вот придумать что-то гениальное… для этого диетического обеда не хватит. Нужны хлеб, сладкое, сухофрукты (идеальный вариант). Человеку, которому необходима умственная деятельность ни в коем случае не подходит безуглеводная диета. На работе отлично подойдет кусочек горького шоколада или сухофрукты.

ВАЖНО

Углеводы тоже бывают разные - простые и сложные. Обыкновенный сахар (простой углевод) хоть и является глюкозой, «ума» прибавит не так уж и много. Он быстро расщепляется, вызывая сначала резкий взлет глюкозы, а потом резкое падение, не успев «накормить» нервные клетки. А вот сложные углеводы - зерновой хлеб, каши, овощи (да-да, в них тоже много сахара), макароны - расщепляются медленно и обеспечивают организм энергией надолго. В дороге и на перекусе идеальный вариант сложных углеводов - банан! Макароны стоит есть, если следующий прием пищи еще не скоро.

6. В вашей диете недостаточно полезных жиров

Любой ценой избегайте обработанных, гидрогенизированных жиров, которые называются трансжирами, и минимизируйте употребление насыщенных животных жиров. Уменьшить потребление транс-жиров не так сложно, если помнить некоторые правила. Прежде всего, нужно вычеркнуть из своей жизни маргарины - все они содержат много транс-жиров. Обязательно следует просматривать этикетки на выпечке (печенье, торты и т.д.), а также чипсах, майонезах и прочих содержащих жир продуктах. К сожалению, российские производители пока что не указывают содержание транс-жиров на упаковке продукта. Если в списке ингредиентов стоит любое гидрогенизированное или частично гидрогенизированное масло - продукт содержит транс-жиры.

А вот полиненасыщенные жиры – Омега-3 и Омега-6 – незаменимые жирные кислоты. Получить эти жиры можно только через пищу. Они улучшают кровообращение и уменьшают воспалительные процессы в организме и очень полезны для мозга. Содержатся в лососе, сельди, скумбрии, сардинах и форели, а также в семенах подсолнуха, тофу и грецких орехах.

К полезным также относятся и мононенасыщенные жиры. Мононенасыщенные жиры снижают уровень холестерина. Они есть во многих орехах, оливковом масле и масле авокадо.

7. Вашему мозгу не достает кислорода

Мозг может выдержать без кислорода минут 10. И даже когда ничто не мешает нам дышать, кислорода мозгу может не хватать. Зимой кругом батареи и обогреватели, они потребляют кислород, толпы народа и помещения, где людей много, тоже лишают нас необходимого количества кислорода. Простуда, заложен нос - мы вроде бы дышим, но, оказывается, не качественно! Во всех этих случаях вы замечали, что начинаете хотеть спать? Так влияет на мозг недостаток кислорода.

Что делать? Проветривать помещения, открывать окна, и обязательно гулять.

8. Вы не тренируете свой мозг

Изучение новых предметов и языков, получение дополнительных навыков, интеллектуальные хобби помогают сохранять и преумножать ресурсы мозга. Постоянная «тренировка» гарантирует, что он будет работать на самом высоком уровне в течение всей жизни.

Как быстро активизировать наш мозг

На нашем теле есть несколько точек, которые активизируют работу мозга.

  • Точка на тыльной стороне ладони между большим пальцем и указательным. Помассируйте ее.
  • Разотрите мочки ушей, это поможет проснуться.
  • Зевните как можно сильнее, это помогает подбросить мозгу кислорода.
  • Ущипните кончик носа, это тоже активизирует мозг.
  • Кто-то умеет стоять на голове. Это обеспечивает приток крови к голове и активизирует клетки мозга, но, если на голову встать трудно, можно просто лечь на пол на спину и закинуть ноги за голову. Полежать так минутку.

Если мозгом не пользоваться, он расслабится и разленится. Нагружайте свой ум, тренируйте, решайте головоломки, разгадывайте кроссворды, учите языки, делайте уроки с детьми, учитесь работать с компьютером, не откладывайте в сторону инструкции к новой технике. Заставляйте себя думать, шевелите мозгами, и тогда они не подведут вас в нужный момент!

  • Перевод

Все мы помним со школы мучительные упражнения в арифметике. На то, чтобы перемножить числа вроде 3 752 и 6 901 при помощи карандаша и бумаги, уйдёт не меньше минуты. Конечно же, сегодня, когда под рукой у нас телефоны, мы быстро можем проверить, что результат нашего упражнения должен равняться 25 892 552. Процессоры современных телефонов могут выполнять более 100 млрд таких операций в секунду. Более того, эти чипы потребляют всего несколько ватт, что делает их гораздо эффективнее наших медленных мозгов, потребляющих 20 Вт и требующих гораздо большего времени на достижение того же результата.

Конечно же, мозг эволюционировал не для того, чтобы заниматься арифметикой. Поэтому у него это получается плохо. Но он прекрасно справляется с обработкой постоянного потока информации, идущего от нашего окружения. И он реагирует на неё – иногда быстрее, чем мы можем это осознать. И неважно, сколько энергии будет потреблять обычный компьютер – он с трудом будет справляться с тем, что легко даётся мозгу – например, с пониманием языка или с бегом по лестнице.

Если бы могли создать машины, вычислительные способности и энергетическая эффективность которых были бы сравнимы с мозгом, то всё поменялось бы кардинально. Роботы бы ловко двигались в физическом мире и общались бы с нами на естественном языке. Крупномасштабные системы собирали бы огромные объёмы информации по бизнесу, науке, медицине или управлению государством, обнаруживая новые закономерности, находя причинно-следственные связи и делая предсказания. Умные мобильные приложения типа Siri и Cortana могли бы меньше полагаться на облака. Такая технология могла бы позволить нам создать устройства с небольшим энергопотреблением, дополняющие наши чувства, обеспечивающие нас лекарствами и эмулирующие нервные сигналы, компенсируя повреждение органов или паралич.

Но не рано ли ставить себе такие смелые цели? Не слишком ограничено ли наше понимание мозга для того, чтобы мы могли создавать технологии, работающие на основе его принципов? Я считаю, что эмуляция даже простейших особенностей нервных контуров может резко улучшить работу множества коммерческих приложений. Насколько точно компьютеры должны копировать биологические детали строения мозга, чтобы приблизиться к его уровню быстродействия – это пока открытый вопрос. Но сегодняшние системы, вдохновлённые строением мозга, или нейроморфные, станут важными инструментами для поисков ответа на него.

