Не запускается компьютер при исправном блоке питания. Не включается системный блок: инструкция по решению проблемы

В современном мире развитие и устаревание комплектующих персональных компьютеров происходит очень быстро. Вместе с тем один из основных компонентов ПК – форм-фактора ATX – практически не изменял свою конструкцию последние 15 лет .

Следовательно, блок питания и суперсовременного игрового компьютера, и старого офисного ПК работают по одному и тому же принципу, имеют общие методики диагностики неисправностей.

Материал, изложенный в этой статье, может применяться к любому блоку питания персональных компьютеров с минимумом нюансов.

Типовая схема блока питания ATX приведена на рисунке. Конструктивно он представляет собой классический импульсный блок на ШИМ-контроллере TL494, запускающемся по сигналу PS-ON (Power Switch On) с материнской платы. Все остальное время, пока вывод PS-ON не подтянут к массе, активен только источник дежурного питания (Standby Supply) с напряжением +5 В на выходе.

Рассмотрим структуру блока питания ATX подробнее. Первым ее элементом является
:

Его задача – это преобразование переменного тока из электросети в постоянный для питания ШИМ-контроллера и дежурного источника питания. Структурно он состоит из следующих элементов:

  • Предохранитель F1 защищает проводку и сам блок питания от перегрузки при отказе БП, приводящем к резкому увеличению потребляемого тока и как следствие – к критическому возрастанию температуры, способному привести к пожару.
  • В цепи «нейтрали» установлен защитный терморезистор, уменьшающий скачок тока при включении БП в сеть.
  • Далее установлен фильтр помех, состоящий из нескольких дросселей (L1, L2 ), конденсаторов (С1, С2, С3, С4 ) и дросселя со встречной намоткой Tr1 . Необходимость в наличии такого фильтра обусловлена значительным уровнем помех, которые передает в сеть питания импульсный блок – эти помехи не только улавливаются теле- и радиоприемниками, но и в ряде случаев способны приводить к неправильной работе чувствительной аппаратуры.
  • За фильтром установлен диодный мост, осуществляющий преобразование переменного тока в пульсирующий постоянный. Пульсации сглаживаются емкостно-индуктивным фильтром.

Источник дежурного питания – это маломощный самостоятельный импульсный преобразователь на основе транзистора T11, который генерирует импульсы, через разделительный трансформатор и однополупериодный выпрямитель на диоде D24 запитывающие маломощный интегральный стабилизатор напряжения на микросхеме 7805. Эта схема хотя и является, что называется, проверенной временем, но ее существенным недостатком является высокое падение напряжения на стабилизаторе 7805, при большой нагрузке приводящее к ее перегреву. По этой причине повреждение в цепях, запитанных от дежурного источника, способно привести к выходу его из строя и последующей невозможности включения компьютера.

Основой импульсного преобразователя является ШИМ-контроллер . Эта аббревиатура уже несколько раз упоминалась, но не расшифровывалась. ШИМ – это широтно-импульсная модуляция, то есть изменение длительности импульсов напряжения при их постоянной амплитуде и частоте. Задача блока ШИМ, основанного на специализированной микросхеме TL494 или ее функциональных аналогах – преобразование постоянного напряжения в импульсы соответствующей частоты, которые после разделительного трансформатора сглаживаются выходными фильтрами. Стабилизация напряжений на выходе импульсного преобразователя осуществляется подстройкой длительности импульсов, генерируемых ШИМ-контроллером.

Важным достоинством такой схемы преобразования напряжения также является возможность работы с частотами, значительно большими, чем 50 Гц электросети. Чем выше частота тока, тем меньшие габариты сердечника трансформатора и число витков обмоток требуются. Именно поэтому импульсные блоки питания значительно компактнее и легче классических схем с входным понижающим трансформатором.

