Характеристика процессов сбора, передачи, обработки и накопления информации. Генетические алгоритмы

Бесплатная утилита AIDA32 в течении долгого времени была лучшей программой для сбора информации о системе, и не имела никаких достойных аналогов. Она предоставляла полную информацию почти по каждому аппаратному и программному обеспечению. А так же позволяла проверять окружение в сети и проводить тесты производительности памяти .

Однако, в марте 2004 года разработчик объявил о том, что развитие AIDA32 будет заморожено, а основное развитие будет перенесено в другую компанию. Где в последствии была продолжена разработка AIDA32, но уже в качестве коммерческого продукта под названием Everest. Когда в 2010 году Everest была приобретена FinalWare, разработка продукта Everest была прекращена. Тем не менее, сам продукт продолжил свое существование, но уже под именем AIDA64, который до сих пор существует. К сожалению, у данного продукта есть только триальные версии.

Обзор бесплатных программ для сбора информации о компьютере

AIDA32 он же Everest Home для сбора информации о компьютере

Однако, вы все еще можете найти старую версию . И до сих пор существует бесплатная версия программы Everest под названием . Старая версия AIDA32 работает лучше при сборе данных об окружении в сети, в то время как Everest охватывает более современное оборудование. Так что не смотря на то, что это по сути один и тот же продукт, вы можете использовать сразу оба продукта, чтобы получить максимальный эффект.

Программа Belarc Advisor аналог AIDA32 для сбора информации о системе

Если вам необходимо провести инвентаризацию оборудования отдельного компьютера, то вам пригодится . Эта программа бесплатна для некоммерческого использования. Конечно, по своему охвату она уступает AIDA32, но у нее есть одно важное преимущество. Она активно развивается. Так что придет время, и программа обгонит AIDA32.

Программа HWiNFO удобная инвентаризация системы

SIW (System Information for Windows)

Подробные результаты, портативный.
Не поддерживает Windows 8 и выше. Бесплатная версия больше не обновляется.

PC Wizard

Достаточно подробная информация. Неплохой бенчмаркинг. Регулярно обновляется
Установщик содержит "Ask Toolbar" (можно не устанавливать)

Belarc Advisor

Активно развивается
Не такая мощная, как AIDA32

Соглашение об использовании материалов сайта

Просим использовать работы, опубликованные на сайте , исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Создание программы для поиска минимума функции двух вещественных переменных в заданной области с помощью генетического алгоритма. Генетические алгоритмы и операторы. Создание начальной популяции. Размножение. Мутация и селекция. Тестирование программы.

    курсовая работа , добавлен 22.02.2015

    Программа реализации генетического алгоритма, использование визуальной среды программирования. Руководство пользователя, листинг программы. Возможность ввода параметров: объем популяции, число поколений, коэффициент скрещивания и мутации, число городов.

    курсовая работа , добавлен 20.08.2009

    Основные генетические операторы. Схема функционирования генетического алгоритма. Задачи, решаемые с помощью генетических алгоритмов. Математическая постановка задачи оптимизации. Решение Диофантова уравнения. Программная реализация. Создание пособия.

    курсовая работа , добавлен 20.02.2008

    Этапы работы генетического алгоритма, область его применения. Структура данных, генерация первоначальной популяции. Алгоритм кроссинговера - поиск локальных оптимумов. Селекция особей в популяции. Техническое описание программы и руководство пользователя.

    реферат , добавлен 14.01.2016

    Описание принципа работы генетического алгоритма, проверка его работы на функции согласно варианту на основе готовой программы. Основные параметры генетического алгоритма, его структура и содержание. Способы реализации алгоритма и его компонентов.

    лабораторная работа , добавлен 03.12.2014

    Первые работы по симуляции эволюции. Основные понятия генетических алгоритмов. Постановка задачи и функция приспособленности. Инициализация, формирование исходной популяции. Выбор исходной популяции для генетического алгоритма, решение задач оптимизации.

    курсовая работа , добавлен 31.03.2015

    Определение и описание "генетического алгоритма", идея которого состоит в организации эволюционного процесса, конечной целью которого является получение оптимального решения в сложной комбинаторной задаче. Пример его тривиальной реализации на C++.

