Сетевая файловая служба. Протокол NFS

С протоколами передачи данных знаком не каждый. А вот соединить свои компьютеры в одну сеть или использовать сервер для хранения файлов хотели бы многие. Один из способов это осуществить: NFS. Как настроить NFS сервер в Ubuntu - читайте далее.

Правильно настроив NFS можно объединить в одну сеть компьютеры на разных ОС.

Network File System - протокол сетевого доступа к файлам. Как водится, состоит из двух частей. Одна - клиентская, которая расположена на компьютере, с которого просматривают удалённые данные. Другая - серверная - расположена на компьютере, где эти данные хранятся. Довольно удобно использовать дополнительное дисковое пространство, особенно в локальной сети . А если речь идёт о каких-то корпоративных ПК, то это просто необходимо.

Чем отличается?

Сегодня существует большое число протоколов и самого разного программного обеспечения, которое выполняет те же самые функции. Чем выделяется NFS?

  • Возможность соединения в одну сеть компьютеров на разных операционных системах. Часто ОС Windows удобно соединить по NFS с Unix-системой , например, Ubuntu. Для этих же целей существует и применяется Samba, но NFS легче, проще и быстрее этой программы, поскольку реализован на уровне ядра. Поэтому настроить доступ через него, как правило, будет проще.
  • NFS предоставляет прозрачный доступ к файлам. Это означает, что все удалённые файлы воспроизводятся точно так же, как и локальные. Программы не надо апгрейдить, чтобы воспроизвести любой файл, находящийся на сервере.
  • NFS отправляет только запрашиваемую часть файла, а не весь файл.

Устанавливать Network File System для полноценной работы необходимо, как минимум, на два компьютера: сервер и клиент. Естественно, новичку больше всего попотеть придётся над серверной частью, поскольку именно там необходимо «расшаривать» (открывать доступ) папки. Однако всё это выполняется довольно легко.

Как и большинство протоколов передачи данных, NFS совсем не молод. Разработан он был в 1984 году и предназначался для UNIX-систем. Это и сейчас главная роль NFS, однако многие обнаружили, что при помощи его очень удобно соединять Windows-компьютеры с линуксовыми. Кроме того, NFS отлично подходит для воспроизведения мультимедийного контента по локальной домашней сети. Samba в этой роли часто подвисает и подтормаживает.

Установка серверной части NFS

Серверную часть протокола мы будем ставить на Ubuntu 16.04. Естественно, если у вас стоит редакция Server, то процесс никоим образом не отличается. Просто в традиционной версии Убунту некоторые действия можно выполнить при помощи графического интерфейса.

Устанавливаем программу. Для этого можно воспользоваться центром загрузки приложений , а можно просто ввести команду:

sudo apt install nfs-kernel-server

После этого нелишним будет проверить корректность установки. Делать это не обязательно, но мы всё же проверим. Вводим команду:

Порт везде должен быть 2049.

Теперь проверяем, поддерживает ли ядро NFS. Для этого вводим:

cat /proc/filesystems | grep nfs

Полученное значение должно выглядеть так: nodev nfsd

Это означает, что всё функционирует правильно. Если нет, то вводим команду:

При помощи её мы ставим модуль ядра самостоятельно.

Добавляем протокол в автозапуск . Делать это необязательно, но самому каждый раз включать его очень неудобно. Добавить, опять же, можно, пользуясь специальным пунктом меню в настройках, а можно самостоятельно при помощи команды:

sudo systemctl enable nfs

Итак, серверную часть мы установили, осталось правильно её настроить и перейти к клиентской.

Настройка

Настройка NFS в Ubuntu заключает в себе расшаривание определённых папок.

Помимо просто открытия доступа необходимо также указать параметры, которые определяют возможности пользователя по отношению к этой папке.

  • rw - reading and writing этот параметр разрешает чтение и запись файлов в папке.
  • ro - reading only - разрешает только чтение папки.
  • sync (по умолчанию) - параметр обеспечивает надёжность передачи. Если включен он, то нельзя будет одновременно передавать несколько файлов или на разные компьютеры. Эта настройка не даст отвечать на другие запросы. Предотвращает утерю данных, но передача может идти медленнее.
  • async - обратный предыдущему параметр. Передача идёт быстрее, но возникает риск потери информации.
  • secure - опция разрешает использовать только порты, номер которых ниже 1024. Включена по умолчанию.
  • insecure - разрешает использование любых портов.
  • nohide - если вы монтируете несколько директорий, среди которых есть вложенные, то вложенные в отличие от родительской будут отображаться как пустые. Исправить это поможет параметр
  • anonuid - указывает uid для анонимов. Это специальный идентификатор пользователя.
  • anongid - указывает gid для анонимов. GID (Group ID) - ещё один идентификатор пользователя.
  • no_subtree_check - функция отключает контроль поддерева. Дело в том, что без неё NFS дополнительно проверяет, что пользователи обращаются только в нужные разделы каталога. Это замедляет работу. Параметр позволяет ускорить её, но понижает безопасность.

Их мы и будем использовать в зависимости от того, что нужно в конкретной ситуации.

Создадим новую папку. Можно использовать и новую. Наша папка будет /var/network.

Теперь необходимо добавить эту папку в файл /etc/exports. Там хранятся все файлы и папки с открытым сетевым доступом. Запись должна выглядеть так:

/var/network168.1.1(rw,async,no_subtree_check)

192.168.1.1 - это IP, по которому мы осуществляем передачу. Указывать его обязательно.

Обновляем таблицу экспорта:

Теперь попробуем получить доступ к папке со стороны клиента.

Установка и настройка клиентской части NFS

Ubuntu

На Убунту подключить настроенный сервер не составит труда. Делается это всего за пару команд.

Устанавливаем специальный клиентский пакет:

sudo apt install nfs-common

sudo mount 192.168.1.1:/var/network/ /mnt/

Сетевая папка подключена. С помощью df можно проверить все подключенные сетевые папки:

Также можно проверить свой уровень доступа специальной командой:

Отключаем файловую систему следующим образом:

Почти везде используется команда mount. Она отвечает за процесс монтирования, то есть, подготовки пространства на жёстком диске для использования его операционной системой. Звучит сложно, но если упростить, получится, что мы просто перекидываем сетевые файлы на наш компьютер в новоявленную папку. Здесь она называется /mnt/.

Windows

С Виндой, как правило, всё складывается куда сложнее. NFS клиент без проблем можно запустить на всех серверных Windows. Из стандартных он присутствует на:

  • Windows 7 Ultimate/Enterprise
  • Windows 8/8.1 Enterprise
  • Windows 10 Enterprise

Больше нигде не найти. Если у вас одна из этих версий, делаем следующее:

  1. Открываем меню «Программы и компоненты».
  2. Жмём «Добавление компонентов».
  3. Находим там NFS и ставим только «Клиент для NFS», другой компонент нам не нужен.

После подключения монтируется всё такой же командой:

mount 192.168.1.1:/var/network/ /mnt/

Размонтировать можно следующим образом:

Команды вводятся в командную строку, запущенную от лица администратора. После этого вы без труда, пользуясь Проводником, сможете найти нужный сетевой диск.

А что делать, если клиента для NFS на компьютере нет? Можно попробовать загрузить софт через сайт Microsoft или со сторонних ресурсов. Возможно, что здесь понадобятся другие команды или действия.

Теперь у вас появились базовые представления о том, как можно использовать NFC и провести простейшую настройку. Этих знаний хватит, чтобы наладить доступ с одного компьютера к другому. Причём в роли клиента может выступить и ПК на Windows.