Ключевая особенность обычных компьютеров – физическое разделение памяти, хранящей данные и инструкции, и логики, обрабатывающей эту информацию. В мозгу такого разделения нет. Вычисления и хранение данных происходят одновременно и локально, в обширной сети, состоящей из примерно 100 млрд нервных клеток (нейронов) и более 100 трлн связей (синапсов). По большей части мозг определяется этими связями и тем, как каждый из нейронов реагирует на входящий сигнал других нейронов.

Говоря об исключительных возможностях человеческого мозга, обычно мы имеем в виду недавнее приобретение долгого эволюционного процесса – неокортекс (новую кору). Этот тонкий и крайне складчатый слой формирует внешнюю оболочку мозга и выполняет очень разные задачи, включающие обработку поступающей от чувств информации, управление моторикой, работу с памятью и обучение. Такой широкий спектр возможностей доступен довольно однородной структуре: шесть горизонтальных слоёв и миллион вертикальных столбиков по 500 мкм шириной, состоящих из нейронов, интегрирующих и распределяющих информацию, закодированную в электрических импульсах, вдоль растущих из них усиков – дендритов и аксонов.

Как у всех клеток человеческого тела, у нейрона существует электрический потенциал порядка 70 мВ между внешней поверхностью и внутренностями. Это мембранное напряжение изменяется, когда нейрон получает сигнал от других связанных с ним нейронов. Если мембранное напряжение поднимается до критической величины, он формирует импульс, или скачок напряжения, длящийся несколько миллисекунд, величиной порядка 40 мВ. Этот импульс распространяется по аксону нейрона, пока не доходит до синапса – сложной биохимической структуры, соединяющей аксон одного нейрона с дендритом другого. Если импульс удовлетворяет определённым ограничениям, синапс преобразует его в другой импульс, идущий вниз по ветвящимся дендритам нейрона, получающего сигнал, и меняет его мембранное напряжение в положительную или отрицательную сторону.

Связность – критическая особенность мозга. Пирамидальный нейрон – особенно важный тип клеток человеческого неокортекса – содержит порядка 30 000 синапсов, то есть 30 000 входных каналов от других нейронов. И мозг постоянно приспосабливается. Нейрон и свойства синапса – и даже сама структура сети – постоянно изменяются, в основном под воздействием входных данных с органов чувств и обратной связи окружающей среды.

Современные компьютеры общего назначения цифровые, а не аналоговые; мозг классифицировать не так-то просто. Нейроны накапливают электрический заряд, как конденсаторы в электронных схемах. Это явно аналоговый процесс. Но мозг использует всплески в качестве единиц информации, а это в основе своей двоичная схема: в любое время в любом месте всплеск либо есть, либо его нет. В терминах электроники, мозг – система со смешанными сигналами, с локальными аналоговыми вычислениями и передачей информацией при помощи двоичных всплесков. Поскольку у всплеска есть только значения 0 или 1, он может пройти большое расстояние, не теряя этой основной информации. Он также воспроизводится, достигая следующего нейрона в сети.

Ещё одно ключевое отличие мозга и компьютера – мозг справляется с обработкой информации без центрального тактового генератора, синхронизирующего его работу. Хотя мы и наблюдаем синхронизирующие события – мозговые волны – они организуются сами, возникая как результат работы нейросетей. Что интересно, современные компьютерные системы начинают перенимать асинхронность, свойственную мозгу, чтобы ускорить вычисления, выполняя их параллельно. Но степень и цель параллелизации двух этих систем крайне различны.

У идеи использования мозга в качестве модели для вычислений глубокие корни. Первые попытки были основаны на простом пороговом нейроне , выдающем одно значение, если сумма взвешенных входящих данных превышает порог, и другое – если не превышает. Биологический реализм такого подхода, задуманного Уорреном Маккалохом и Уолтером Питтсом в 1940-х, весьма ограничен. Тем не менее, это был первый шаг к применению концепции срабатывающего нейрона в качестве элемента вычислений.

В 1957 году Фрэнк Розенблатт предложил другой вариант порогового нейрона, перцептрон . Сеть из взаимосвязанных узлов (искусственных нейронов) составляется слоями. Видимые слои на поверхности сети взаимодействуют с внешним миром в качестве входов и выходов, а скрытые слои, находящиеся внутри, выполняют все вычисления.

Розенблатт также предложил использовать основную особенность мозга: сдерживание. Вместо того, чтобы складывать все входы, нейроны в перцептроне могут вносить и отрицательный вклад. Эта особенность позволяет нейросетям использовать единственный скрытый слой для решения задач на XOR в логике, в которых выход равен истине, если только один из двух двоичных входов истинный. Этот простой пример показывает, что добавление биологического реализма может добавлять и новые вычислительные возможности. Но какие функции мозга необходимы для его работы, а какие – бесполезные следы эволюции? Никто не знает.

Нам известно, что впечатляющих вычислительных результатов можно добиться и без попыток создать биологический реализм. Исследователи глубинного обучения продвинулись очень далеко в деле использования компьютеров для анализа крупных объёмов данных и выделения определённых признаков из сложных изображений. Хотя созданные ими нейросети обладают большим количеством входов и скрытых слоёв, чем когда бы то ни было, они всё-таки основаны на крайне простых моделях нейронов. Их широкие возможности отражают не биологический реализм, а масштаб содержащихся в них сетей и мощность используемых для их тренировки компьютеров. Но сетям с глубинным обучением всё ещё очень далеко до вычислительных скоростей, энергетической эффективности и возможностей обучения биологического мозга.

Огромный разрыв между мозгом и современными компьютерами лучше всего подчёркивают крупномасштабные симуляции мозга. За последние годы было сделано несколько таких попыток, но все они были жёстко ограничены двумя факторами: энергией и временем симуляции. К примеру, рассмотрим симуляцию , проведённую Маркусом Дайсманом с его коллегами несколько лет назад при использовании 83 000 процессоров на суперкомпьютере К в Японии. Симуляция 1,73 млрд нейронов потребляла в 10 млрд раз больше энергии, чем эквивалентный участок мозга, хотя они и использовали чрезвычайно упрощённые модели и не проводили никакого обучения. И такие симуляции обычно работали более чем в 1000 раз медленнее реального времени биологического мозга.