    контрольная работа , добавлен 24.05.2010

Назначение технологического процесса накопления данных состоит в создании, хранении и поддержании в актуальном состоянии информационного фонда, необходимого для выполнения функциональных задач системы управления, для которой построен контур информационной технологии. Кроме того, хранимые данные по запросу пользователя или программы должны быть быстро (особенно для систем реального времени) и в достаточном объеме извлечены из области хранения и переведены в оперативные запоминающие устройства ЭВМ для последующего либо преобразования по заданным алгоритмам, либо отображения, либо передачи.

Указанные функции, выполняемые в процессе накопления данных, реализуются по алгоритмам, разработанным на основе соответствующих математических моделей.

Процессы и операции, выполняемые при протекании процесса накопления данных, приведены на структурной схеме рис. 4.1.

Рис.4.1 Состав процедур процесса накопления данных.

Информационный фонд систем управления должен формироваться на основе принципов необходимой полноты и минимальной избыточности хранимой информации. Эти принципы реализуются процедурой выбора хранимых данных , в процессе выполнения которой производится анализ циркулирующих в системе данных и на основе их группировки на входные, промежуточные и выходные, определяется состав хранимых данных. Входные данные - это данные, получаемые из первичной информации и создающие информационный образ предметной области. Они подлежат хранению в первую очередь. Промежуточные данные - это данные, формирующиеся из других данных при алгоритмических преобразованиях. Как правило, они не хранятся, но накладывают ограничения на емкость оперативной памяти компьютера.

Выходные данные являются результатом обработки первичных (входных) данных по соответствующей модели и входят в состав управляющего информационного потока своего уровня и подлежат хранению в определенном временном интервале. Вообще, данные имеют свой жизненный цикл существования, который фактически и отображается в процедурах процесса накопления. Структурная схема жизненного цикла данных приведена на рис. 4.2.



Рис. 4.2 Структурная схема жизненного цикла существования данных.

Из этой схемы следует, что процедуры хранения, актуализации и извлечения данных должны периодически сопровождаться оценкой необходимости их хранения, так как данные подвержены старению. Устаревшие данные должны быть удалены.

Процедура хранения состоит в том, чтобы сформировать и поддерживать структуру хранения данных в памяти ЭВМ. Современные структуры хранения данных должны быть независимы от программ, использующих эти данные и реализовывать вышеуказанные принципы (полнота и минимальная избыточность). Такие структуры получили название баз данных (БД). Осуществление процедур создания структуры хранения (базы данных), актуализация, извлечение и удаление данных производится с помощью специальных программ, называемых системами управления базами данных (СУБД).

Процедура актуализации данных позволяет изменить значения данных, записанных в базе, либо дополнить определенный раздел, группу данных. Устаревшие данные могут быть удалены с помощью соответствующей операции.

Процедура извлечения данных необходима для пересылки из базы данных требующихся данных либо для преобразования, либо для отображения, либо для передачи по вычислительной сети.

При выполнении процедур актуализации и извлечения обязательно выполняются операции поиска данных по заданным признакам и их сортировки , состоящие в изменении порядка расположения данных при хранении или извлечении.

На логическом уровне все процедуры процесса накопления должны быть формализованы, что отображается в математических и алгоритмических моделях этих процедур.

ВЫБОР ХРАНИМЫХ ДАННЫХ

Информационный фонд системы управления должен обеспечивать получение выходных наборов данных из входных с помощью алгоритмов обработки и корректировки данных. Это возможно, если создана инфологическая модель предметной области, которая вместе с наборами хранимых данных и алгоритмами их обработки позволяет построить каноническую модель (схему) информационной базы, а затем перейти к логической схеме и, далее, к физическому уровню реализации.

Инфологической (концептуальной) моделью предметной области называют описание предметной области без ориентации на используемые в дальнейшем программные и технические средства. Однако, для построения информационной базы инфологической модели не достаточно. Необходимо провести анализ информационных потоков в системе с целью установления связи между элементами данных, их группировки в наборы входных, промежуточных и выходных элементов данных, исключения избыточных связей и элементов данных. Получаемая в результате такого анализа безызбыточная структура носит название канонической структуры информационной базы и является одной из форм представления инфологической модели предметной области.

Для анализа информационных потоков в управляемой системе исходными являются данные о парных взаимосвязях, или отношениях (т.е. есть отношение или нет отношения) между наборами информационных элементов. Под информационными элементами понимают различные типы входных, промежуточных и выходных данных, которые составляют наборы входных N 1 , промежуточных N 2 и выходных N 3 элементов данных.

Формализовано связи (парные отношения) между наборами информационных элементов отображаются в виде матрицы смежности B, под которой понимают квадратную бинарную матрицу, проиндексированную по обеим осям множеством информационных элементов

,

где s - число этих элементов.