пользователь может работать в разное время на разных компьютерах. С помощью файлового сервера решается сразу несколько задач:
  1. регулярное резервное копирование всех данных: нереально выполнять эту операцию для нескольких десятков или сотен компьютеров, но вполне реально - с единственного сервера или нескольких серверов.
  2. повышение надежности хранения данных: неразумно каждый компьютер сети оснащать RAID-массивом, ведь подавляющее большинство файлов в компьютере, таких, как установленные пакеты программ, проще установить заново, чем защищать их от сбоя; но будет вполне разумным укомплектовать файловый сервер аппаратным RAID-массивом или организовать там программный RAID-массив, хотя бы простое зеркалирование дисков.
  3. уменьшение стоимости хранения данных: дорого и неэффективно в каждый компьютер устанавливать огромный диск на случай, если потребуется хранить много данных, но на сервере вполне можно установить масштабируемую дисковую подсистему большого объема.
  4. обеспечение доступа к одним и тем же данным с любого компьютера.

Описание NFS

Служба NFS позволяет серверу обеспечить разделяемый доступ к указанным каталогам его локальной файловой системы , а клиенту - монтировать эти каталоги так же, как если бы они были локальными каталогами клиента.

Версии NFS

NFS , разработанная компанией Sun Microsystems, оказалась настолько удачной, что ее реализации были воплощены разными компаниями почти во всех операционных системах. Существует несколько принципиально разных реализаций NFS . Достаточно распространена версия NFS 2.0, хотя уже в Solaris 2.5 была введена NFS 3.0. В последующих версиях Solaris, включая Solaris 9, в NFS были внесены существенные дополнения, но сам протокол остался совместимым с реализациями NFS 3.0 в других системах. Начиная с NFS 3.0, поддерживается передача пакетов посредством TCP и UDP, ранее поддерживался только UDP.

Будьте внимательны ! В сети следует использовать клиенты и серверы NFS одной и той же версии . NFS 2.0 можно встретить в старых системах, например, в HP-UX 10.0. Совместная работа систем, использующих разные версии NFS , нежелательна.

Совместимость NFS и других служб разделяемых каталогов

NFS по смыслу и по организации работы похожа на разделяемые каталоги (shared folders) в системах Windows, но эти службы используют совершенно разные протоколы работы и между собой не совместимы. Однако существует несколько программных продуктов, которые устанавливают поддержку NFS в системах Windows, поэтому применение NFS в сети с различными операционными системами не представляет проблемы, надо только помнить о необходимости использовать одинаковые версии NFS .

Служба NFS предполагает работу модели клиент-сервер, причем на компьютерах-клиентах и компьютерах-серверах запускаются разные программы для обеспечения доступа к общим каталогам на сервере.

Поскольку компьютеры на рабочих местах сотрудников в России обычно управляются Windows-системами, в качестве файловых серверов часто используются также Windows-системы. Однако нередко возникает желание установить UNIX на файл-сервер, чтобы повысить надежность, сократить затраты на оборудование или использовать этот же сервер для ряда других корпоративных нужд: в качестве web-сервера, сервера баз данных и т.п. Чтобы не устанавливать дополнительное ПО для поддержки NFS , в таком случае достаточно установить пакет samba на UNIX-машину. Он позволит ей "прикинуться" Windows-сервером так, чтобы все клиентские компьютеры воспринимали его как самый обычный файл-сервер или принт-сервер Windows-сети. Пакет samba обеспечивает поддержку "родного" для Windows-сетей протокола SMB.

В тех случаях, когда в сети работают несколько UNIX-компьютеров и им нужно обращаться к одному файл-серверу, имеет смысл использовать механизм NFS (network file system).

NFS не очень устойчив к сбоям сети, требует ее бесперебойной работы и предполагает быстрое соединение между клиентом и сервером. Использование NFS для монтирования файловых систем вне локальной сети, например, через Интернет, технически осуществимо, но не очень рационально и небезопасно.

Терминология NFS

После настройки NFS-сервера UNIX-компьютер будет предоставлять доступ внешним пользователям к некоторым каталогам своей файловой системы . Такое предоставление доступа называется "экспортом": говорят, что система экспортирует свои каталоги. Как именно каталоги будут экспортироваться, определяется списком, который задает системный администратор. В большинстве систем UNIX этот список содержится в файле /etc/exports , но в Solaris он находится в другом файле - /etc/dfs/dfstab .

NFS работает посредством механизма удаленного вызова процедур ( RPC - Remote Procedure Call ).

Что такое RPC

Идеология RPC очень проста и привлекательна для программиста. Как обычно работает сетевое приложение? Оно следует некоему протоколу (например, HTTP): формирует пакет с запросом, вызывает системную функцию установления соединения, затем функцию отправки пакета, затем ждет ответного пакета и вызывает функцию закрытия соединения. Это значит, что вся работа с сетью является заботой программиста, который пишет приложение: он должен помнить о вызове функций сетевого API системы, думать о действиях в случае сбоев сети.

RPC предполагает иной способ обмена данными между клиентом и сервером. С точки зрения программиста, приложение клиента, работающее с помощью RPC , вызывает функцию на сервере, она выполняется и возвращает результат. Пересылка запроса на выполнение функции через сеть и возврат результатов от сервера клиенту происходит незаметно для приложения, поэтому последнее не должно беспокоиться ни о сбоях сети, ни о деталях реализации транспортного протокола.

Для того чтобы обеспечить прозрачность пересылки данных через сеть, придумана двухступенчатая процедура. На сервере любое приложение, предоставляющее свой сервис через RPC , должно зарегистрироваться в программе, которая называется транслятором портов (port mapper). Функция этой программы - устанавливать соответствие между номером процедуры RPC , которую запросил клиент, и номером TCP или UDP порта, на котором приложение сервера ждет запросов. Вообще говоря, RPC может работать не только с TCP или UDP. В Solaris как раз реализована работа на базе механизма TI (TransportIndependent), поэтому в Solaris транслятор портов называется rpcbind , а не portmap , как в Linux или FreeBSD.

Приложение, которое регистрируется у транслятора портов, сообщает ему номер программы, номер версии и номера процедур, которые могут обрабатываться данной программой. Эти процедуры будут впоследствии вызываться клиентом по номеру. Кроме этого, приложение сообщает номера портов TCP и UDP, которые будут использоваться для приема запросов на выполнение процедур.

Клиент, желающий вызвать выполнение процедуры на сервере, сначала отправляет запрос транслятору портов на сервер, чтобы узнать, на какой TCP или UDP порт надо отправить запрос. Транслятор портов запускается при старте системы и всегда работает на стандартном порту 111. Получив ответ от него, клиент отправляет запрос на тот порт, который соответствует требуемому приложению. Например, сервер NFS работает на порту 2049.

Процедура монтирования общего каталога через NFS

Прежде чем мы перейдем к описанию настроек сервера и клиентов NFS , следует понять, как осуществляется монтирование удаленных файловых систем в принципе.

Клиент NFS посылает запрос на монтирование удаленному компьютеру, который предоставляет свою файловую систему (обычно - некоторую ее часть) для общего пользования. При этом говорят, что сервер NFS "экспортирует" тот или иной каталог (подразумевается - с подкаталогами). Запрос от клиента

NFS
Уровень (по модели OSI): Прикладной
Семейство: стек протоколов TCP/IP
Порт/ID: 67, 68/UDP
Назначение протокола: Получение сетевой конфигурации
Спецификация: RFC 2131
Основные реализации (серверы): dhcpd, ISC DHCP Server, Infoblox
Вступил в силу с: 1990

NFS абстрагирован от типов файловых систем как сервера, так и клиента, существует множество реализаций NFS-серверов и клиентов для различных операционных систем и аппаратных архитектур. Наиболее зрелая версия NFS - v.4, поддерживающая различные средства аутентификации (в частности, Kerberos и LIPKEY с использованием протокола RPCSEC GSS) и списков контроля доступа (как POSIX, так и Windows-типов).

Общая организация NFS

NFS предоставляет клиентам прозрачный доступ к файлам и файловой системе сервера. В отличие от FTP , протокол NFS осуществляет доступ только к тем частям файла, к которым обратился процесс, и основное достоинство его в том, что он делает этот доступ прозрачным. Это означает, что любое приложение клиента, которое может работать с локальным файлом, с таким же успехом может работать и с NFS файлом, без каких либо модификаций самой программы.