Почему же они такие медленные? Симуляция мозга на обычных компьютерах требует вычисления миллиардов дифференциальных уравнений, связанных между собой, и описывающих динамику клеток и сетей: аналоговые процессы вроде перемещения заряда по клеточной мембране. Компьютеры, использующие булевскую логику – меняющую энергию на точность – и разделяющие память и вычисления, крайне неэффективно справляются с моделированием мозга.

Эти симуляции могут стать инструментом познания мозга, передавая полученные в лаборатории данные в симуляции, с которыми мы можем экспериментировать, а затем сравнивать результаты с наблюдениями. Но если мы надеемся идти в другом направлении и использовать уроки нейробиологии для создания новых вычислительных систем, нам необходимо переосмыслить то, как мы разрабатываем и создаём компьютеры.


Нейроны в кремнии.

Копирование работы мозга при помощи электроники может быть более выполнимым, чем это кажется на первый взгляд. Оказывается, что на создание электрического потенциала в синапсе тратится примерно 10 фДж (10 -15 джоулей). Затвор металл-оксид-полупроводникового (МОП) транзистора, значительно более крупного и потребляющего больше энергии, чем те, что используются в ЦП, требует для заряда лишь 0,5 фДж. Получается, что синаптическая передача эквивалентна зарядке 20 транзисторов. Более того, на уровне устройств биологические и электронные схемы не так уж сильно различаются. В принципе можно создать структуры, подобные синапсам и нейронам, из транзисторов, и соединить их так, чтобы получить искусственный мозг, не поглощающий таких вопиющих объёмов энергии.

Идея о создании компьютеров при помощи транзисторов, работающих как нейроны, появилась в 1980-х у профессора Карвера Мида из Калтеха. Одним из ключевых аргументов Мида в пользу «нейроморфных» компьютеров было то, что полупроводниковые устройства могут, работая в определённом режиме, следовать тем же физическим законам, что и нейроны, и что аналоговое поведение можно использовать для расчётов с большой энергоэффективностью.

Группа Мида также изобрела платформу для нейрокоммуникаций, в которой всплески кодируются только их адресами в сети и временем возникновения. Эта работа стала новаторской, поскольку она первой сделала время необходимой особенностью искусственных нейросетей. Время – ключевой фактор для мозга. Сигналам нужно время на распространение, мембранам – время на реакцию, и именно время определяет форму постсинаптических потенциалов.

Несколько активных сегодня исследовательских групп, например, группа Джиакомо Индивери из Швейцарской высшей технической школы и Квабены Боахен из Стэнфорда, пошли по стопам Мида и успешно внедрили элементы биологических корковых сетей. Фокус в том, чтобы работать с транзисторами при помощи тока низкого напряжения, не достигающего их порогового значения, создавая аналоговые схемы, копирующие поведение нервной системы, и при этом потребляющие немного энергии.

Дальнейшие исследования в этом направлении могут найти применение в таких системах, как интерфейс мозг-компьютер. Но между этими системами и реальным размером сети, связности и способностью к обучению животного мозга существует огромный разрыв.

Так что в районе 2005 году три группы исследователей независимо начали разрабатывать нейроморфные системы, существенно отличающиеся от изначального подхода Мида. Они хотели создать крупномасштабные системы с миллионами нейронов.

Ближе всех к обычным компьютерам стоит проект SpiNNaker , руководимый Стивом Фёрбером из Манчестерского университета. Эта группа разработала собственный цифровой чип, состоящий из 18 процессоров ARM, работающих на 200 МГц – примерно одна десятая часть скорости современных CPU. Хотя ядра ARM пришли из мира классических компьютеров, они симулируют всплески, отправляемые через особые маршрутизаторы, разработанные так, чтобы передавать информацию асинхронно – прямо как мозг. В текущей реализации, являющейся частью проекта Евросоюза «Человеческий мозг» , и завершённой в 2016 году, содержится 500 000 ядер ARM. В зависимости от сложности модели нейрона, каждое ядро способно симулировать до 1000 нейронов.

Чип TrueNorth, разработанный Дармендра Мода и его коллегами из Исследовательской лаборатории IBM в Альмадене, отказывается от использования микропроцессоров как вычислительных единиц, и представляет собой на самом деле нейроморфную систему, в которой переплелись вычисления и память. TrueNorth всё равно остаётся цифровой системой, но основана она на специально разработанных нейроконтурах, реализующих определённую модель нейрона. В чипе содержится 5,4 млрд транзисторов, он построен по 28-нм технологии Samsung КМОП (комплементарная структура металл-оксид-полупроводник). Транзисторы эмулируют 1 млн нейроконтуров и 256 млн простых (однобитных) синапсов на одном чипе.

Я бы сказал, что следующий проект, BrainScaleS , отошёл довольно далеко от обычных компьютеров и приблизился к биологическому мозгу. Над этим проектом работали мы с моими коллегами из Гейдельбергского университета для европейской инициативы «Человеческий мозг». BrainScaleS реализует обработку смешанных сигналов. Он комбинирует нейроны и синапсы, в роли которых выступают кремниевые транзисторы, работающие как аналоговые устройства с цифровым обменом информацией. Полноразмерная система состоит из 8-дюймовых кремниевых подложек и позволяет эмулировать 4 млн нейронов и 1 млрд синапсов.

Система может воспроизводить девять различных режимов срабатывания биологических нейронов, и разработана в тесном сотрудничестве с нейробиологами. В отличие от аналогового подхода Мида, BrainScaleS работает в ускоренном режиме, его эмуляция в 10 000 раз быстрее реального времени. Это особенно удобно для изучения процесса обучения и развития.

Обучение, скорее всего, станет критическим компонентом нейроморфных систем. Сейчас чипы, сделанные по образу мозга, а также нейросети, работающие на обычных компьютерах, тренируются на стороне при помощи более мощных компьютеров. Но если мы хотим использовать нейроморфные системы в реальных приложениях – допустим, в роботах, которые должны будут работать бок о бок с нами, они должны будут уметь учиться и адаптироваться на лету.

Во втором поколении нашей системы BrainScaleS мы реализовали возможность обучения, создав на чипе «обработчики гибкости». Они используются для изменения широкого спектра параметров нейронов и синапсов. Эта возможность позволяет нам точно подстраивать параметры для компенсации различий в размере и электрических свойствах при переходе от одного устройства к другому – примерно как сам мозг подстраивается под изменения.