где q i j =

В позиции (i,j ) матрицы смежности записывают „1“(т.е.q i j =1), если между информационными элементами и существует отношение R 0 , такое, что для получения значения информационного элемента необходимо непосредственное обращение к элементу . Наличие такого отношения между и обозначают в виде , чему соответствует q ij =1, а отсутствие - и запись „0“ в позиции (), т.е. . Для простоты принимают, что каждый информационный элемент недостижим из самого себя:

Матрице B ставится в соответствие информационный граф . Множеством вершин графа является множество D информационных элементов, а каждая дуга (d i , d j ) соответствует условию ; т.е. записи „1“ в позиции () матрицы B .

Например, задано множество D из четырех наборов информационных элементов, т.е. . Пусть матрица смежности B этих элементов

имеет вид: .

Из этой матрицы видно, что для вычисления элемента необходимо обращение к элементам и , а для получения элемента - к элементу . Чтобы получить элемент , надо обратиться к . Элемент не зависит от других элементов матрицы. Информационный граф в этом простейшем случае будет соответствовать рис. 4.3.

Рис.4.3 Информационный граф

В общем случае структура графа вследствие неупорядоченности сложна для восприятия и анализа. Составленная на основе инфологической модели, она не гарантирована от неточностей, ошибок, избыточности и транзитивности. Для формального выделения входных, промежуточных и выходных наборов информационных элементов, определения последовательности операций их обработки, анализа и уточнения взаимосвязей на основе графа строят матрицу достижимости .

Матрицей достижимости M называют квадратную бинарную матрицу, проиндексированную по обеим осям множеством информационных элементов D , аналогично матрице смежности B . Запись „1“ в каждой позиции (ij ) матрицы достижимости соответствует наличию для упорядоченной пары информационных элементов (), смыслового отношения достижимости R . Элемент достижим из элемента , т.е. выполняется условие , если на графе существует направленный путь от вершины к вершине (в процессе получения значения элемента используется значение элемента ). Если , то отношение достижимости между элементами и отсутствует и в позиции (ij ) матрицы M записывают „0“. Отношение достижимости транзитивно, т.е. если и , то ; .

Записи „1“ в j- м столбце матрицы M соответствуют информационным элементам , которые необходимы для получения значений элементов , и которые образуют множество элементов предшествования A () для этого элемента. Записи „1“ в i- ой строке матрицы M соответствуют всем элементам , достижимым из рассматриваемого элемента и образующим множество достижимости R () этого элемента. Информационные элементы, строки которых в матрице M не содержат единиц (нулевые строки), являются выходными информационными элементами, а информационные элементы, соответствующие нулевым столбцам матрицы M , являются входными . Это условие может служить проверкой правильности заполнения матриц B и M , если наборы входных и выходных информационных элементов известны. Информационные элементы, не имеющие нулевой строки или столбца, являются промежуточными .

Для полученного в примере графа (рис. 4.3) матрица M будет выглядеть так:

Отличие столбцов матриц M и B объясняется тем, что в матрице M учитывается смысловое отношение между информационными элементами, а в матрице B только непосредственное . Например, элемент в матрице M достижим из элементов, , и , т.е. , и , в то время как в матрице B для этих элементов достижим только из , т.е. только , а и . Из анализа матрицы M следует, что элемент является входным, - выходным, остальные - промежуточные. На основе матрицы M строится информационный граф системы, структурированный по входным (), промежуточным () и выходным () наборам информационных элементов, и полученный из анализа множеств элементов предшествования A () и достижимости R (). Граф , полученный из матрицы M рассматриваемого примера, приведен на рисунке 4.4.

Рис.4.4 Информационный граф

В общем случае информационный граф системы, в отличие от вычисленного графа, может иметь контуры и петли, что объясняется необходимостью повторного обращения к отдельным элементам данных.

Информационный граф системы структурируется по уровням ( , , ) с использованием итерационной процедуры, что позволяет определить информационные входы и выходы системы, выделить основные этапы обработки данных, их последовательность и циклы обработки на каждом уровне. Кроме того, удаляются избыточные (лишние) дуги и элементы. Граф, получаемый после структуризации по наборам информационных элементов и удаления избыточных элементов и связей, определяет каноническую структуру информационной базы. Таким образом, каноническая структура задает логически неизбыточную информационную базу. Выделение наборов элементов данных по уровням позволяет объединить множество значений конечных элементов в логические записи и тем самым упорядочить их в памяти ЭВМ.