NFS-клиенты получают доступ к файлам на NFS-сервере путём отправки RPC-запросов на сервер. Это может быть реализовано с использованием обычных пользовательских процессов - а именно, NFS-клиент может быть пользовательским процессом, который осуществляет конкретные RPC-вызовы на сервер, который так же может быть пользовательским процессом.

Важной частью последней версии стандарта NFS (v4.1) стала спецификация pNFS, нацеленная на обеспечение распараллеленной реализации общего доступа к файлам, увеличивающая скорость передачи данных пропорционально размерам и степени параллелизма системы.

История

Протокол NFS имеет в своей истории 4 версии.

Первая версия применялась только для внутреннего использования в Sun в экспериментальных целях. Версия 2 выпущена в марте 1989 года, первоначально полностью работала по протоколу UDP. Разработчики решили не хранить данных о внутреннем состоянии внутри протокола, как пример, блокировка, реализованная вне базового протокола. Люди, вовлечённые в создание NFS версии 2 - Расти Сэндберг (Rusty Sandberg,) Боб Лайон (Bob Lyon), Билл Джой и Стив Клейман (Steve Kleiman).

NFSv3 вышла в июне 1995 года, в ней добавлена поддержка дескрипторов файлов переменного размера до 64 байт (в версии 2 - массив фиксированного размера 32 байта), снято ограничение на 8192 байта в RPC-вызовах чтения и записи (тем самым, размер передаваемого блока в вызовах ограничен только пределом для UDP-датаграммы - 65535 байт), реализована поддержка файлов больших размеров, поддержаны асинхронные вызовы операций записи, к процедурам READ и WRITE добавлены вызовы ACCESS (проверка прав доступа к файлу), MKNOD (создание специального файла Unix), READDIRPLUS (возвращает имена файлов в директории вместе с их атрибутами), FSINFO (возвращает статистическую информацию о файловой системе), FSSTAT (возвращает динамическую информацию о файловой системе), PATHCONF (возвращает POSIX.1-информацию о файле) и COMMIT (передает ранее сделанные асинхронные записи на постоянное хранение). На момент введения версии 3 отмечен рост популярности в среде разработчиков протокола TCP. Некоторые независимые разработчики самостоятельно добавили поддержку протокола TCP для NFS версии 2 в качестве транспортного, Sun Microsystems добавили поддержку TCP в NFS в одном из дополнений к версии 3. С поддержкой TCP повысились практическая осуществимость использования NFS в глобальных сетях.

NFSv4 выпущена в декабре 2000 года под влиянием AFS и CIFS, в неё включены улучшения производительности и безопасности. Версия 4 стала первой версией, разработанной совместно с Internet Engineering Task Force (IETF). NFS версии v4.1 была одобрена IESG в январе 2010 года (новая спецификация, объёмом 612 страниц, стала известна как самый длинный документ, одобренный IETF). Важным нововведением версии 4.1 является спецификация pNFS - Parallel NFS, механизма параллельного доступа NFS-клиента к данным множества распределенных NFS-серверов. Наличие такого механизма в стандарте сетевой файловой системы поможет строить распределённые облачные хранилища и информационные системы.

Цели разработки

Изначальными требованиями при разработке NFS были:

  • потенциальная поддержка различных операционных систем (не только UNIX), чтобы серверы и клиенты NFS возможно было бы реализовать в разных операционных системах;
  • протокол не должен зависеть от каких-либо определённых аппаратных средств;
  • должны быть реализованы простые механизмы восстановления в случае отказов сервера или клиента;
  • приложения должны иметь прозрачный доступ к удаленным файлам без использования специальных путевых имен или библиотек и без перекомпиляции;
  • для UNIX-клиентов должна поддерживаться семантика UNIX;
  • производительность NFS должна быть сравнима с производительностью локальных дисков;
  • реализация не должна быть зависимой от транспортных средств.

Принцип работы NFS

NFS строится по крайней мере из двух основных частей: сервера и одного или большего количества клиентов. Клиент обращается к данным, находящимся на сервере, в режиме удалённого доступа. Для того, чтобы это нормально функционировало, нужно настроить и запустить несколько процессов. Реализация NFS состоит из нескольких компонентов. Некоторые из них локализованы либо на сервере, либо на клиенте, а некоторые используются и на обеих сторонах соединения. Некоторые компоненты не требуются для обеспечения основных функциональных возможностей, но составляют часть расширенного интерфейса NFS.

Протокол NFS определяет набор запросов (операций), которые могут быть направлены клиентом к серверу, а также набор аргументов и возвращаемые значения для каждого из этих запросов. Версия 1 этого протокола существовала только в недрах Sun Microsystems и никогда не была выпущена. Все реализации NFS (в том числе NFSv3) поддерживают версию 2 NFS (NFSv2), которая впервые была выпущена в 1985 году в SunOS 2.0. Версия 3 протокола была опубликована в 1993 году и реализована некоторыми фирмами-поставщиками.

Протокол удаленного вызова процедур (RPC) определяет формат всех взаимодействий между клиентом и сервером. Каждый запрос NFS посылается как пакет RPC. На сервере работают следующие даемоны :

  • rpc.nfsd - Основной даемон сервера NFS - nfsd (в новых версиях иногда называется nfsd4). Этот демон обслуживает запросы клиентов NFS. Параметр RPCNFSDCOUNT в файле /etc/default/nfs-kernel-server в Debian и NFSDCOUNT в файле /etc/sysconfig/nfs в RedHat определяет число запускаемых демонов (по-умолчанию - 8). (RPC программа 100003)
  • rpc.mountd - Даемон монтирования NFS mountd обрабатывает запросы клиентов на монтирование каталогов. Демон mountd работает на серверах NFS. (RPC программа 100005)
  • rpc.statd - Даемон наблюдения за сетевым состоянием (он же Network Status Monitor, он же NSM). Он позволяет корректно отменять блокировку после сбоя/перезагрузки. Для уведомления о сбое использует программу /usr/sbin/sm-notify. Демон statd работает как на серверах, так и на клиентах. Ранее данный сервер был необходим для работы rpc.lockd, но за блокировки сейчас отвечает ядро. (RPC программа 100021 и 100024 - в новых версиях)
  • rpc.lockd - Даемон блокировки lockd (он же NFS lock manager (NLM)) обрабатывает запросы на блокировку файлов. Демон блокировки работает как на серверах, так и на клиентах. Клиенты запрашивают блокировку файлов, а серверы ее разрешают. (устарел и в новых дистрибутивах не используется как демон. Его функции в современных дистрибутивах (с ядром старше 2.2.18) выполняются ядра (lockd). (RPC программа 100024)
  • rpc.idmapd - Даемон idmapd для NFSv4 на сервере преобразует локальные uid/gid пользователей в формат вида имя@домен, а сервис на клиенте преобразует имена пользователей/групп вида имя@домен в локальные идентификаторы пользователя и группы (согласно конфигурационному файлу /etc/idmapd.conf).

Клиент может запустить также даемон, называемый nfsiod. nfsiod обслуживает запросы, поступающие от сервера от сервера NFS. Он необязателен, увеличивает производительность, однако для нормальной и правильной работы не требуется. В NFSv4 при использовании Kerberos дополнительно запускаются демоны:

  • rpc.gssd - Даемон NFSv4 обеспечивает методы аутентификации через GSS-API (Kerberos-аутентификация). Работает на клиенте и сервере.
  • rpc.svcgssd - Даемон сервера NFSv4, который обеспечивает проверку подлинности клиента на стороне сервера.

Даемоны старых версий (NFS v.3 и ниже):

  • nfslogd - даемон журналов NFS фиксирует активность для экспортированных файловых систем, работает на серверах NFS
  • rpc.rquotad - сервер удаленных квот предоставляет информацию о квотах пользователей в удаленных файловых системах, может работать как на серверах, так и на клиентах.