За включение блока питания ATX отвечает цепь на основе транзистора T9 и следующих за ним каскадов. В момент включения блока питания в сеть на базу транзистора через токоограничительный резистор R58 подается напряжение 5В с выхода источника дежурного питания, в момент замыкания провода PS-ON на массу схема запускает ШИМ-контроллер TL494. При этом отказ источника дежурного питания приведет к неопределенности работы схемы запуска БП и вероятному отказу включения, о чем уже упоминалось.

Рассмотрев структурную схему блока питания типа AT , её можно разделить на несколько основных частей:

  • Высоковольтная (первичная) цепь;
  • Схема ШИМ управления;
  • Вторичная цепь (выходная или низковольтная) цепь.

Если рассмотреть структурную схему блока питания типа ATХ , то тут добавляется ещё один узел — это преобразователь для напряжения +5VSB (дежурка).

Что желательно иметь для ремонта и проверки Блока Питания?

а. — любой тестер (мультиметр).
б. — лампочки: 220 вольт 60 — 100 ватт и 6.3 вольта 0.3 ампера.
в. — паяльник, осциллограф, отсос для припоя.
г. — увеличительное стекло, зубочистки, ватные палочки, технический спирт.

Схема типа АТ блока питания

Схема типа АТХ блока питания




Наиболее безопасно и удобно включать ремонтируемый блок в сеть через разделительный трансформатор 220v — 220v.
Такой трансформатор просто изготовить из 2-х ТАН55 или ТС-180 (от ламповых ч/б телевизоров). Просто соответствующим образом соединяются анодные вторичные обмотки, не надо ничего перематывать. Оставшиеся накальные обмотки можно использовать для построения регулируемого БП.
Мощность такого источника вполне достаточна для отладки и первоначального тестирования и дает массу удобств:
— электробезопасность
— возможность соединять земли горячей и холодной части блока единым проводом, что удобно для снятия осциллограмм.
— ставим галетный переключатель — получаем возможность ступенчатого изменения напряжения.

Также для удобства можно зашунтировать цепи +310В резистором 75K-100K мощностью 2 — 4Вт — при выключении быстрее разряжаются входные конденсаторы.

Если плата вынута из блока, проверьте, нет ли под ней металлических предметов любого рода. Ни в коем случае НЕ ЛЕЗЬТЕ РУКАМИ в плату и НЕ ДОТРАГИВАЙТЕСЬ до радиаторов во время работы блока, а после выключения подождите около минуты, пока конденсаторы разрядятся.

На радиаторе силовых транзисторов может быть 300 и более вольт, он не всегда изолирован от схемы блока!

Принципы измерения напряжений внутри блока.

Обратите внимание, что на корпус БП земля с платы подаётся через проводники около отверстий для крепежных винтов.
Для измерения напряжений в высоковольтной («горячей») части блока (на силовых транзисторах, в дежурке) требуется общий провод — это минус диодного моста и входных конденсаторов. Относительно этого провода всё и измеряется только в горячей части, где максимальное напряжение — 300 вольт. Измерения желательно проводить одной рукой.
В низковольтной («холодной») части БП всё проще, максимальное напряжение не превышает 25 вольт. В контрольные точки для удобства можно впаять провода, особенно удобно припаять провод на землю.

Проверка резисторов.

Если номинал (цветные полоски) еще читается - заменяем на новые с отклонением не хуже оригинала (для большинства — 5%, для низкоомных в цепях датчика тока может быть и 0.25%). Если же покрытие с маркировкой потемнело или осыпалось от перегрева - измеряем сопротивление мультиметром. Если сопротивление равно нулю или бесконечности - вероятнее всего резистор неисправен и для определения его номинала потребуется принципиальная схема блока питания либо изучение типовых схем включения.

Проверка диодов.