Три описанных мной крупномасштабных системы дополняют друг друга. SpiNNaker можно гибко настраивать и использовать для проверки разных нейромоделей, у TrueNorth высока плотность интеграции, BrainScaleS разработана для постоянного обучения и развития. Поиски правильного способа оценки эффективности таких систем пока продолжаются. Но и ранние результаты многообещающие. Группа TrueNorth от IBM недавно подсчитала, что синаптическая передача в их системе отнимает 26 пДж. И хотя это в 1000 раз больше энергии, требующейся в биологической системе, зато это почти в 100 000 раз меньше энергии, уходящей на передачу в симуляции на компьютерах общего назначения.

Мы всё ещё находимся на ранней стадии понимания того, что могут делать такие системы и как их применять к решению реальных задач. Одновременно мы должны найти способы комбинировать множество нейроморфных чипов в крупные сети с улучшенными возможностями к обучению, при этом понижая энергопотребление. Одна из проблем – связность: мозг трёхмерный, а наши схемы – двумерные. Вопрос трёхмерной интеграции схем сейчас активно изучают, и такие технологии могут нам помочь.

Ещё одним подспорьем могут стать устройства, не основанные на КМОП – мемристоры или PCRAM (память с изменением фазового состояния). Сегодня веса, определяющие реакцию искусственных синапсов на входящие сигналы, хранятся в обычной цифровой памяти, отнимающей большую часть кремниевых ресурсов, необходимых для построения сети. Но другие виды памяти могут помочь нам уменьшить размеры этих ячеек с микрометровых до нанометровых. И основной трудностью современных систем будет поддержка различий между разными устройствами. Для этого смогут помочь принципы калибровки, разработанные в BrainScaleS.

Мы только начали свой путь по дороге к практичным и полезным нейроморфным системам. Но усилия стоят того. В случае успеха мы не только создадим мощные вычислительные системы; мы даже можем получить новую информацию о работе нашего собственного мозга.

Как бы они ни старались, нейрофизиологи и когнитивные психологи никогда не найдут в мозгу копию пятой симфонии Бетховена или копии слов, изображений, грамматических правил или любых других внешних раздражителей. Человеческий мозг, конечно, пуст не в буквальном смысле. Но он не содержит большинство вещей, которые, по мнению людей, должен - в нем нет даже таких простых объектов, как «воспоминания».

Наше ложное представление о мозге имеет глубокие исторические корни, но изобретение компьютера в сороковых годах прошлого века особенно запутало нас. Вот уже больше полувека психологи, лингвисты, нейрофизиологи и другие исследователи человеческого поведения заявляют: человеческий мозг работает подобно компьютеру.

Чтобы понять всю поверхностность этой идеи, давайте представим, что мозг - это младенец. Благодаря эволюции новорожденные люди, как и новорожденные любого другого вида млекопитающих, входят в этот мир готовыми к эффективному с ним взаимодействию. Зрение ребенка расплывчато, но он уделяет особое внимание лицам и быстро может распознать лицо матери среди других. Он предпочитает звук голоса другим звукам, он может отличить один базовый речевой звук от другого. Мы, без сомнения, построены с оглядкой на социальное взаимодействие.

Здоровый новорожденный обладает более чем десятком рефлексов - готовых реакций на определенные раздражители; они нужны для выживания. Ребенок поворачивает голову в направлении того, что щекочет ему щеку, и сосет все, что попадает в рот. Он задерживает дыхание, когда погружается в воду. Он хватает вещи, которые попадают ему в руки, так сильно, что почти повисает на них. Возможно, самое важное заключается в том, что младенцы появляются в этом мире с весьма мощными механизмами обучения, которые позволяют им стремительно изменяться так, чтобы они могли взаимодействовать с миром с возрастающей эффективностью, даже если этот мир и не похож на тот, с которым сталкивались их дальние предки.

Чувства, рефлексы и механизмы обучения - все то, с чем мы начинаем, и по правде говоря, этих вещей довольно много, если задуматься. Если бы у нас не было одной из этих возможностей с рождения, нам было бы значительно труднее выжить.

Но есть и то, с чем мы не родились: информация, данные, правила, программное обеспечение, знания, лексикон, представления, алгоритмы, программы, модели, воспоминания, образы, обработка, подпрограммы, кодеры и декодеры, символы и буферы - дизайнерские элементы, которые позволяют цифровым компьютерам вести себя таким образом, который несколько напоминает разумный. Мы не просто не рождаемся с этим - мы это в себе не развиваем . Никогда.

Мы не храним слова или правила, сообщающие нам, как их использовать. Мы не создаем визуальные проекции раздражителей, не храним их в буфере кратковременной памяти, а после этого не передаем их в хранилище памяти долговременной. Мы не извлекаем информацию или образы и слова из реестров памяти. Этим занимаются компьютеры, но не организмы.

Компьютеры в буквальном смысле слова обрабатывают информацию ― числа, буквы, слова, формулы, изображения. Информация изначально должна быть закодирована в формат, которым могут пользоваться компьютеры, а значит, она должна быть представлена в виде единиц и нулей («битов»), которые собраны в маленькие блоки («байты»). На моем компьютере, где каждый байт содержит 8 бит, некоторые из них обозначают букву «К», другие ― «О», третьи ― «Т». Таким образом все эти байты образуют слово «КОТ». Одно единственное изображение – скажем, фотография моего кота Генри на рабочем столе ― представлена особенным рисунком миллиона таких байтов («один мегабайт»), определенных специальными символами, которые сообщают компьютеру, что это фотография, а не слово.

Компьютеры в буквальном смысле перемещают эти рисунки с места на место в различных отсеках физического хранилища, выделенных внутри электронных компонентов. Иногда они копируют рисунки, а иногда изменяют их самыми разнообразными способами ― скажем, когда мы исправляем ошибку в документе или ретушируем фотографию. Правила, которым следует компьютер для перемещения, копирования или оперирования этими слоями данных также хранятся внутри компьютера. Собранные воедино наборы правил называются «программами» или «алгоритмами». Группа алгоритмов, которые работают совместно для помощи нам в чем-то (например, при покупке акций или поиске данных онлайн) называется «приложением».

Прошу меня простить за это введение в мир компьютеров, но мне нужно, чтобы вам было все предельно ясно: компьютеры в действительности работают над той стороной нашего мира, которая состоит из символов . Они действительно хранят и извлекают . Они действительно обрабатывают . У них действительно есть физические воспоминания . Они действительно управляются алгоритмами во всем, что делают, без каких-либо исключений.