Кроме указанных выше пакетов, для корректной работы NFSv2 и v3 требуется дополнительный пакет portmap (в более новых дистрибутивах заменен на переименован в rpcbind). Sun RPC - это сервер, который преобразует номера программ RPC (Remote Procedure Call) в номера портов TCP/UDP.

portmap оперирует несколькими сущностями:

  • RPC-вызовами или запросами
  • TCP/UDP портами, версией протокола (tcp или udp)
  • номерами программ и версиями программ

Даемон portmap запускается скриптом /etc/init.d/portmap до старта NFS-сервисов.

Работа сервера RPC (Remote Procedure Call) заключается в обработке RPC-вызовов (т.н. RPC-процедур) от локальных и удаленных процессов. Используя RPC-вызовы, сервисы регистрируют или удаляют себя в/из преобразователя портов (portmap, portmapper, он же, в новых версиях, rpcbind), а клиенты с помощью RPC-вызовов направляя запросы к portmapper получают необходимую информацию.

Работу RPC-сервера можно представить следующими шагами:

  1. Преобразователь портов должен стартовать первым, обычно при загрузке системы. При этом создается конечная точка TCP и осуществляется открытие TCP порта 111. Также создается конечная точка UDP, которая находится в ожидании, когда на UDP порт 111 прибудет UDP датаграмма.
  2. При старте программа, работающая через сервер RPC создает конечную точку TCP и конечную точку UDP для каждой поддерживаемой версии программы. (Сервер RPC может поддерживать несколько версий. Клиент указывает требуемую версию при посылке RPC-вызова.) Динамически назначаемый номер порта закрепляется за каждой версией сервиса. Сервер регистрирует каждую программу, версию, протокол и номер порта, осуществляя соответствующий RPC-вызов.
  3. Когда программе клиента RPC необходимо получить необходимую информацию, она вызывает вызов процедуру преобразователя портов, чтобы получить динамически назначаемый номер порта для заданной программы, версии и протокола.
  4. В ответ на этот запрос север возвращает номер порта.
  5. Клиент отправляет сообщение RPC-запрос на номер порта, полученный в пункте 4. Если используется UDP, клиент просто посылает UDP датаграмму, содержащую сообщение RPC-вызова, на номер UDP порта, на котором работает запрошенный сервис. В ответ сервис отправляет UDP датаграмму, содержащую сообщение RPC отклика. Если используется TCP, клиент осуществляет активное открытие на номер TCP порта требуемого сервиса и затем посылает сообщение вызова RPC по установленному соединению. Сервер отвечает сообщением отклика RPC по соединению.

Для получения информации от RPC-сервера используется утилита rpcinfo, она отображает номер зарегистрированной программы, версию, протокол, порт и название. С помощью rpcinfo также можно удалить регистрацию программы или получить информацию об отдельном сервисе RPC. При указании параметров -p host программа выводит список всех зарегистрированных RPC программ на хосте host. Без указания хоста программа выведет сервисы на localhost.

NFS сервер (точнее даемон rpc.nfsd) получает запросы от клиента в виде UDP датаграмм на порт 2049. Несмотря на то, что NFS работает с преобразователем портов, что позволяет серверу использовать динамически назначаемые порты, UDP порт 2049 жестко закреплен за NFS в большинстве реализаций.

Описание процесса обращения к файлу, расположенному на сервере NFS:

  • Клиенту (пользовательскому процессу) безразлично, получает ли он доступ к локальному файлу или к NFS файлу. Ядро занимается взаимодействием с железом через модули ядра или встроенные системные вызовы.
  • Модуль ядра kernel/fs/nfs/nfs.ko, который выполняет функции NFS клиента отправляет RPC запросы NFS серверу через модуль TCP/IP. NFS обычно использует UDP, однако более новые реализации могут использовать TCP.
  • NFS сервер получает запросы от клиента в виде UDP датаграмм на порт 2049. Несмотря на то, что NFS может работать с преобразователем портов, что позволяет серверу использовать динамически назначаемые порты, UDP порт 2049 жестко закреплен за NFS в большинстве реализаций.
  • Когда NFS сервер получает запрос от клиента, он передаётся локальной подпрограмме доступа к файлу, которая обеспечивает доступ к локальному диску на сервере.
  • Результат обращения диску возвращается клиенту.

Настройка сервера NFS

Настройка сервера в целом заключается в задании локальных каталогов, разрешенных для монтирования удаленными системами в файле /etc/exports. Это действие называется экспорт иерархии каталогов. Основными источниками информации об экспортированных каталогах служат следующие файлы:

Структура папки Root

  1. /etc/exports - основной конфигурационный файл, хранящий в себе конфигурацию экспортированных каталогов. Используется при запуске NFS и утилитой exportfs.
  2. /var/lib/nfs/xtab - содержит список каталогов, монтированных удаленными клиентами. Используется демоном rpc.mountd, когда клиент пытается смонтировать иерархию (создается запись о монтировании).
  3. /var/lib/nfs/etab - список каталогов, которые могут быть смонтированы удаленными системами с указанием всех параметров экспортированных каталогов.
  4. /var/lib/nfs/rmtab - список каталогов, которые не разэкспортированы в данный момент.
  5. /proc/fs/nfsd - специальная файловая система (ядро 2.6) для управления NFS сервером.
  6. /proc/net/rpc - содержит "сырую" (raw) статистику, которую можно получить с помощью nfsstat, а также различные кеши.
  7. /var/run/portmap_mapping - информация о зарегистрированных в RPC сервисах.

В файле exports используются следующие общие опции:

  • auth_nlm (no_auth_nlm) или secure_locks (insecure_locks) - указывает, что сервер должен требовать аутентификацию запросов на блокировку (с помощью протокола NFS Lock Manager (диспетчер блокировок NFS)).
  • nohide (hide) - если сервер экспортирует две иерархии каталогов, при этом одна вложенна (примонтированна) в другую. Клиенту необходимо явно смонтировать вторую (дочернюю) иерархию, иначе точка монтирования дочерней иерархии будет выглядеть как пустой каталог. Опция nohide приводит к появлению второй иерархии каталогов без явного монтирования.
  • ro - Разрешает только запросы на чтение.
  • rw - Разрешает запросы на запись.
  • secure (insecure) - требует, чтобы запросы NFS поступали с защищенных портов (< 1024), чтобы программа без прав root не могла монтировать иерархию каталогов.
  • subtree_check (no_subtree_check) - Если экспортируется подкаталог фаловой системы, но не вся файловая система, сервер проверяет, находится ли запрошенный файл в экспортированном подкаталоге. Отключение проверки уменьшает безопасность, но увеличивает скорость передачи данных.
  • sync (async) - указывает, что сервер должен отвечать на запросы только после записи на диск изменений, выполненных этими запросами. Опция async указывает серверу не ждать записи информации на диск, что повышает производительность, но понижает надежность, т.к. в случае обрыва соединения или отказа оборудования возможна потеря информации.
  • wdelay (no_wdelay) - указывает серверу задерживать выполнение запросов на запись, если ожидается последующий запрос на запись, записывая данные более большими блоками. Это повышает производительность при отправке больших очередей команд на запись. no_wdelay указывает не откладывать выполнение команды на запись, что может быть полезно, если сервер получает большое количество команд не связанных друг с другом.

Управление сервером NFS

Управление сервером NFS осуществляется с помощью следующих утилит:

  • nfsstat
  • showmsecure (insecure)ount
  • exportfs

Утилита nfsstat позволяет посмотреть статистику RPC и NFS серверов.

showmount

Утилита showmount запрашивает демон rpc.mountd на удалённом хосте о смонтированных файловых системах. По умолчанию выдаётся отсортированный список клиентов. Команды:

  • --all - выдаётся список клиентов и точек монтирования с указанием куда клиент примонтировал каталог. Эта информация может быть не надежной.
  • --directories - выдаётся список точек монтирования.
  • --exports - выдаётся список экспортируемых файловых систем с точки зрения nfsd.