Если мультиметр имеет режим измерения падения напряжения на диоде — можно проверять, не выпаивая. Падение должно быть от 0,02 до 0,7 В (в зависимости от тока, протекаемого через него). Если падение — ноль или около того (до 0,005) – выпаиваем сборку и проверяем. Если те же показания – диод пробит. Если же прибор не имеет такой функции, установите прибор на измерение сопротивления (обычно предел в 20 кОм). Тогда в прямом направлении исправный диод Шотки будет иметь сопротивление порядка одного — двух килоом, а обычный кремниевый — порядка трех — шести. В обратном направлении сопротивление равно бесконечности.

Для проверки БП можно и нужно собрать нагрузку.

Распиновка разъема ATX 24 pin, с проводниками ООС по основным каналам — +3,3V; +5V; +12V.

Показан «максимальный» вариант — проводники ООС бывают не во всех блоках, и не навсех каналах. Самый распространённый вариант ООС по +3,3V (коричневый провод). В новых блоках может отсутствовать выход -5V (белый провод).
Берём выпаянный из ненужной платы ATX разъём и припаиваем к нему провода сечением не менее 18 AWG, стараясь задействовать все контакты по линиям +5 вольт, +12 и +3.3 вольта.
Нагрузку надо рассчитывать ватт на 100 по всем каналам (можно с возможностью увеличения для проверок более мощных блоков). Для этого берём мощные резисторы или нихром. Также с осторожностью можно использовать мощные лампы (например, галогенные на 12В), при этом следует учесть, что сопротивление нити накаливания в холодном состоянии сильно меньше, чем в нагретом. Поэтому при запуске с вроде бы нормальной нагрузкой из ламп блок может уходит в защиту.
Параллельно нагрузкам можно подключить лампочки или светодиоды, чтобы видеть наличие напряжения на выходах. Между выводом PS_ON и GND подключаем тумблер для включения блока. Для удобства при эксплуатации можно всю конструкцию разместить в корпусе от БП с вентилятором для охлаждения.

Проверка блока:

Можно предварительно включить БП в сеть, чтобы определиться с диагнозом: нет дежурки (проблема с дежуркой, либо КЗ в силовой части), есть дежурка, но нет запуска (проблема с раскачкой или ШИМ), БП уходит в защиту (чаще всего — проблема в выходных цепях либо конденсаторах), завышенное напряжение дежурки (90% — вспухшие конденсаторы, и часто как результат — умерший ШИМ).

Начальная проверка блока

Снимаем крышку и начинаем проверку, особое внимание обращая на поврежденные, изменившие цвет, потемневшие или сгоревшие детали.

Предохранитель. Как правило, перегорание хорошо заметно визуально, но иногда он обтянут термоусадочным кембриком – тогда проверяем сопротивление омметром. Перегорание предохранителя может свидетельствовать, например, о неисправности диодов входного выпрямителя, ключевых транзисторов или схемы дежурного режима.

Дисковый термистор. Выходит из строя крайне редко. Проверяем сопротивление - должно быть не более 10 Ом. В случае неисправности заменять его перемычкой нежелательно - при включении блока резко возрастет импульсный ток заряда входных конденсаторов, что может привести к пробою диодов входного выпрямителя.

Диоды или диодная сборка входного выпрямителя. Проверяем мультиметром (в режиме измерения падения напряжения) на обрыв и короткое замыкание каждый диод, можно не выпаивать их из платы. При обнаружении замыкания хотя бы у одного диода рекомендуется также проверить входные электролитические конденсаторы, на которые подавалось переменное напряжение, а также силовые транзисторы, т.к. очень велика вероятность их пробоя. В зависимости от мощности БП диоды должны быть рассчитаны на ток не менее 4…8 ампер. Двухамперные диоды, часто встречающиеся в дешевых блоках, сразу меняем на более мощные.

Входные электролитические конденсаторы. Проверяем внешним осмотром на вздутие (заметное изменение верхней плоскости конденсатора от ровной поверхности к выпуклой), также проверяем емкость — она не должна быть ниже обозначенной на маркировке и отличаться у двух конденсаторов более чем на 5%. Также проверяем варисторы, стоящие параллельно конденсаторам, (обычно явно сгорают «в уголь») и выравнивающие резисторы (сопротивление одного не должно отличаться от сопротивления другого более чем на 5%).