От канонической структуры переходят к логической структуре информационной базы, а затем - к физической организации информационных массивов. Каноническая структура является также основой для автоматизации основных процессов предпроектного анализа предметных областей систем управления.

Процедуры хранения, актуализации и извлечения данных непосредственно связаны с базами данных, поэтому логический уровень этих процедур определяется моделями баз данных.

БАЗЫ ДАННЫХ

База данных определяется как совокупность взаимосвязанных данных, характеризующихся: возможностью использования для большого количества приложений; возможностью быстрого получения и модификации необходимой информации; минимальной избыточностью информации; независимостью от прикладных программ; общим управляемым способом поиска .

Возможность использования баз данных для многих прикладных программ пользователя упрощает реализацию комплексных запросов, снижает избыточность хранимых данных и повышает эффективность использования информационной технологии. Минимальная избыточность и возможность быстрой модификации позволяет поддерживать данные на одинаковом уровне актуальности. Независимость данных и использующих их программ является основным свойством баз данных. Независимость данных подразумевает, что изменение данных не приводит к изменению прикладных программ и наоборот.

Модели баз данных базируются на современном подходе к обработке информации, состоящем в том, что структуры данных обладают относительной устойчивостью. Действительно, типы объектов предприятия, для управления которым создается информационная технология, если и изменяются во времени, то достаточно редко, а это приводит к тому, что и структура данных, обрабатываемых эти объекты, достаточно стабильна. Поэтому возможно построение информационной базы с постоянной структурой и изменяемыми значениями данных. Каноническая структура информационной базы, отображающая в структурированном виде информационную модель предметной области, позволяет сформировать логические записи, их элементы и взаимосвязи между ними. Взаимосвязи могут быть типизированы по следующим основным видам: „один к одному“, когда одна запись может быть связана только с одной записью; „один ко многим“, когда одна запись взаимосвязана со многими другими; „многие ко многим“, когда одна и та же запись может входить в отношения со многими другими записями в различных вариантах. Применение того или иного вида взаимосвязей определило три основных модели баз данных: иерархической, сетевой реляционной.

Для пояснения логической структуры основных моделей баз данных рассмотрим такую простую задачу: необходимо разработать логическую структуру БД для хранения данных о трех поставщиках П 1 , П 2 и П 3 , которые могут поставлять товары Т 1 ,Т 2 и Т 3 в следующих комбинациях: поставщик П 1 - все три вида товаров, поставщик П 2 - товары Т 1 и Т 3 , поставщик П 3 - товары Т 2 и Т 3 .

Сначала построим логическую модель БД, основанную на иерархическом подходе. Иерархическая модель представляется в виде древовидного графа, в котором объекты выделяются по уровням соподчиненности (иерархии) объектов (рис. 4.5).

Рис.4.5 Иерархическая модель БД

На верхнем первом уровне находится информация об объекте „поставщики“ (П), на втором - о конкретных поставщиках П 1 , П 2 и П 3 , на нижнем третьем уровне - о товарах, которые могут поставлять конкретные поставщики. В иерархической модели должно соблюдаться правило: каждый порожденный узел не может иметь больше одного порождающего узла (только одна входящая стрелка); в структуре может быть только один не порожденный узел (без входящей стрелки) - корень. Узлы, не имеющие входных стрелок, носят название листьев. Узел интегрируется как запись. Для поиска необходимой записи нужно двигаться от корня к листьям, т.е. сверху вниз, что значительно упрощает доступ. Иерархическая модель данных позволяет описать их структуру как на логическом, так и на физическом уровнях. Однако, из-за жесткой фиксированности взаимосвязей между элементами данных, любые изменения связей требуют изменение структуры. Принципиальным недостатком иерархической структуры является также жесткая зависимость физической и логической организации данных. Быстрота доступа в иерархической модели достигнута за счет потери информационной гибкости (за один проход по дереву невозможно, например, получить информацию о том, какие поставщики поставляют, скажем, товар Т1). Указанные недостатки ограничивают применение иерархической структуры.

В иерархической модели используется вид связи между элементами данных „один ко многим“. Если применяется взаимосвязь вида „многие ко многим“, то приходят к сетевой модели данных.

Сетевая модель базы данных для поставленной задачи представлена в виде диаграммы связей на рис.4.6.