При запуске showmount без аргументов, на консоль будет выведена информация о системах, которым разрешено монтировать локальные каталоги.

exportfs

Данная команда синхронизирует экспортированные каталоги, заданные в файле /etc/exports, с файлом /var/lib/nfs/xtab и удаляет из xtab несуществующие. exportfs выполняется при запуске демона nfsd с аргументом -r. Утилита exportfs в режиме ядра 2.6 общается с демоном rpc.mountd через файлы каталога /var/lib/nfs/ и не общается с ядром напрямую. Без параметров выдаёт список текущих экспортируемых файловых систем. Параметры exportfs:

  1. [клиент:имя-каталога] - добавить или удалить указанную файловую систему для указанного клиента)
  2. -v - выводить больше информации
  3. -r - переэкспортировать все каталоги (синхронизировать /etc/exports и /var/lib/nfs/xtab)
  4. -u - удалить из списка экспортируемых
  5. -a - добавить или удалить все файловые системы
  6. -o - опции через запятую (аналогичен опциям применяемым в /etc/exports; т.о. можно изменять опции уже смонтированных файловых систем)
  7. -i - не использовать /etc/exports при добавлении, только параметры текущей командной строки
  8. -f - сбросить список экспортируемых систем в ядре 2.6.

Монтирование файловой системы Network Files System командой mount

Пример команды mount для монтирования файловой системы NFS в Debian:

FILES ~ # mount -t nfs archiv:/archiv-small /archivs/archiv-small FILES ~ # mount -t nfs -o ro archiv:/archiv-big /archivs/archiv-big FILES ~ # mount ....... archiv:/archiv-small on /archivs/archiv-small type nfs (rw,addr=10.0.0.6) archiv:/archiv-big on /archivs/archiv-big type nfs (ro,addr=10.0.0.6)

Первая команда монтирует экспортированный каталог /archiv-small на сервере archiv в локальную точку монтирования /archivs/archiv-small с опциями по умолчанию (то есть для чтения и записи). Вторая команда монтирует экспортированный каталог /archiv-big на сервере archiv в локальный каталог /archivs/archiv-big с опцией только для чтения (ro). Команда mount без параметров наглядно отображает нам результат монтирования. Кроме опции только чтения (ro), возможно задать другие основные опции при монтировании NFS :

  • nosuid - Данная опция запрещает исполнять setuid программы из смонтированного каталога.
  • nodev (no device - не устройство) - Данная опция запрещает использовать в качестве устройств символьные и блочные специальные файлы.
  • lock (nolock) - Разрешает блокировку NFS (по умолчанию). nolock отключает блокировку NFS (не запускает демон lockd) и удобна при работе со старыми серверами, не поддерживающими блокировку NFS.
  • mounthost=имя - Имя хоста, на котором запущен демон монтирования NFS - mountd.
  • mountport=n - Порт, используемый демоном mountd.
  • port=n - порт, используемый для подключения к NFS серверу (по умолчанию 2049, если демон rpc.nfsd не зарегистрирован на RPC-сервере). Если n=0 (по умолчанию), то NFS посылает запрос к portmap на сервере, чтобы определить порт.
  • rsize=n (read block size - размер блока чтения) - Количество байтов, читаемых за один раз с NFS-сервера. Стандартно - 4096.
  • wsize=n (write block size - размер блока записи) - Количество байтов, записываемых за один раз на NFS-сервер. Стандартно - 4096.
  • tcp или udp - Для монтирования NFS использовать протокол TCP или UDP соответственно.
  • bg - При потери доступа к серверу, повторять попытки в фоновом режиме, чтобы не блокировать процесс загрузки системы.
  • fg - При потери доступа к серверу, повторять попытки в приоритетном режиме. Данный параметр может заблокировать процесс загрузки системы повторениями попыток монтирования. По этой причине параметр fg используется преимущественно при отладке.
  • Опции, влияющие на кэширование атрибутов при монтировании NFS
  • Атрибуты файлов, хранящиеся в inod (индексных дескрипторах), такие как время модификации, размер, жесткие ссылки, владелец, обычно изменяются не часто для обычных файлов и еще реже - для каталогов. Ядро использует время модификации файла, чтобы определить устарел ли кэш, сравнивая время модификации в кэше и время модификации самого файла.

Кэш атрибутов периодически обновляется в соответствии с заданными параметрами:

  1. ac (noac) (attrebute cache - кэширование атрибутов) - Разрешает кэширование атрибутов (по-умолчанию). Хотя опция noac замедляет работу сервера, она позволяет избежать устаревания атрибутов, когда несколько клиентов активно записывают информацию в общию иерархию.
  2. acdirmax=n (attribute cache directory file maximum - кэширование атрибута максимум для файла каталога) - Максимальное количество секунд, которое NFS ожидает до обновления атрибутов каталога (по-умолчанию 60 сек.)
  3. acdirmin=n (attribute cache directory file minimum - кэширование атрибута минимум для файла каталога) - Минимальное количество секунд, которое NFS ожидает до обновления атрибутов каталога (по-умолчанию 30 сек.)
  4. acregmax=n (attribute cache regular file maximum - кэширование атрибута максимум для обычного файла) - Максимаьное количество секунд, которое NFS ожидает до обновления атрибутов обычного файла (по-умолчанию 60 сек.)
  5. acregmin=n (attribute cache regular file minimum- кэширование атрибута минимум для обычного файла) - Минимальное количество секунд, которое NFS ожидает до обновления атрибутов обычного файла (по-умолчанию 3 сек.)
  6. actimeo=n (attribute cache timeout - таймаут кэширования атрибутов) - Заменяет значения для всех вышуказаных опций. Если actimeo не задан, то вышеуказанные значения принимают значения по умолчанию.

Опции обработки ошибок NFS

Следующие опции управляют действиями NFS при отсутствии ответа от сервера или в случае возникновения ошибок ввода/вывода:

  • fg (bg) (foreground - передний план, background - задний план) - Производить попытки монтирования отказавшей NFS на переднем плане/в фоне.
  • hard (soft) - выводит на консоль сообщение "server not responding" при достижении таймаута и продолжает попытки монтирования. При заданной опции soft - при таймауте сообщает вызвавшей операцию программе об ошибке ввода/вывода.
  • nointr (intr) (no interrupt - не прерывать) - Не разрешает сигналам прерывать файловые операции в жестко смонтированной иерархии каталогов при достижении большого таймаута. intr - разрешает прерывание.
  • retrans=n (retransmission value - значение повторной передачи) - После n малых таймаутов NFS генерирует большой таймаут (по-умолчанию 3). Большой таймаут прекращает выполнение операций или выводит на консоль сообщение "server not responding", в зависимости от указания опции hard/soft.
  • retry=n (retry value - значение повторно попытки) - Количество минут повторений службы NFS операций монтирования, прежде чем сдаться (по-умолчанию 10000).
  • timeo=n (timeout value - значение таймаута) - Количество десятых долей секунды ожидания службой NFS до повторной передачи в случае RPC или малого таймаута (по-умолчанию 7). Это значение увеличивается при каждом таймауте до максимального значения 60 секунд или до наступления большого таймаута. В случае занятой сети, медленного сервера или при прохождении запроса через несколько маршрутизаторов или шлюзов увеличение этого значения может повысить производительность.

Повышение производительности NFS

На производительность NFS могут влиять несколько параметров, особенно при работе через медленные соединения. При работе с медленными и высоконагруженными соединениями, желательно использовать параметр hard, чтобы таймауты не привели к прекращению работы программ. Но необходимо осознавать, что если смонтировать файловую систему через NFS с параметром hard через fstab, а удаленный хост окажется недоступен, то при загрузке системы произойдет зависание.