Ключевые (они же — силовые) транзисторы. Для биполярных — проверяем мультиметром падение напряжения на переходах «база-коллектор» и «база-эмиттер» в обоих направлениях. В исправном биполярном транзисторе переходы должны вести себя как диоды. При обнаружении неисправности транзистора также необходимо проверить всю его «обвязку»: диоды, низкоомные резисторы и электролитические конденсаторы в цепи базы (конденсаторы лучше сразу заменить на новые большей емкости, например, вместо 2.2мкФ * 50В ставим 10.0мкФ * 50В). Также желательно зашунтировать эти конденсаторы керамическими емкостью 1.0…2.2 мкФ.

Выходные диодные сборки. Проверяем их мультиметром, наиболее частая неисправность - короткое замыкание. Замену лучше ставить в корпусе ТО-247. В ТО-220 чаще помирают… Обычно для 300-350 Вт блоков диодных сборок типа MBR3045 или аналогичных на 30А — с головой.

Выходные электролитические конденсаторы. Неисправность проявляется в виде вздутия, следов коричневого пуха или потеков на плате (при выделении электролита). Меняем на конденсаторы нормальной емкости, от 1500 мкФ до 2200…3300 мкФ, рабочая температура - 105° С. Желательно использовать серии LowESR.
Также измеряем выходное сопротивление между общим проводом и выходами блока. По +5В и +12В вольтам — обычно в районе 100-250 ом (то же для -5В и -12В), +3.3В — около 5…15 Ом.

Потемнение или выгорание печатной платы под резисторами и диодами свидетельствует о том, что компоненты схемы работали в нештатном режиме и требуется анализ схемы для выяснения причины. Обнаружение такого места возле ШИМа означает, что греется резистор питания ШИМ 22 Ома от превышения дежурного напряжения и, как правило, первым сгорает именно он. Зачастую ШИМ в этом случае тоже мертв, так что проверяем микросхему (см. ниже). Такая неисправность — следствие работы «дежурки» в нештатном режиме, обязательно следует проверить схему дежурного режима.

Проверка высоковольтной части блока на короткое замыкание.

Берём лампочку от 40 до 100 Ватт и впаиваем вместо предохранителя или в разрыв сетевого провода.
вспыхивает и гаснет — все в порядке , короткого замыкания в «горячей» части нет — лампу убираем и работаем дальше без нее (ставим на место предохранитель или сращиваем сетевой провод).
Если при включении блока в сеть лампа зажигается и не гаснет — в блоке короткое замыкание в «горячей» части. Для его обнаружения и устранения делаем следующее:
Выпаиваем радиатор с силовыми транзисторами и включаем БП через лампу без замыкания PS-ON.
Если короткое (лампа горит, а не загорелась и погасла) — ищем причину в диодном мосте, варисторах, конденсаторах, переключателе 110/220V(если есть, его вообще лучше выпаять).
Если короткого нет - запаиваем транзистор дежурки и повторяем процедуру включения.
Если короткое есть — ищем неисправность в дежурке.
Внимание! Возможно включение блока (через PS_ON) с небольшой нагрузкой при не отключенной лампочке, но во-первых, при этом не исключена нестабильная работа БП, во-вторых, лампа будет светиться при включении БП со схемой APFC.

Проверка схемы дежурного режима (дежурки).