На диаграмме указаны независимые (основные) типы данных П 1 , П 2 и П 3 , т.е. информация о поставщиках, и зависимые - информация о товарах Т 1 , Т 2 и Т 3 . В сетевой модели допустимы любые виды связей между записями и отсутствует ограничение на число обратных связей. Но должно соблюдаться одно правило: связь включает основную и зависимую запись.

Рис.4.6 Сетевая модель БД

Сетевая модель БД, хотя и обладает большей информационной гибкостью, но, как и иерархическая, является достаточно жесткой структурой, что препятствует развитию информационной базы системы управления. При необходимости частой реорганизации информационной базы (например, при использовании настраиваемых базовых информационных технологий) применяют наиболее совершенную модель БД - реляционную, в которой отсутствуют различная между объектами и взаимосвязями.

В реляционной модели базы данных взаимосвязи между элементами данных представляются в виде двумерных таблиц, называемых отношениями . Отношения обладают следующими свойствами: каждый элемент таблицы представляет собой один элемент данных (повторяющиеся группы отсутствуют); элементы столбца имеют одинаковую природу, и столбцам однозначно присвоены имена; в таблице нет двух одинаковых строк; строки и столбцы могут просматриваться в любом порядке вне зависимости от их информационного содержания. Реляционная модель БД обладает следующими преимуществами: простотой логической модели (таблицы привычны для представления информации); гибкостью системы защиты (для каждого отношения может быть задана правомерность доступа); независимостью данных; возможностью построения простого языка манипулирования данными с помощью математически строгой теории реляционной алгебры (алгебры отношений). Собственно, наличие строгого математического аппарата для реляционной модели баз данных и обусловило её наибольшее распространение и перспективность в современных информационных технологиях.

Для приведенной выше задачи о поставщиках и товарах, логическая структура реляционной БД будет содержать три таблицы (отношения): R 1 и R 2 , состоящие из записей о поставщиках и о товарах соответственно, и R 3 - о поставках товаров поставщиками (рис. 4.7).

Учитывая широкое применение реляционных моделей баз данных в информационных технологиях (особенно экономических), дадим более подробное описание этой структуры.

Рис 4.7 Реляционная модель БД

Не зря говорят, что лень — двигатель прогресса. Лично меня она подвигает на постоянный поиск каких-то способов упрощения повседневной жизни. Помогает мне в этом внутренний радар, настроенный на восприятие новой информации. Как только я слышу про что-то новенькое в интересной для меня области, стараюсь сразу проверить, не будет ли оно для меня полезным.

Иногда я сознательно ищу решения для упорядочивания информации, поток которой захлестывает ежедневно и ежечасно. И тогда я стараюсь накопать побольше, отобрать лучшие варианты и испробовать их на практике, чтобы остановиться на самом удобном и пользоваться долго.

Самое удивительное, что часто эти программы находятся совсем рядом, просто нужен другой человек, свободное время или конкретная задача, чтобы «открыть Америку» лично для себя. Поскольку мне регулярно приходится открывать глаза своих знакомых на те инструменты организации информации, которые находятся под рукой и даже не стоят денег, сегодня я хочу сказать о трех самых сильных из них (по моему субъективному мнению). Возможно, какая-то из них пригодится и вам тоже.

1. MS OneNote — это поистине программа-невидимка и золотая находка. Живет она в офисном пакете Windows, начиная с MS Office 2003, но большинство моих знакомых о ней ничего не слышали. По сути, это программа-блокнот с несколькими уровнями иерархии, позволяющими создавать записные книжки, разделы, страницы и подстраницы.

Подходит для систематизации и хранения любой информации, которая обычно болтается у вас на рабочем столе и в «Моих документах», в лучшем случае разложенная по папочкам — текст, картинки, целые страницы из интернета прямо со ссылками, аудио и видеофайлы. Например в ней можно хранить:

  • информацию по определенной теме для последующего выбора — если вы выбираете пылесос, телефон, автомобиль или курсы по тайм-менеджменту
  • информацию о покупках — где и за сколько купили, сроки гарантии
  • информацию о документах, особенно, если часто приходится заполнять какие-то данные в электронном виде
  • информацию о ваших клиентах, студентах
  • рецепты
  • планы
  • любые списки:
    • wish list,
    • подарки, которым обрадовались бы ваши друзья,
    • книги, которые вы прочли или только хотели бы,
    • фильмы, которые вы хотели бы посмотреть и ваши впечатления
  • информацию для поездки, списки вещей в дорогу
  • ваш дневник, ключевые события, которые хотели бы сохранить в памяти, заметки из путешествий
  • конспекты прочитанных книг, записи по учебным курсам, ваши собственные статьи, черновики и наброски
  • идеи для рукоделия
  • свайп-файлы
  • рисунки и пометки

Возможности программы безграничны. Можно выбрать вид «подложки», всевозможно редактировать текст, делать списки с чек-боксами (для отметки галочками), рисованные пометки. Можно использовать теги — ключевые слова, или просто пользоваться поиском.