С другой стороны, люди так не делают - никогда не делали и делать не будут. Учитывая это, хочется спросить: почему же так много ученых рассуждают о нашем психическом здоровье так, будто бы мы и есть компьютеры?

В своей книге «In Our Own Image» (2015) эксперт в области искусственного интеллекта Джордж Заркадакис описывает шесть различных метафор, которые люди использовали в течение двух последних тысячелетий, пытаясь описать человеческий интеллект.

В самой первой, библейской, люди были созданы из глины и грязи, которую затем разумный Бог наделил своей душой, «объясняя» наш интеллект - по крайней мере, грамматически.

Изобретение гидравлической техники в 3 веке до н.э. привело к популяризации гидравлических моделей человеческого интеллекта, идеи о том, что различные жидкости нашего тела - т.н. «телесные жидкости» - имеют отношение как к физическому, так и к психическому функционированию. Метафора сохранялась более 16-ти столетий и все это время применялась в медицинской практике.

К 16-му веку были разработаны автоматические механизмы, приводимые в движение пружинами и шестеренками; они наконец вдохновили ведущих мыслителей того времени, таких как Рене Декарт, на гипотезу о том, что люди представляют собой сложные машины. В 17-м веке британский философ Томас Гоббс предположил, что мышление возникло из-за механических колебаний в мозге. К началу 18-го века открытия в области электричества и химии привели к новым теориям человеческого интеллекта - и они опять же, имели метафорический характер. В середине того же столетия немецкий физик Герман фон Гельмгольц, вдохновленный достижениями в области связи, сравнил мозг с телеграфом.

Каждая метафора отражала самые передовые идеи эпохи, которая ее породила. Как и следовало того ожидать, почти на заре компьютерных технологий, в 40-х годах прошлого века, мозг по принципу работы был сравнен с компьютером, при этом роль хранилища была отдана самому мозгу, а роль программного обеспечения - нашим мыслям. Знаковым событием, с которого началось то, что сейчас называется «когнитивистикой», стала публикация книги психолога Джорджа Миллера «Язык и общение» (1951). Миллер предположил, что ментальный мир можно изучать с помощью концепций информационной, вычислительной и лингвистической теорий.

Такой образ мыслей получил свое окончательное выражение в небольшой книге «Компьютер и мозг» (1958), в которой математик Джон фон Нейман категорично заявил: функция нервной системы человека является «в первую очередь цифровой». Хотя он признал, что тогда в самом деле было очень мало известно о той роли, которую мозг играет в мышлении и памяти, он проводил параллели за параллелями между компонентами ЭВМ того времени и компонентами человеческого мозга.

Движимая последующими достижениями в области компьютерных технологий и исследований мозга, а также амбициозным междисциплинарным стремлением познать природу постепенно развивающегося человеческого интеллекта, в умах людей прочно засела идея о том, что люди, подобно компьютерам, являются информационными процессорами. Сегодня это направление включает в себя тысячи исследований, потребляет миллиарды долларов финансирования, оно породило обширный пласт литературы, состоящий как из технических, так и из иных статей и книг. Книга Рэя Курцвейла «Как создать разум» (2013) иллюстрирует эту точку зрения, спекулируя на «алгоритмах» мозга, на том, как мозг «обрабатывает данные», и даже на внешнем его сходстве с интегральными схемами и их структурами.

Метафора человеческого мозга, построенная на обработке информации (здесь и далее IP-метафора, от Information Processing - прим. Newoчём ), в наши дни доминирует в умах людей, как среди обывателей, так и в среде ученых. По факту не существует дискурса по поводу разумного человеческого поведения, который бы проходил без применения этой метафоры, равно как и то, что подобные дискурсы не могли возникать в определенные эпохи и внутри определенной культуры без отсылок к духам и божествам. Справедливость метафоры об обработке информации в современном мире, как правило, подтверждается без каких-либо проблем.

Однако IP-метафора - только одна из многих, это лишь история, которую мы рассказываем, чтобы придать смысл чему-то, чего мы сами не понимаем. И, как и все предшествующие метафоры, эта, безусловно, в какой-то момент будет отброшена - заменена или очередной метафорой, или истинным знанием.

Чуть больше года назад при посещении одного из самых престижных исследовательских институтов я бросил вызов ученым: объяснить разумное человеческое поведение без отсылок к любому из аспектов IP-метафоры об обработке информации. Они этого сделать не смогли , а когда я снова вежливо поднял вопрос об этом в последующей электронной переписке, спустя месяцы они так ничего и не смогли предложить. Они понимали, в чем проблема, не открестились от задачи. Но они не могли предложить альтернативу. Другими словами, IP-метафора «прилипла» к нам. Она обременяет наше мышление словами и идеями, настолько серьезными, что у нас возникают проблемы при попытке их понять.

Ложная логика IP-метафоры достаточно проста в формулировке. Она основывается на ложном аргументе с двумя разумными предположениями и единственным ложным выводом. Разумное предположение № 1: все компьютеры способны вести себя разумно. Разумное предположение № 2: все компьютеры есть информационные процессоры. Ложный вывод: все объекты, способные на разумную деятельность, являются информационными процессорами.

Если отбросить формальную терминологию, идея того, что люди являются информационными процессорами лишь потому, что компьютеры являются таковыми, звучит глупо, а когда однажды IP-метафора в конце концов изживет себя, когда от нее окончательно откажутся, она почти наверняка будет рассматриваться историками именно так, как мы сейчас смотрим на высказывания о гидравлической или механической природе человека.

Если эта метафора так глупа, почему она все еще правит нашими умами? Что удерживает нас от того, чтобы отбросить ее в сторону как ненужную, так же, как мы отбрасываем ветку, которая преграждает нам путь? Существует ли способ понять человеческий интеллект, не опираясь на выдуманные костыли? И какой ценой нам обойдется столь долгое использование этой опоры? Данная метафора, в конце концов, вдохновила писателей и мыслителей на огромное количество исследований в самых разных областях науки на протяжении десятилетий. Какой ценой?