Краткое руководство: проверяем ключевой транзистор и всю его обвязку (резисторы, стабилитроны, диоды вокруг). Проверяем стабилитрон, стоящий в базовой цепи (цепи затвора) транзистора (в схемах на биполярных транзисторах номинал от 6В до 6.8В, на полевых, как правило, 18В). Если всё в норме, обращаем внимание на низкоомный резистор (порядка 4,7 Ом) — питание обмотки трансформатора дежурного режима от +310В (используется как предохранитель, но бывает и трансформатор дежурки сгорает) и 150k~450k (оттуда же в базу ключевого транзистора дежурного режима) — смещение на запуск. Высокоомные часто уходят в обрыв, низкоомные - так же «успешно» сгорают от токовой перегрузки. Меряем сопротивление первичной обмотки дежурного транса - должно быть порядка 3 или 7 Ом. Если обмотка трансформатора в обрыве (бесконечность) — меняем или перематываем транс. Бывают случаи, когда при нормальном сопротивлении первичной обмотки трансформатор оказывается нерабочим (имеются короткозамкнутые витки). Такой вывод можно сделать, если вы уверены в исправности всех остальных элементов дежурки.
Проверяем выходные диоды и конденсаторы. При наличии обязательно меняем электролит в горячей части дежурки на новый, припаиваем параллельно нему керамический или пленочный конденсатор 0.15…1.0 мкФ (важная доработка для предотвращения его «высыхания»). Отпаиваем резистор, ведущий на питание ШИМ. Далее на выход +5VSB (фиолетовый) вешаем нагрузку в виде лампочки 0.3Ах6.3 вольта, включаем блок в сеть и проверяем выходные напряжения дежурки. На одном из выходов должно быть +12…30 вольт, на втором — +5 вольт. Если все в порядке — запаиваем резистор на место.

Проверка микросхемы ШИМ TL494 и аналогичных (КА7500).
Про остальные ШИМ будет написано дополнительно.

  1. Включаем блок в сеть. На 12 ноге должно быть порядка 12-30V.
  2. Если нет — проверяйте дежурку. Если есть — проверяем напряжение на 14 ноге — должно быть +5В (+-5%).
  3. Если нет — меняем микросхему. Если есть — проверяем поведение 4 ноги при замыкании PS-ON на землю. До замыкания должно быть порядка 3…5В, после — около 0.
  4. Устанавливаем перемычку с 16 ноги (токовая защита) на землю (если не используется - уже сидит на земле). Таким образом временно отключаем защиту МС по току.
  5. Замыкаем PS-ON на землю и наблюдаем импульсы на 8 и 11 ногах ШИМ и далее на базах ключевых транзисторов.
  6. Если нет импульсов на 8 или 11 ногах или ШИМ греется – меняем микросхему. Желательно использовать микросхемы от известных производителей (Texas Instruments, Fairchild Semiconductor и т.д.).
  7. Если картинка красивая – ШИМ и каскад раскачки можно считать живым.
  8. Если нет импульсов на ключевых транзисторах — проверяем промежуточный каскад (раскачку) – обычно 2 штуки C945 с коллекторами на трансе раскачки, два 1N4148 и емкости 1…10мкф на 50В, диоды в их обвязке, сами ключевые транзисторы, пайку ног силового трансформатора и разделительного конденсатора.

Проверка БП под нагрузкой:

Измеряем напряжение дежурного источника, нагруженного вначале на лампочку, а потом — током до двух ампер. Если напряжение дежурки не просаживается — включаем БП, замыкая PS-ON (зеленый) на землю, измеряем напряжения на всех выходах БП и на силовых конденсаторах при 30-50% нагрузке кратковременно. Если все напряжения в допуске, собираем блок в корпус и проверяем БП при полной нагрузке. Смотрим пульсации. На выходе PG (серый) при нормальной работе блока должно быть от +3,5 до +5В.