Есть версии для android, iOs и OSX. Для любителей Apple есть ещё и платная программа Outline: для IOS — полный вариант, для MacOS доступна пока только версия для чтения готовых заметок. Её преимущество в том, что записные книжки можно хранить только на компьютере.

Единственным достойным конкурентом OneNote я считаю Evernote . Вы могли видеть на своем телефоне или планшете зеленого слона — это она. Суть программы та же. Несколько в другом формате представлены записки. Изначально ориентирована на синхронизацию с мобильными устройствами через интернет. У нее есть ограничения по использованию бесплатного аккаунта. Зато эта программа может использоваться и на платформах Apple, и на старых версиях android.

Пользователи Linux могут попробовать Keynote (не путать с программой для презентаций от Apple) — удобная, но, на мой взгляд, не такая дружелюбная для неподготовленного пользователя, как две первые.

2. Вторым по важности удобнячком считаю программы по построению карт памяти — mind maps . Много лет использую разные программы для графического представления различной информации. В частности:

Для планов статей
для конспектов книг, лекций, подготовки вопросов к экзамену
развернутого планирования достижения целей
планирования мероприятий
поиска решений

Безусловным лидером таких программ, на мой взгляд является Mind Manager — это самая удобная программа, но вместе с тем и самая дорогая. Вариант подешевле — Xmind . У нее есть бесплатная версия — вы сможете делать карты для собственного использования, но не сможете экспортировать в pdf, чтобы показать другу, у которого не установлена эта программа.

Самый доступный вариант Freemind — она бесплатна, интуитивно понятна и подходит для любой платформы.

3. Очень долго я искала удобный для меня планировщик . Так как я не очень рациональный человек, и с трудом могу действовать четко по намеченному плану, мне нужна была программа гибкого планирования, которая бы не стала кладбищем несбывшихся дел, при этом не будучи слишком примитивной. Не менее важным именно в этом случае было бы иметь синхронизацию с телефоном или планшетом, чтобы в нее можно было заглянуть на ходу или записать что-то новенькое.

Сейчас существует огромное количество планировщиков разной степени сложности. И, возможно, мой выбор окажется неудачным решением для тех, кто предпочитает строить все планы в единой структуре в одном месте, или имеет много задач, привязанных ко времени. Я же предпочитаю ежедневное планирование на бумаге, поэтому программа-планировщик служит для меня в первую очередь в качестве обзора всех задуманных задач (по сути, это для меня электронный вариант системы «Автофокус»).

Итак, моего победителя зовут Wunderlist . Сначала программа показалась мне совсем простой, пока я не обнаружила, что в ней есть подзадачи и место для дополнительной информации. То есть если в теме «Порядок» у меня есть пункт «Отдать даром ненужные вещи», то внутри я могу составить список вещей, а так же список мест, куда я могу обратиться для этого.

В платной версии программы можно даже прикреплять файлы и направлять задания другим людям. Хотя большинству вполне достаточно будет и бесплатной. Несмотря на то, что программа просит зарегистрироваться, можно пользоваться автономной версией программы бесконечно долго, и зарегистрироваться, только когда решите синхронизировать информацию на компьютере и телефоне.

Wunderlist позволяет выделять важные события, ставить дедлайны и напоминания, в том числе для повторяющихся событий.

Программа доступна для Windows, всех платформ Apple, android и в качестве web-приложения.

Вот такая тройка лидеров. А какие программы для упрощения жизни используете вы? Напишите в комментариях, я буду рада узнать что-нибудь новое.

Вся жизнь человека так или иначе связана с накоплением и обработкой информации, которую он получает из окружающего мира, используя пять органов чувств – зрение, слух, вкус, обоняние и осязание. Как научная категория «информация» составляет предмет изучения для самых различных дисциплин: информатики, кибернетики, философии, физики, биологии, теории связи и т. д. Несмотря на это, строгого научного определения, что же такое информация, до настоящего времени не существует, а вместо него обычно используют понятие об информации. Понятия отличаются от определений тем, что разные дисциплины в разных областях науки и техники вкладывают в него разный смысл, с тем чтобы оно в наибольшей степени соответствовало предмету и задачам конкретной дисциплины. Имеется множество определений понятия информации – от наиболее общего философского (информация есть отражение реального мира) до наиболее частного прикладного (информация есть сведения, являющиеся объектом переработки).