В аудитории на занятии, которое я проводил за эти годы уже множество раз, я начинаю с выбора добровольца, которому говорю нарисовать купюру в один доллар на доске. «Побольше деталей», - говорю я. Когда он заканчивает, я закрываю рисунок листом бумаги, достаю купюру из кошелька, приклеиваю ее к доске и прошу студента повторить задание. Когда он или она заканчивает, я убираю лист бумаги с первого рисунка и тогда класс комментирует различия.

Возможно, вы никогда не видели подобной демонстрации, или, быть может, у вас могут возникнуть проблемы с тем, чтобы представить результат, поэтому я попросил Джинни Хён, одну из интернов в институте, где я провожу свои исследования, сделать два рисунка. Вот рисунок «по памяти» (обратите внимание на метафору):

А вот рисунок, который она сделала с использованием банкноты:


Джинни была так же удивлена исходом дела, как, возможно, удивлены и вы, но в этом нет ничего необычного. Как вы видите, рисунок, выполненный без опоры на купюру, ужасен в сравнении с тем, что был срисован с образца, несмотря на то, что Джинни видела долларовую купюру тысячи раз.

Так в чем дело? Разве у нас нет «загруженного» в мозговой «регистр памяти» «представления» о том, как выглядит долларовая банкнота? Неужели мы не можем просто-напросто «извлечь» его оттуда и использовать при создании нашего рисунка?

Конечно, нет, и даже тысячи лет исследования в области неврологии не помогут обнаружить представление о виде долларовой банкноты, сохраненное в человеческом мозге, просто потому, что его там нет.

Значительный объем исследований мозга показывает, что в действительности многочисленные и иногда обширные участки мозга зачастую вовлечены в, казалось бы, самые банальные задачи по запоминанию информации. Когда человек испытывает сильные эмоции, в мозгу могут активизироваться миллионы нейронов. В 2016 году нейрофизиолог из Университета Торонто Брайан Левин с коллегами провел исследование , в котором приняли участие люди, выжившие в авиакатастрофе, позволившее прийти к выводу, что события аварии способствовали росту нейронной активности в «мозжечковой миндалине, медиальной височной доле, передней и задней срединной линии, а также в зрительной коре пассажиров».

Выдвинутая рядом ученых идея о том, что специфические воспоминания каким-то образом сохраняются в отдельных нейронах , абсурдна; если уж на то пошло, это предположение лишь возводит вопрос памяти на еще более сложный уровень: как и где, в конечном счете, память записана в клетку?

Итак, что происходит, когда Джинни рисует долларовую банкноту, не пользуясь образцом? Если Джинни никогда прежде не видела купюру, ее первый рисунок, вероятно, ни в коей мере не будет похож на второй. Тот факт, что она видела долларовые банкноты прежде, каким-то образом изменил ее. Собственно, ее мозг был изменен так, что она смогла наглядно представить себе банкноту - что, в сущности, эквивалентно - по крайней мере, отчасти - тому, чтобы заново переживать ощущение зрительного контакта с купюрой.

Различие между двумя набросками напоминает нам, что визуализация чего-либо (что представляет собой процесс воссоздания зрительного контакта с тем, что больше не находится у нас перед глазами) намного менее точна, чем если бы мы по-настоящему видели что-либо. Именно поэтому нам намного лучше удается узнавать, нежели вспоминать. Когда мы ре-продуцируем что-то в памяти (От латинского re - «снова», и produce - «создавать»), мы должны попробовать снова пережить столкновение с предметом или явлением; однако когда мы узнаем что-то, мы всего лишь должны отдавать себе отчет в том, что ранее у нас уже был опыт субъективного восприятия этого объекта или явления.

Возможно, у вас есть что возразить на это доказательство. Джинни видела долларовые банкноты и раньше, однако она не предпринимала осознанных усилий к тому, чтобы «запомнить» детали. Вы можете заявить, что, если бы она так поступила, она, возможно, смогла бы нарисовать второе изображение, не пользуясь образцом долларовой купюры. Однако даже в этом случае никакое изображение банкноты не было никоим образом «сохранено» в мозгу Джинни . У нее просто возросла степень подготовленности к тому, чтобы нарисовать ее с соблюдением деталей, так же, как, посредством практики, пианист становится искуснее в исполнении фортепианных концертов, при этом не загружая в себя копию нот.

Исходя из этого простого эксперимента, мы можем начать выстраивать основу свободной от метафор теории интеллектуального поведения человека - одну из тех теорий, согласно которым мозг не полностью пуст , однако по меньшей мере свободен от груза IP-метафор.

По мере того, как мы движемся по жизни, мы подвергаемся воздействию множества происходящих с нами событий. Следует особо отметить три типа опыта: 1) Мы наблюдаем за тем, что происходит вокруг нас (как ведут себя другие люди, звуки музыки, адресованные нам указания, слова на страницах, изображения на экранах); 2) Мы подвержены сочетанию незначительных стимулов (к примеру, сирены) и важных стимулов (появление полицейских машин); 3) Мы бываем наказаны или вознаграждены за то, что ведем себя определенным образом.

Мы становимся эффективнее, если меняемся сообразно этому опыту - если теперь мы можем рассказать стихотворение или спеть песню, если мы способны следовать данным нам указаниям, если мы реагируем на незначительные стимулы так же, как и на важные, если мы стараемся не вести себя так, чтобы нас наказали, и чаще ведем себя таким образом, чтобы получить награду.

Несмотря на вводящие в заблуждение заголовки, никто не имеет ни малейшего представления о том, какие изменения происходят в мозге после того, как мы научились петь песню или выучили стихотворение. Однако ни песни, ни стихотворения не были «загружены» в наш мозг. Он просто упорядоченноизменился таким образом, что теперь мы можем петь песню или рассказывать стихотворение, если соблюдены определенные условия. Когда нас просят выступить, ни песня, ни стихотворение не «извлекаются» из какого-то места в мозге - точно так же, как не «извлекаются» движения моих пальцев, когда я барабаню по столу. Мы просто поем или рассказываем - и никакого извлечения нам не нужно.

Печально осознавать, что в эпоху технического прогресса человеческий мозг по-прежнему остаётся загадкой. Кроме того, мы тратим миллионы долларов на развитие гигантских суперкомпьютеров и используем огромное количество энергии из невосполнимых ресурсов, чтобы обеспечить питанием эти приборы. А сравнительно маленький по размерам человеческий мозг по многим показателям по-прежнему превосходит самые мощные компьютеры. /сайт/

Суперкомпьютеру требуется 82 944 процессоров и 40 минут работы, чтобы симулировать одну секунду мозговой активности человека.