Одним из способов повышения производительности NFS - увеличение количества байтов, передаваемых за один раз. Размер в 4096 байт слишком мал для современных быстрых соединений, увеличивая это значение до 8192 и более можно экспериментальным путем найти оптимальную скорость.

Так же, не стоит упускать из внимания и настройки тайм-аутов. NFS ожидает ответа на пересылку данных в течении промежутка времени, указанного в опции timeo, если ответ за это время не получен, то выполняется повторная пересылка. На загруженных и медленных соединениях это время может быть меньше времени реакции сервера и способности каналов связи, в результате чего могут быть излишние повторные пересылки, замедляющие работу.По умолчанию, timeo равно 0,7 сек (700 миллисекунд). после обнаружения факта обрыва связи в течении 700 мс сервер совершит повторную пересылку и удвоит время ожидания до 1,4 сек., увеличение timeo будет продолжаться до максимального значения в 60 сек.

Когда речь идет о компьютерных сетях, зачастую можно услышать упоминание NFS. Что такое означает эта аббревиатура?

Это протокол распределенной файловой системы, первоначально разработанный компанией Sun Microsystems в 1984 году, позволяющий пользователю на клиентском компьютере получать доступ к файлам через сеть, подобно доступу к локальному хранилищу. NFS, как и многие другие протоколы, основывается на системе Open Network Computing Remote Procedure Call (ONC RPC).

Другими словами, что такое NFS? Это открытый стандарт, определенный в Request for Comments (RFC), позволяющий любому реализовать протокол.

Версии и вариации

Изобретатель использовал только первую версию для собственных экспериментальных целей. Когда команда разработчиков добавила существенные изменения в первоначальную NFS и выпустила ее за пределами авторства Sun, они обозначили новую версию как v2, чтобы можно было протестировать взаимодействие между дистрибутивами и создать резервный вариант.

NFS v2

Версия 2 первоначально работала только по протоколу User Datagram Protocol (UDP). Ее разработчики хотели сохранить серверную сторону без блокировки, реализованной за пределами основного протокола.

Интерфейс виртуальной файловой системы позволяет выполнять модульную реализацию, отраженную в простом протоколе. К февралю 1986 года были продемонстрированы решения для таких операционных систем, как System V release 2, DOS и VAX/VMS с использованием Eunice. NFS v2 позволял считывать только первые 2 ГБ файла из-за 32-разрядных ограничений.

NFS v3

Первое предложение по разработке NFS версии 3 в Sun Microsystems было озвучено вскоре после выпуска второго дистрибутива. Главной мотивацией была попытка смягчить проблему производительности синхронной записи. К июлю 1992 года практические доработки позволили решить многие недостатки NFS версии 2, оставив при этом лишь недостаточную поддержку файлов (64-разрядные размеры и смещения файлов).

  • поддержку 64-битных размеров и смещений файлов для обработки данных размером более 2 гигабайт (ГБ);
  • поддержку асинхронной записи на сервере для повышения производительности;
  • дополнительные атрибуты файлов во многих ответах, позволяющие избежать необходимости их повторного извлечения;
  • операцию READDIRPLUS для получения данных и атрибутов вместе с именами файлов при сканировании каталога;
  • многие другие улучшения.

Во время введения версии 3 поддержка TCP как протокола транспортного уровня начала увеличиваться. Использование TCP в качестве средства передачи данных, выполненного с использованием NFS через WAN, стало позволять передавать большие размеры файлов для просмотра и записи. Благодаря этому разработчики смогли преодолеть пределы ограничений в 8 КБ, налагаемые протоколом пользовательских дейтаграмм (UDP).

Что такое NFS v4?

Версия 4, разработанная под влиянием Эндрской файловой системы (AFS) и блока сообщений сервера (SMB, также называемая CIFS), включает в себя повышение производительности, обеспечивает лучшую безопасность и вводит протокол с соблюдением установленных условий.

Версия 4 стала первым дистрибутивом, разработанным в Целевой группе Internet Engineering Task Force (IETF) после того, как Sun Microsystems передала разработку протоколов сторонним специалистам.

NFS версия 4.1 направлена ​​на предоставление поддержки протокола для использования кластерных развертываний серверов, включая возможность предоставления масштабируемого параллельного доступа к файлам, распределенным между несколькими серверами (расширение pNFS).

Новейший протокол файловой системы - NFS 4.2 (RFC 7862) - был официально выпущен в ноябре 2016 года.

Другие расширения

С развитием стандарта появились и соответствующие инструменты для работы с ним. Так, WebNFS, расширение для версий 2 и 3, позволяет протоколу сетевого доступа к файловым системам легче интегрироваться в веб-браузеры и активировать работу через брандмауэры.

Различные протоколы сторонних групп стали также ассоциироваться с NFS. Из них наиболее известными выступают:

  • Network Lock Manager (NLM) с поддержкой протокола байтов (добавлен для поддержки API-блокировки файлов UNIX System V);
  • удаленной квоты (RQUOTAD), который позволяет пользователям NFS просматривать квоты на хранение данных на серверах NFS;
  • NFS через RDMA - адаптация NFS, которая использует дистанционный прямой доступ к памяти (RDMA) в качестве средства передачи;
  • NFS-Ganesha - сервер NFS, работающий в пользовательском пространстве и поддерживающий CephFS FSAL (уровень абстракции файловой системы) с использованием libcephfs.

Платформы

Network File System часто используется с операционными системами Unix (такими как Solaris, AIX, HP-UX), MacOS от Apple и Unix-подобными ОС (такими как Linux и FreeBSD).

Он также доступен для таких платформ, как Acorn RISC OS, OpenVMS, MS-DOS, Microsoft Windows, Novell NetWare и IBM AS/400.

Альтернативные протоколы удаленного доступа к файлам включают в себя блок сообщений сервера (SMB, также называемый CIFS), протокол передачи Apple (AFP), базовый протокол NetWare (NCP) и файловую систему сервера OS/400 (QFileSvr.400).

Это связано с требованиями NFS, которые ориентированы по большей части на Unix-подобные «оболочки».

При этом протоколы SMB и NetWare (NCP) применяются чаще, чем NFS, в системах под управлением Microsoft Windows. AFP наиболее широко распространен в платформах Apple Macintosh, а QFileSvr.400 наиболее часто встречается в OS/400.

Типичная реализация

Предполагая типичный сценарий в стиле Unix, в котором одному компьютеру (клиенту) нужен доступ к данным, хранящимся на другом (сервер NFS):

  • Сервер реализует процессы Network File System, запущенные по умолчанию как nfsd, чтобы сделать свои данные общедоступными для клиентов. Администратор сервера определяет, как экспортировать имена и параметры каталогов, обычно используя файл конфигурации/etc/exports и команду exportfs.
  • Администрирование безопасности сервера гарантирует, что он сможет распознавать и утверждать проверенного клиента. Конфигурация его сети гарантирует, что соответствующие клиенты могут вести переговоры с ним через любую систему брандмауэра.
  • Клиентская машина запрашивает доступ к экспортированным данным, как правило, путем выдачи соответствующей команды. Она запрашивает сервер (rpcbind), который использует порт NFS, и впоследствии подключается к нему.
  • Если все происходит без ошибок, пользователи на клиентской машине смогут просматривать и взаимодействовать с установленными файловыми системами на сервере в пределах разрешенных параметров.

Следует обратить внимание и на то, что автоматизация процесса Network File System также может иметь место - возможно, с использованием etc/fstab и/или иных подобных средств.

Развитие на сегодняшний день

К 21-му столетию протоколы-конкуренты DFS и AFS не достигли какого-либо крупного коммерческого успеха по сравнению с Network File System. Компания IBM, которая ранее приобрела все коммерческие права на вышеуказанные технологии, безвозмездно передала большую часть исходного кода AFS сообществу свободных разработчиков программного обеспечения в 2000 году. Проект Open AFS существует и в наши дни. В начале 2005 года IBM объявила о завершении продаж AFS и DFS.