Первоначально смысл слова «информация» (от лат. Informatio – разъяснение, изложение) трактовался как нечто присущее только человеческому сознанию и общению: «знания, сведения, сообщения, известия, передаваемые людьми устным, письменным или другим способом».

Информация не является ни материей, ни энергией. В отличие от них, она может возникать и исчезать.

Особенность информации заключается в том, что проявляется она только при взаимодействии объектов, причем обмен информацией может совершаться не вообще между любыми объектами, а только между теми из них, которые представляют собой организованную структуру (систему). Элементами этой системы могут быть не только люди: обмен информацией может происходить в животном и растительном мире, между живой и неживой природой, людьми и устройствами.

Информация – наиболее важный ресурс современного производства: он снижает потребность в земле, труде, капитале, уменьшает расход сырья и энергии, вызывает к жизни новые производства, является товаром, причем продавец информации не теряет ее после продажи, может накапливаться.

Понятие «информация» обычно предполагает наличие двух объектов – «источника» информации и «приемника» (потребителя, адресата) информации.

Информация передается от источника к приемнику в материально-энергетической форме в виде сигналов (например, электрических, световых, звуковых и т. д.), распространяющихся в определенной среде.

Сигнал (от лат. signum – знак) – физический процесс (явление), несущий сообщение (информацию) о событии или состоянии объекта наблюдения.

Информация может поступать в аналоговом (непрерывном) виде или дискретно (в виде последовательности отдельных сигналов). Соответственно различают аналоговую и дискретную информацию.

Понятие информации можно рассматривать с двух позиций: в широком смысле слова – это окружающий нас мир, обмен сведениями между людьми, обмен сигналами между живой и неживой природой, людьми и устройствами; в узком смысле слова информация – это любые сведения, которые можно сохранить, преобразовать и передать.

Информация – специфический атрибут реального мира, представляющий собой его объективное отражение в виде совокупности сигналов и проявляющийся при взаимодействии с «приемником» информации, позволяющим выделять, регистрировать эти сигналы из окружающего мира и по тому или иному критерию их идентифицировать.

Из этого определения следует, что:

Информация объективна, так как это свойство материи – отражение;

Информация проявляется в виде сигналов и лишь при взаимодействии объектов;

Одна и та же информация различными получателями может быть интерпретирована по-разному в зависимости от «настройки» «приемника».

Человек воспринимает сигналы посредством органов чувств, которые «идентифицируются» мозгом. Приемники информации в технике воспринимают сигналы с помощью различной измерительной и регистрирующей аппаратуры. При этом приемник, обладающий большей чувствительностью при регистрации сигналов и более совершенными алгоритмами их обработки, позволяет получить большие объемы информации.

Информация имеет определенные функции. Основными из них являются:

Познавательная – получение новой информации. Функция реализуется в основном через такие этапы обращения информации, как:

– ее синтез (производство)

– представление

– хранение (передача во времени)

– восприятие (потребление)

Коммуникативная – функция общения людей, реализуемая через такие этапы обращения информации, как:

– передача (в пространстве)

– распределение

Управленческая – формирование целесообразного поведения управляемой системы, получающей информацию. Эта функция информации неразрывно связана с познавательной и коммуникативной и реализуется через все основные этапы обращения, включая обработку.

Без информации не может существовать жизнь в любой форме и не могут функционировать любые информационные системы, созданные человеком. Без нее биологические и технические системы представляют груду химических элементов. Общение, коммуникации, обмен информацией присущи всем живым существам, но в особой степени человеку. Будучи аккумулированной и обработанной с определенных позиций, информация дает новые сведения, приводит к новому знанию. Получение информации из окружающего мира, ее анализ и генерирование составляют одну из основных функций человека, отличающую его от остального живого мира.

В общем случае роль информации может ограничиваться эмоциональным воздействием на человека, однако наиболее часто она используется для выработки управляющих воздействий в автоматических (чисто технических) и автоматизированных (человеко-машинных) системах. В подобных системах можно выделить отдельные этапы (фазы) обращения информации, каждый из которых характеризуется определенными действиями.