В прошлом году суперкомпьютер K использовался учёными из Окинавского технологического университета в Японии и Исследовательского центра Юлих в Германии в попытке симулировать 1 секунду активности человеческого мозга.

Компьютер смог воссоздать модель из 1,73 миллиарда нейронов (нервных клеток). Однако в человеческом мозге около 100 миллиардов нейронов. То есть в человеческом мозге примерно столько нейронов, сколько звёзд в Млечном пути. Несмотря на то, что компьютеру удалось успешно симулировать 1 секунду мозговой активности, это заняло 40 минут.

Работник Корейского научного института проверяет суперкомпьютеры в Тэджоне, Южная Корея, 5 ноября 2004 г. Фото: Chung Sung-Jun/Getty Images

Версия на английском

Установили бы Вы себе на телефон приложение для чтения статей сайта epochtimes?

Исследователи, занятые изучением человеческого мозга, после наблюдений над современными детьми сделали неутешительные выводы. Представители компьютерного 3D поколения стремительно глупеют и все чаще проявляют такие расстройства, как нарушение памяти, слабую способность к концентрации внимания, низкий уровень самоконтроля, подавленность и депрессивность. Это касается не только детей. Люди цифровой цивилизации всё меньше читают и запоминают, зато тоннами потребляют готовую информацию и проводят время не в живом общении, а в виртуальном мире. Как это на нас влияет и к чему ведет? А, может быть, это не отупение, а новый этап развития человеческого мозга?

Согласитесь, большую часть своей жизни большинство из нас проводит у монитора или экрана какого-нибудь . Карикатуристы даже грустно шутят о тихих семейных вечерах, где каждый из членов семьи вместо общения с живыми родственниками предпочитает уткнуться в свой экран и чатиться с малознакомыми «друзьями» в социальных сетях. Причем с друзьями, большинства из которых и в глаза не видел.

Чем опасен компьютер?

Не будем говорить об излучении, проблемах с позвоночником, с кожей, глазами, лишним весом от малоподвижного образа жизни, к которому приговаривают нас современные гаджеты. Поговорим о более коварном факторе риска – воздействии компьютера на человеческий мозг.

Действительно ли от пользования интернетом мы приобретаем синдром компьютерного слабоумия?

Давайте попробуем разобраться, как компьютер постепенно превращает нас в зависимых и одиноких дураков.

1. Он дает готовые ответы
. Их не надо искать, не нужно напрягать мозг, лишь правильно сформулировать вопрос.

2. Он создает иллюзию знаний
(ответы, которые дают поисковые системы, воспринимаются человеком как часть его собственного мозга, и он не старается запомнить информацию).

3. Убивает социализацию человека.
Отсутствие живого общения ведет к усложнению . У него тысячи виртуальных друзей, но отсутствуют реальные. Человек постепенно превращается в беспомощного и замкнутого аутиста, который не умеет строить социальные связи, общаться, любить и дружить. Он живет в мире иллюзий и собственных фантазий, которые скроены из случайных отрывков готовой пережеванной информации, клипов, лайков, видео, постов, слоганов и т.д.

4. Делает нас уязвимыми, открытыми до предела. С одной стороны, погружаясь в интернет, мы теряем социальные связи. С другой стороны, нам необходимы эти связи, так как мы являемся социальными существами. Интернет предоставляет нам иллюзию общения. И мы с готовностью раскрываемся ему, не задумываясь о последствиях открытости. Например, бросили фото в инстаграм. Там у нас есть тысяча друзей, которых мы в глаза не видели, но нам обязательно хочется получить от них одобрение. Мы ждем этих пресловутых лайков, считаем их и думаем, что таким образом человек проявляет к нам внимание. Но это лишь иллюзия внимания. Кто-то лайкает от нечего делать, кто-то в надежде, что лайкнут ему в ответ. На самом деле, большинству людей нет до вас никакого дела. И вы, к сожалению, об этом догадываетесь где-то в глубине души. Порой нам бывает так одиноко, что мы готовы выложить на всеобщее обозрение самые сокровенные страницы своей личной жизни, которые могут быть использованы недоброжелателями.

5. Мы попадаем в сети . Мы так привыкли уже к интернету, что в его отсутствии, испытываем настоящую информационную ломку. Нам резко не хватает иллюзорного виртуального мира, в котором можно общаться или без зазрения совести промолчать на заданный вопрос, не думая о выражении своего лица.

В интернете легко получить быструю, практически мгновенную информацию обо всем на свете. Впрочем, ее обилие и разнообразие отнюдь не стимулирует мозг к запоминанию. Более того, постоянно работая с компьютером, человек получает искомое, как будто мимоходом, совмещая с другими занятиями. Создается впечатление, что он выхватывает кусочки, разрозненные, не связанные друг с другом факты, и они тут же забываются, если он вовремя не скопирует ссылки или отрывки текстов. Это не дает ему возможности сформировать глубокие собственные умозаключения. Информационное кусочничанье и надежда на то, что в любой момент ты можешь получить любую информацию без малейших усилий, кажется, избаловывают мозг. Заставляет его работать не в полную силу.

А когда не используются ресурсы мозга, он атрофируется, те участки, которые могли бы развиваться, если бы человек глубоко вникал в информацию, анализировал ее, изучал, не развиваются. Мозг будто бы «усыхает». Отсюда и возникновение всевозможных возрастных болезней, и «отупение» молодых.

Традиционно считается, что, по возможности, надо как можно меньше контактировать с компьютером, особенно детям, пока они учатся и получают информацию о мире. Надо заставлять работать свой мозг в усиленном режиме, в каком бы возрасте вы ни находились. «Век живи, век учись» – прекрасная формула для профилактики болезни Альцгеймера.


А что, если компьютер выводит мозг на новый этап развития?

С вредным воздействием интернета на мозг и социализацию человека можно поспорить и даже опровергнуть. Компьютеры стали естественной частью нашей жизни, и наш мозг невольно приспосабливается к ним, развиваясь в еще неизвестном нам направлении. Это не значит, что мы стали глупее и большую часть работы выполняет за нас машина. Просто работа нашего мозга настолько изменилась, что нам кажется, он вообще не работает.