После ремонта, особенно при жалобах на нестабильную работу, минут 10-15 измеряем напряжения на входных электролитических конденсаторах (лучше с 40%-ой нагрузкой блока) — часто один «высыхает» или «уплывают» сопротивления выравнивающих резисторов (стоят параллельно конденсаторам) — вот и глючим… Разброс в сопротивлении выравнивающих резисторов должен быть не более 5%. Емкость конденсаторов должна составлять минимум 90% от номинала. Так же желательно проверить выходные емкости по каналам +3.3В, +5В, +12В на предмет «высыхания» (см. выше), а при возможности и желании усовершенствовать блок питания, заменяйте их на 2200 мкф или лучше на 3300мкф и проверенных производителей. Силовые транзисторы, «склонные» к самоуничтожению (типа D209) меняем на MJE13009 или другие нормальные, см. тему Мощные транзисторы, применяемые в БП. Подбор и замена.. Выходные диодные сборки по каналам +3.3В, +5В смело меняйте на более мощные(типа STPS4045) с не меньшим допустимым напряжением. Если в канале +12В вы заметили вместо диодной сборки два спаянных диода — необходимо поменять их на диодную сборку типа MBR20100 (20А 100В). Если не найдете на сто вольт — не страшно, но ставить необходимо минимум на 80В (MBR2080). Заменить электролиты 1.0 мкф х 50В в цепях базы мощных транзисторов на 4.7-10.0 мкф х 50В. Можете отрегулировать выходные напряжения на нагрузке. При отсутствии подстроечного резистора — резисторными делителями, которые установлены от 1й ноги ШИМа к выходам +5В и +12В (после замены трансформатора или диодных сборок ОБЯЗАТЕЛЬНО проверить и выставить выходные напряжения).

Рецепты ремонта от ezhik97:

Опишу полную процедуру, как я ремонтирую и проверяю блоки.

  1. Собственно ремонт блока — замена всего что погорело и что выявилось обычной прозвонкой
  2. Модифицируем дежурку для работы от низкого напряжения. Занимает 2-5 минут.
  3. Подпаиваем на вход переменку 30В от разделительного трансформатора. Это дает нам такие плюсы, как: исключается вероятность что-нибудь спалить дорогое из деталей, и можно безбоязненно тыкать осциллографом в первичке.
  4. Включаем систему и проверяем соответствие напряжение дежурки и отсутствие пульсаций. Зачем проверять отсутствие пульсаций? Чтобы удостоверится, что блок будет работать в компьютере и не будет «глюков». Занимает 1-2 минуты. Сразу же ОБЯЗАТЕЛЬНО проверяем равенство напряжений на сетевых фильтрующих конденсаторах. Тоже момент, не все знают. Разница должны быть небольшая. Скажем, процентов до 5 примерно.
    Если больше — есть очень большая вероятность что блок под нагрузкой не запустится, либо будет выключаться во время работы, либо стартовать с десятого раза и т.п.. Обычно разница или маленькая, или очень большая. Займет 10 секунд.
  5. Замыкаем PS_ON на землю (GND).
  6. Смотрим осциллографом импульсы на вторичке силового транса. Они должны быть нормальные. Как они должны выглядеть? Это надо видеть, потому как без нагрузки они не прямоугольные. Здесь сразу же будет видно, если что-то не так. Если импульсы не нормальные — есть неисправность во вторичных цепях или в первичных. Если импульсы хорошие — проверяем (для проформы) импульсы на выходах диодных сборок. Все это занимает 1-2 минуты.

Все! Блок 99% запустится и будет отлично работать!

Если в пункте 5 импульсов нет, возникает необходимость поиска неисправности. Но где она? Начинаем «сверху»

  1. Все выключаем. Отсосом отпаиваем три ноги переходного транса с холодной стороны. Далее пальцем берем транс и просто перекашиваем его, подняв холодную сторону над платой, т.е. вытянув ноги из платы. Горячую сторону вообще не трогаем! ВСЕ! 2-3 минуты.
  2. Все включаем. Берем проводок. Соединяем накоротко площадку, где была средняя точка холодной обмотки разделительного транса с одним из крайних выводов этой самой обмотки и на этом же проводе смотрим импульсы, как я писал выше. И на втором плече так же. 1 минута.
  3. По результатам делаем вывод, где неисправность. Часто бывает что картинка идеальная, но амплитуда вольт 5-6 всего (должно быть под 15-20). Тогда уже либо транзистор в этом плече дохлый, либо диод с его коллектора на эмиттер. Когда удостоверишься, что импульсы в таком режиме красивые, ровные, и с большой амплитудой, запаивай переходной транс обратно и посмотри осцилографом на крайние ноги еще раз. Сигналы будут уже не квадратными, но они должны быть идентичными. Если они не идентичны, а слегка отличаются — это косяк 100%.