Последовательность действий, выполняемых с информацией, называют информационным процессом.

Основными информационными процессами являются:

– сбор (восприятие) информации;

– подготовка (преобразование) информации;

– передача информации;

– обработка (преобразование) информации;

– хранение информации;

– отображение (воспроизведение) информации.

Так как материальным носителем информации является сигнал, то реально это будут этапы обращения и преобразования сигналов (рис. 1.6).

Рисунок 1.6. Основные информационные процессы

На этапе восприятия информации осуществляется целенаправленное извлечение и анализ информации о каком-либо объекте (процессе), в результате чего формируется образ объекта, проводятся его опознание и оценка. Главная задача на этом этапе – отделить полезную информацию от мешающей (шумов), что в ряде случаев связано со значительными трудностями.

На этапе подготовки информации осуществляется ее первичное преобразование. На этом этапе проводятся такие операции, как нормализация, аналого-цифровое преобразование, шифрование. Иногда этап подготовки рассматривается как вспомогательный на этапе восприятия. В результате восприятия и подготовки получается сигнал в форме, удобной для передачи, хранения или обработки.

На этапе передачи информация пересылается из одного места в другое (от отправителя получателю – адресату). Передача осуществляется по каналам различной физической природы, самыми распространенными из которых являются электрические, электромагнитные и оптические. Извлечение сигнала на выходе канала, подверженного действию шумов, носит характер вторичного восприятия.

На этапах обработки информации выявляются ее общие и существенные взаимозависимости, представляющие интерес для системы. Преобразование информации на этапе обработки (как и на других этапах) осуществляется либо средствами информационной техники, либо человеком.

Под обработкой информации понимается любое ее преобразование, проводимое по законам логики, математики, а также неформальным правилам, основанным на «здравом смысле», интуиции, обобщенном опыте, сложившихся взглядах и нормах поведения. Результатом обработки является тоже информация, но либо представленная в иных формах (например, упорядоченная по каким-то признакам), либо содержащая ответы на поставленные вопросы (например, решение некоторой задачи). Если процесс обработки формализуем, он может выполняться техническими средствами. Кардинальные сдвиги в этой области произошли благодаря созданию ЭВМ как универсального преобразователя информации, в связи с чем появились понятия данных и обработки данных.

Данными называют факты, сведения, представленные в формализованном виде (закодированные), занесенные на те или иные носители и допускающие обработку с помощью специальных технических средств (в первую очередь ЭВМ).

Обработка данных предполагает производство различных операций над ними, в первую очередь арифметических и логических, для получения новых данных, которые объективно необходимы (например, при подготовке ответственных решений).

На этапе хранения информацию записывают в запоминающее устройство для последующего использования. Для хранения информации используются в основном полупроводниковые и магнитные носители.

Этап отображения информации должен предшествовать этапам, связанным с участием человека. Цель этого этапа – предоставить человеку нужную ему информацию с помощью устройств, способных воздействовать на его органы чувств.

Любая информация обладает рядом свойств, которые в совокупности определяют степень ее соответствия потребностям пользователя (качество информации). Можно привести немало разнообразных свойств информации, так как каждая научная дисциплина рассматривает те свойства, которые ей наиболее важны. С точки зрения информатики наиболее важными представляются следующие:

Актуальность информации – свойство информации сохранять ценность для потребителя в течение времени, т. е. не подвергаться «моральному» старению.

Полнота информации – свойство информации, характеризуемое мерой достаточности для решения определенных задач. Полнота информации означает, что она обеспечивает принятие правильного (оптимального) решения. Оценивается относительно вполне определенной задачи или группы задач.

Адекватность информации – свойство, заключающееся в соответствии содержательной информации состоянию объекта. Нарушение идентичности связано с техническим старением информации, при котором происходит расхождение реальных признаков объектов и тех же признаков, отображенных в информации.

Сохранность информации – свойство информации, характеризуемое степенью готовности определенных информационных массивов к целевому применению и определяемое способностью контроля и защиты информации обеспечить постоянное наличие и своевременное предоставление информационного массива, необходимых для автоматизированного решения целевых и функциональных задач системы.

Достоверность информации – свойство информации, характеризуемое степенью соответствия реальных информационных единиц их истинному значению. Требуемый уровень достоверности информации достигается путем внедрения методов контроля и защиты информации на всех стадиях ее переработки, повышения надежности комплекса технических и программных средств информационной системы, а также административно-организационными мерами.