Это раньше, чтобы получить информацию, мы должны были перелопатить множество литературы, отыскать факты, сопоставить их, выбрать наиболее подходящие для нас. Мозг усиленно работал, дым шел из ушей! Но при этом он засорялся огромным количеством второстепенной информации, которая замедляла получение результата. Теперь все происходит значительно быстрее, и нам кажется, что мозг работает не в полную силу. А кто это сказал?

А что, если мозг не филонит, а, напротив, работает в еще более усиленном, но непривычном для нас режиме? Работает выборочно. Только с той информацией, которая нам нужна в данный момент. Зачастую информационный поток содержит в себе массу мусора, грязи, откровенной ерунды. Пока дочерпаешь до чистой истины, можно потратить полжизни. К тому же в интернете есть множество отвлекающих моментов, которые погружают нас в сеть игр, игрушек и картинок, и мы безнадежно теряем время, отдаляясь от цели.

А что, если, одновременно погружая и освобождая нас от лишнего информационного мусора, ненужных повторений, перелопачивания давно известного, но уже неактуального контента, мозг приспосабливается к темпам нашей жизни и помогает вычленить в потоке информации самое важное.

А, может, это не отупение, а освобождение от ненужного? А наш вечно работающий мозг помогает нам расслабиться и освободиться для чистого творчества, ведь выдержать тот мощный информационный прессинг, который обрушивается на нас ежедневно, нам не под силу и отвлекает от главного? В чем главное для нас, живущих в мире цифровых технологий?

Условие развития мозга – творчество

Исследуя уровень IQ современных людей по сравнению с IQ людей пятидесятых годов, Ричард Линн, психолог Университета Ольстера, отметил значительное . В 2014 году IQ упал на 3 пункта по сравнению с показателями 1950 года. И если оглупление населения планеты будет продолжаться такими же темпами, считает Линн, то в 2110 году IQ человечества станет ниже на 84 пункта.

Получается, что вся планета стремительно глупеет, и нас ждет, полная деградация и вырождение?

Многие считают, что мозг спасёт запоминание. Советуют развивать долговременную память, изучать языки, разгадывать кроссворды, заучивать стихи. Однако простое механическое запоминание развивает память, но не развивает мозг.

Действительно, может показаться, что поисковики и Википедия сделали нас глупее, ослабили нашу долговременную память. Если бы нас вдруг сорвали со стула и забрали гаджеты, отключили интернет и стали бы разговаривать с нами на интеллектуальные темы, мы, наверняка, сели бы в лужу. Надеясь на google, мы не запоминаем теперь даже элементарных вещей. Без компьютера мы становимся практически беспомощными, в какой-то степени даже беззащитными.

Но давайте попробуем посмотреть на проблему иначе. Согласитесь, современные дети, даже без инструкций легко могут справиться с компьютерной техникой, будто она им давно известна. Откуда в них это знание? Может они и обо всем остальном знают? Тогда зачем им изучать и запоминать то, что уже и так есть в их мозгу. Вся история человечества, все накопленные им знания уже содержаться в том грандиозном банке данных, который представляет собой наш мозг. Количество нейронов его исчисляется даже не тысячами, а триллионами. Нам трудно представить себе эти цифры. Но любой человеческий мозг намного мощнее любого, даже самого мощного компьютера. И он лучше нас знает, что необходимо нам на этом этапе развития человечества.

Так может быть стоит ему довериться? И не думать о том, что все мы катастрофически тупеем, хотя этого, по определению, произойти не может. Мы тупеем с точки зрения старой науки, старых методов образования, старых интеллектуальных теорий. А к новым – пока только подступаем. Современный человек владеет априори гораздо большим объемом информации по сравнению с людьми, скажем, в 19 веке. И снижение способностей к традиционному фундаментальному образованию может быть не отрицательной, а положительной тенденцией развития его мозга.

А что, если на данном этапе развития человечества ему не нужны знания из области орфографии, пунктуации, физики, математики и других наук, которым учат в школе, на том уровне, который был нормальным и привычным пятьдесят лет назад. Они кажутся лишними для людей постиндустриального общества, когда цифровые технологии плотно проникли в нашу жизнь, облегчают ее и освобождают человека от необходимости бороться за свое существование и напрягать вопросами выживания свой вечно работающий мозг.

Может быть, современному человеку нужны сегодня какие-то другие знания? И наш мозг пытается до нас это донести, снижая привычные показатели формальной образованности.

Мне кажется, что он призывает нас освободиться от лишних знаний, чтобы снова стать творцами. Творчество возможно только при полном освобождении от информационного мусора. Сказать что-то новое можно только тогда, когда мозг чист и светел.

По-настоящему развивает мозги только творчество, то есть та деятельность, в результате которой рождается что-то новое (в любой сфере нашей жизни). А творчество невозможно, когда мозг засорен чужими идеями и неактуальной информацией. Его надо очистить. Так называемое состояние просветления приходит тогда, когда мы полностью освобождаем мозг от лишней информации. Отчасти мы освобождаем его и тогда, когда бездумно листаем посты в фейсбуке, выхватываем поверхностные, на первый взгляд, клочки и осколки информации из интернета. В этот момент мы как раз и расслабляем мозг. И не подозреваем, что он при этом усиленно работает, сравнивает, анализирует, фильтрует, чтоб из клочков собрать для нас целостную картину мира.

Мозг заставляет нас развивать другие способности

Мы не знаем до конца, на что он способен. Возможно, он может намного больше того, что нам кажется. И эта осколочная информация, благодаря уже накопленным нами знаниям, а также ассоциативным связям между явлениями и предметами, дает возможность мозгу из осколков сложить самый точный слепок реальности, чтобы заставить нас понять, куда нам двигаться дальше.

Картина получается более целостная, чем если бы мы погружались бы в каждый отдельный информационный блок, то есть углублялись бы в ту или иную науку. В том случае мы получали бы информацию, ограниченную только данной сферой, в первом случае, мы получаем более широкую картину действительности, видя ее с разных точек зрения.

На первый взгляд, это ничего не значащие, не связанные между собой куски информации, на самом деле, они, как пиксели на экране, которые мы видим не каждый в отдельности, а в целостности картинки.

Возможно, наш мозг настолько гибок, что адаптируется к такому своеобразному способу нашего существования сегодня и дает нам возможность развиваться каким-то иным способом, незнакомым нам ранее. Дарит шанс развивать не память, не интеллект, а какие-то другие свои способности, которые мы давным-давно запустили и никак не развиваем. Какие? На то он и мозг, чтобы заставлять нас думать об этом.