Может оно и будет работать, только вот надежности это не добавит, а уж про всякие непонятные глюки, могущие вылезти, я промолчу.

Я все время добиваюсь идентичности импульсов. И никакого разброса параметров там ни в чем быть не может (там же одинаковые плечи раскачки), кроме как в полудохлых C945 или их защитных диодах. Вот сейчас делал блок — всю первичку восстановил, а вот импульсы на эквиваленте переходного трансформатора слегка отличались амплитудой. На одном плече 10,5В, на другом 9В. Блок работал. После замены С945 в плече с амплитудой 9В все стало нормально — оба плеча 10,5В. И такое часто бывает, в основном после пробоя силовых ключей с КЗ на базу.
Похоже утечка сильная К-Э у 945 в связи с частичным пробоем (или что там у них получается) кристалла. Что в совокупности с резистором, включенным последовательно с трансом раскачки, и приводит к снижению амплитуды импульсов.

Если импульсы правильные — ищем косяк с горячей стороны инвертора. Если нет — с холодной, в цепях раскачки. Если импульсов вообще нет — копаем ШИМ.

Вот и все. По моей практике это самый быстрый из надежных способов проверки.
Некоторые после ремонта сразу подают 220В. Я от этого отказался.

Меры предосторожности.

Ремонт импульсных БП, довольно опасное занятие, особенно если неисправность касается горячей части БП. Поэтому делаем всё вдумчиво и аккуратно, без спешки, с соблюдением техники безопасности.

Силовые конденсаторы могут длительное время держать заряд, поэтому не стоит прикасаться к ним голыми руками сразу после отключения питания. Ни в коем случае не стоит прикасаться к плате или радиаторам при подключенном к сети блоке питания.
Для того чтобы избежать фейерверка и сохранить ещё живые элементы следует впаять 100 ватную лампочку вместо предохранителя. Если при включении БП в сеть лампа вспыхивает и гаснет – все нормально, а если при включении лампа зажигается и не гаснет – где-то короткое замыкание.
Проверять блок питания после выполненного ремонта следует вдали от легко воспламеняющихся материалов.

Какой инструмент понадобится:

Паяльник, припой, флюс. Рекомендуется паяльная станция с регулировкой мощности или пара паяльников разной мощности. Мощный паяльник понадобиться для выпаивания транзисторов и диодных сборок, которые находятся на радиаторах, а так же трансформаторов и дросселей. Паяльником меньшей мощности паяется разная мелочевка.
Отвертка.
Бокорезы. Используются для удаления пластиковых хомутов, которыми стянуты провода.
Мультиметр.
Пинцет.
Лампочка на 100Вт.
Очищенный бензин или спирт. Используется для очистки платы от следов пайки.

Устройство БП.

Что мы увидим, вскрыв блок питания.

Распиновка разъема 24 pin и измерение напряжений.

Знание контактов на разъеме ATX нам понадобится для диагностики БП. Прежде чем приступать к ремонту следует проверить напряжение дежурного питания, на рисунке этот контакт отмечен синим цветом +5V SB, обычно это фиолетовый провод. Если дежурка в порядке, то следует проверить наличие сигнала POWER GOOD (+5V), на рисунке этот контакт помечен серым цветом, PW-OK. Power good появляется только после включения БП. Для запуска БП замыкаем зеленый и черный провод, как на картинке. Если PG присутствует, то, скорее всего блок питания уже запустился и следует проверить остальные напряжения. Обратите внимание, что выходные напряжения будут отличаться в зависимости от нагрузки. Так, что если увидите на желтом проводе 13 вольт, не стоит беспокоиться, вполне вероятно, что под нагрузкой они стабилизируются до штатных 12 вольт.
Если у вас проблема в горячей части и требуется измерить там напряжения, то все измерения надо проводить от общей земли, это минус диодного моста или силовых конденсаторов.