В свою очередь, в январе 2010 года компания Panasas предложила NFS v 4.1 на основе технологии, позволяющей улучшить возможности параллельного доступа к данным. Протокол Network File System v 4.1 определяет метод разделения метаданных файловой системы из местоположения определенных файлов. Таким образом, он выходит за рамки простого разделения имен/данных.

Что такое NFS этой версии на практике? Вышеуказанная особенность отличает его от традиционного протокола, который содержит имена файлов и их данных под одной привязкой к серверу. При реализации Network File System v 4.1 некоторые файлы могут распределяться между многоузловыми серверами, однако участие клиента в разделении метаданных и данных ограничено.

При реализации четвертого дистрибутива протокола NFS-сервер представляет собой набор серверных ресурсов или компонентов; предполагается, что они контролируются сервером метаданных.

Клиент по-прежнему обращается к одному серверу метаданных для обхода или взаимодействия с пространством имен. Когда он перемещает файлы на сервер и с него, он может напрямую взаимодействовать с набором данных, принадлежащих группе NFS.

NFS: удобная и перспективная сетевая файловая система

Сетевая файловая система – это сетевая абстракция поверх обычной файловой системы, позволяющая удаленному клиенту обращаться к ней через сеть так же, как и при доступе к локальным файловым системам. Хотя NFS не является первой сетевой системой, она сегодня развилась до уровня наиболее функциональной и востребованной сетевой файловой системы в UNIX®. NFS позволяет организовать совместный доступ к общей файловой системе для множества пользователей и обеспечить централизацию данных для минимизации дискового пространства, необходимого для их хранения.

Эта статья начинается с краткого обзора истории NFS, а затем переходит к исследованию архитектуры NFS и путей её дальнейшего развития.

Краткая история NFS

Первая сетевая файловая система называлась FAL (File Access Listener - обработчик доступа к файлам) и была разработана в 1976 году компанией DEC (Digital Equipment Corporation). Она являлась реализацией протокола DAP (Data Access Protocol – протокол доступа к данным) и входила в пакет протоколов DECnet. Как и в случае с TCP/IP, компания DEC опубликовала спецификации своих сетевых протоколов, включая протокол DAP.

NFS была первой современной сетевой файловой системой, построенной поверх протокола IP. Её прообразом можно считать экспериментальную файловую систему, разработанную в Sun Microsystems в начале 80-х годов. Учитывая популярность этого решения, протокол NFS был представлен в качестве спецификации RFC и впоследствии развился в NFSv2. NFS быстро утвердилась в качестве стандарта благодаря способности взаимодействовать с другими клиентами и серверами.

Впоследствии стандарт был обновлен до версии NFSv3, определенной в RFC 1813. Эта версия протокола была более масштабируема, чем предыдущие, и поддерживала файлы большего размера (более 2 ГБ), асинхронную запись и TCP в качестве транспортного протокола. NFSv3 задала направление развития файловых систем для глобальных (WAN) сетей. В 2000 году в рамках спецификации RFC 3010 (переработанной в версии RFC 3530) NFS была перенесена в корпоративную среду. Sun представила более защищенную NFSv4 c поддержкой сохранения состояния (stateful) (предыдущие версии NFS не поддерживали сохранение состояния, т.е. относились к категории stateless). На текущий момент последней версией NFS является версия 4.1, определенная в RFC 5661, в которой в протокол посредством расширения pNFS была добавлена поддержка параллельного доступа для распределенных серверов.

История развития NFS, включая конкретные RFC, описывающие её версии, показана на рисунке 1.


Как ни удивительно, NFS находится в стадии разработки уже почти 30 лет. Она является исключительно стабильной и переносимой сетевой файловой системой с выдающимися характеристиками масштабируемости, производительности и качества обслуживания. В условиях увеличения скорости и снижения задержек при обмене данными внутри сети NFS продолжает оставаться популярным способом реализации файловой системы внутри сети. Даже в случае локальных сетей виртуализация побуждает хранить данные в сети, чтобы обеспечить виртуальным машинам дополнительную мобильность. NFS также поддерживает новейшие модели организации вычислительных сред, нацеленные на оптимизацию виртуальных инфраструктур.

Архитектура NFS

NFS использует стандартную архитектурную модель "клиент-сервер" (как показано на рисунке 2). Сервер отвечает за реализацию файловой системы совместного доступа и хранилища, к которому подключаются клиенты. Клиент реализует пользовательский интерфейс к общей файловой системе, смонтированной внутри локального файлового пространства клиента.

Рисунок 2. Реализация модели "клиент-сервер" в архитектуре NFS

В ОС Linux® виртуальный коммутатор файловой системы (virtual file system switch - VFS) предоставляет средства для одновременной поддержки на одном хосте нескольких файловых систем (например, файловой системы ISO 9660 на CD-ROM и файловой системы ext3fs на локальном жестком диске). Виртуальный коммутатор определяет, к какому накопителю выполняется запрос, и, следовательно, какая файловая система должна использоваться для обработки запроса. Поэтому NFS обладает такой же совместимостью, как и другие файловые системы, применяющиеся в Linux. Единственное отличие NFS состоит в том, что запросы ввода/вывода вместо локальной обработки на хосте могут быть направлены для выполнения в сеть.

VFS определяет, что полученный запрос относится к NFS, и передает его в обработчик NFS, находящийся в ядре. Обработчик NFS обрабатывает запрос ввода/вывода и транслирует его в NFS-процедуру (OPEN , ACCESS , CREATE , READ , CLOSE , REMOVE и т.д.). Эти процедуры, описанные в отдельной спецификации RFC, определяют поведение протокола NFS. Необходимая процедура выбирается в зависимости от запроса и выполняется с помощью технологии RPC (вызов удаленной процедуры). Как можно понять по названию, RPC позволяет осуществлять вызовы процедур между различными системами. RPC-служба соединяет NFS-запрос с его аргументами и отправляет результат на соответствующий удаленный хост, а затем следит за получением и обработкой ответа, чтобы вернуть его инициатору запроса.

Также RPC включает в себя важный уровень XDR (external data representation – независимое представление данных), гарантирующий, что все пользователи NFS для одинаковых типов данных используют один и тот же формат. Когда некая платформа отправляет запрос, используемый ею тип данных может отличаться от типа данных, используемого на хосте, обрабатывающего этот запрос. Технология XDR берет на себя работу по преобразованию типов в стандартное представление (XDR), так что платформы, использующие разные архитектуры, могут взаимодействовать и совместно использовать файловые системы. В XDR определен битовый формат для таких типов, как float , и порядок байтов для таких типов, как массивы постоянной и переменной длины. Хотя XDR в основном известна благодаря применению в NFS, это спецификация может быть полезна во всех случаях, когда приходится работать в одной среде с различными архитектурами.

После того как XDR переведет данные в стандартное представление, запрос передается по сети с помощью определенного транспортного протокола. В ранних реализациях NFS использовался протокол UDP, но сегодня для обеспечения большей надежности применяется протокол TCP.

На стороне NFS-сервера применяется схожий алгоритм. Запрос поднимается по сетевому стеку через уровень RPC/XDR (для преобразования типов данных в соответствии с архитектурой сервера) и попадает в NFS-сервер, который отвечает за обработку запроса. Там запрос передается NFS-демону для определения целевой файловой системы, которой он адресован, а затем снова поступает в VFS для обращения к этой файловой системе на локальном диске. Полностью схема этого процесса приведена на рисунке 3. При этом локальная файловая система сервера – это стандартная для Linux файловая система, например, ext4fs. По сути NFS – это не файловая система в традиционном понимании этого термина, а протокол удаленного доступа к файловым системам.


Для сетей с большим временем ожидания в NFSv4 предлагается специальная составная процедура (compound procedure ). Эта процедура позволяет поместить несколько RPC-вызовов внутрь одного запроса, чтобы минимизировать затраты на передачу запросов по сети. Также в этой процедуре реализован механизм callback-функций для получения ответов.

Протокол NFS

Когда клиент начинает работать с NFS, первым действием выполняется операция mount , которая представляет собой монтирование удаленной файловой системы в пространство локальной файловой системы. Этот процесс начинается с вызова процедуры mount (одной из системных функций Linux), который через VFS перенаправляется в NFS-компонент. Затем с помощью RPC-вызова функции get_port на удаленном сервере определяется номер порта, который будет использоваться для монтирования, и клиент через RPC отправляет запрос на монтирование. Этот запрос на стороне сервера обрабатывается специальным демоном rpc.mountd , отвечающим за протокол монтирования (mount protocol ). Демон проверяет, что запрошенная клиентом файловая система имеется в списке систем, доступных на данном сервере. Если запрошенная система существует и клиент имеет к ней доступ, то в ответе RPC-процедуры mount указывается дескриптор файловой системы. Клиент сохраняет у себя информацию о локальной и удаленной точках монтирования и получает возможность осуществлять запросы ввода/вывода. Протокол монтирования не является безупречным с точки зрения безопасности, поэтому в NFSv4 вместо него используются внутренние RPC-вызовы, которые также могут управлять точками монтирования.

Для считывания файла его необходимо сначала открыть. В RPC нет процедуры OPEN , вместо этого клиент просто проверяет, что указанные файл и каталог существуют в смонтированной файловой системе. Клиент начинает с выполнения RPC-запроса GETATTR к каталогу, в ответ на который возвращаются атрибуты каталога или индикатор, что каталог не существует. Далее, чтобы проверить наличие файла, клиент выполняет RPC-запрос LOOKUP . Если файл существует, для него выполняется RPC-запрос GETATTR , чтобы узнать атрибуты файла. Используя информацию, полученную в результате успешных вызовов LOOKUP и GETATTR , клиент создает дескриптор файла, который предоставляется пользователю для выполнения будущих запросов.

После того как файл идентифицирован в удаленной файловой системе, клиент может выполнять RPC-запросы типа READ . Этот запрос состоит из дескриптора файла, состояния, смещения и количества байт, которое следует считать. Клиент использует состояние (state ), чтобы определить может ли операция быть выполнена в данный момент, т.е. не заблокирован ли файл. Смещение (offset ) указывает, с какой позиции следует начать чтение, а счетчик байт (count ) определяет, сколько байт необходимо считать. В результате RPC-вызова READ сервер не всегда возвращает столько байт, сколько было запрошено, но вместе с возвращаемыми данными всегда передает, сколько байт было отправлено клиенту.

Инновации в NFS

Наибольший интерес представляют две последние версии NFS – 4 и 4.1, на примере которых можно изучить наиболее важные аспекты эволюции технологии NFS.

До появления NFSv4 для выполнения таких задач по управлению файлами, как монтирование, блокировка и т.д. существовали специальные дополнительные протоколы. В NFSv4 процесс управления файлами был упрощен до одного протокола; кроме того, начиная с этой версии UDP больше не используется в качестве транспортного протокола. NFSv4 включает поддержку UNIX и Windows®-семантики доступа к файлам, что позволяет NFS "естественным" способом интегрироваться в другие операционные системы.

В NFSv4.1 для большей масштабируемости и производительности была введена концепция параллельной NFS (parallel NFS - pNFS). Чтобы обеспечить больший уровень масштабируемости, в NFSv4.1 реализована архитектура, в которой данные и метаданные (разметка ) распределяются по устройствам аналогично тому, как это делается в кластерных файловых системах. Как показано на , pNFS разделяет экосистему на три составляющие: клиент, сервер и хранилище. При этом появляются два канала: один для передачи данных, а другой для передачи команд управления. pNFS отделяет данные от описывающих их метаданных, обеспечивая двухканальную архитектуру. Когда клиент хочет получить доступ к файлу, сервер отправляет ему метаданные с "разметкой". В метаданных содержится информация о размещении файла на запоминающих устройствах. Получив эту информацию, клиент может обращаться напрямую к хранилищу без необходимости взаимодействовать с сервером, что способствует повышению масштабируемости и производительности. Когда клиент заканчивает работу с файлом, он подтверждает изменения, внесенные в файл и его "разметку". При необходимости сервер может запросить у клиента метаданные с разметкой.

С появлением pNFS в протокол NFS было добавлено несколько новых операций для поддержки такого механизма. Метод LayoutGet используется для получения метаданных с сервера, метод LayoutReturn "освобождает" метаданные, "захваченные" клиентом, а метод LayoutCommit загружает "разметку", полученную от клиента, в хранилище, так что она становится доступной другим пользователям. Сервер может отозвать метаданные у клиента с помощью метода LayoutRecall . Метаданные с "разметкой" распределяются между несколькими запоминающими устройствами, чтобы обеспечить параллельный доступ и высокую производительность.


Данные и метаданные хранятся на запоминающих устройствах. Клиенты могут выполнять прямые запросы ввода/вывода на основе полученной разметки, а сервер NFSv4.1 хранит метаданные и управляет ими. Сама по себе эта функциональность и не нова, но в pNFS была добавлена поддержка различных методов доступа к запоминающим устройствам. Сегодня pNFS поддерживает использование блочных протоколов (Fibre Channel), объектных протоколов и собственно NFS (даже не в pNFS-форме).

Развитие NFS продолжается, и в сентябре 2010 года были опубликованы требования к NFSv4.2. Некоторые из нововведений связаны с наблюдающейся миграцией технологий хранения данных в сторону виртуализации. Например, в виртуальных средах с гипервизором весьма вероятно возникновение дублирования данных (несколько ОС выполняют чтение/запись и кэширование одних и тех же данных). В связи с этим желательно, чтобы система хранения данных в целом понимала, где происходит дублирование. Такой подход поможет сэкономить пространство в кэше клиента и общую емкость системы хранения. В NFSv4.2 для решения этой проблемы предлагается использовать "карту блоков, находящихся в совместном доступе" (block map of shared blocks). Поскольку современные системы хранения все чаще оснащаются собственными внутренними вычислительными мощностями, вводится копирование на стороне сервера, позволяющее снизить нагрузку при копировании данных во внутренней сети, когда это можно эффективно делать на самом запоминающем устройстве. Другие инновации включают в себя субфайловое кэширование для флэш-памяти и рекомендации по настройке ввода-вывода на стороне клиента (например, с использованием mapadvise).

Альтернативы NFS

Хотя NFS – самая популярная сетевая файловая система в UNIX и Linux, кроме нее существуют и другие сетевые файловые системы. На платформе Windows® чаще всего применяется SMB, также известная как CIFS ; при этом ОС Windows также поддерживает NFS, равно как и Linux поддерживает SMB.

Одна из новейших распределенных файловых систем, поддерживаемых в Linux - Ceph - изначально спроектирована как отказоустойчивая POSIX-совместимая файловая система. Дополнительную информацию о Ceph можно найти в разделе .

Стоит также упомянуть файловые системы OpenAFS (Open Source-версия распределенной файловой системы Andrew, разработанной в университете Карнеги-Меллона и корпорации IBM), GlusterFS (распределенная файловая система общего назначения для организации масштабируемых хранилищ данных) и Lustre (сетевая файловая система с массовым параллелизмом для кластерных решений). Все эти системы с открытым исходным кодом можно использовать для построения распределенных хранилищ.

Заключение

Развитие файловой системы NFS продолжается. Подобно ОС Linux, подходящей для поддержки и бюджетных, и встраиваемых, и высокопроизводительных решений, NFS предоставляет архитектуру масштабируемых решений для хранения данных, подходящих как отдельным пользователям, так и организациям. Если посмотреть на путь, уже пройденный NFS, и перспективы её дальнейшего развития, становится понятно, что эта файловая система будет продолжать изменять наши взгляды на то, как реализуются и используются технологии хранения файлов.