Визуальный осмотр.

Первое, что следует сделать, вскрыть блок питания и произвести визуальный осмотр.
Если БП пыльный вычищаем его. Проверяем, крутится ли вентилятор, если он стоит, то это, скорее всего и является причиной выхода из строя БП. В таком случае следует смотреть на диодные сборки и ДГС. Они наиболее склонны к выходу из строя из- за перегрева.
Далее осматриваем БП на предмет сгоревших элементов, потемневшего от температуры текстолита, вспученных конденсаторов, обугленной изоляции ДГС, оборванных дорожек и проводов.

Первичная диагностика.

Перед вскрытием блока питания можно попробовать включить БП, чтобы наверняка определиться с диагнозом. Правильно поставленный диагноз – половина лечения.

Неисправности:

БП не запускается, отсутствует напряжение дежурного питания;
БП не запускается, но дежурное напряжение присутствует. Нет сигнала PG;
БП уходит в защиту;
БП работает, но воняет;
Завышены или занижены выходные напряжения.

Предохранитель.

Если вы обнаружили, что сгорел плавкий предохранитель, не спешите его менять и включать БП. В 90% случаев вылетевший предохранитель это не причина неисправности, а её следствие. В таком случае в первую очередь надо проверять высоковольтную часть БП, а именно диодный мост, силовые транзисторы и их обвязку.

Термистор.

Задачей термистора является снижение броска тока при включении. При возникновении высоковольтного импульса сопротивление термистора резко уменьшается до долей Ома и шунтирует нагрузку, защищая ее и рассеивая поглощенную энергию в виде тепла. При перенапряжении в сети термистор резко уменьшает свое сопротивление, и возросшим током через него выжигается плавкий предохранитель. Остальные элементы блока питания при этом остаются целыми.

Термистор выходит из строя из-за скачков напряжения, вызванными например грозой. Так же термисторы выходят из строя, если по ошибке вы переключили БП в режим работы от 110в. Вышедший из строя термистор обычно определить не сложно. Обычно он чернеет и раскалывается, а на окружающих его элементах появляется копоть. Вместе с термистором обычно перегорает предохранитель. Замену предохранителя можно производить только после замены термистора и проверки остальных элементов первичной цепи.

Диодный мост.

Диодный мост представляет собой диодную сборку или 4 диода стоящие рядом друг с другом. Проверить диодный мост можно без выпаивания, прозвонив каждый диод в прямом и обратном направлениях. В прямом направлении падение тока должно быть около 500мА, а в обратном звониться как разрыв.

Диодные сборки измеряются следующим образом. Ставим минусовой щуп мультиметра на ножку сборки с отметкой «+», а плюсовым щупом прозваниваем в направления указанных на картинке.

Конденсаторы.

Вышедшие из строя конденсаторы легко определить по выпуклым крышкам или по вытекшему электролиту. Конденсаторы заменяются на аналогичные. Допускается замена на конденсаторы немногим большие по ёмкости и напряжению. Если из строя вышли конденсаторы в цепи дежурного питания, то блок питания будет включаться с n-ого раза, либо откажется включаться совсем. Блок питания с вышедшими из строя конденсаторами выходного фильтра будет выключаться под нагрузкой либо так же полностью откажется включаться, будет уходить в защиту.

Иногда, высохшие, деградировавшие, конденсаторы выходят из строя, без каких либо видимых повреждений. В таком случае следует, предварительно выпаяв конденсаторы проверить их емкость и внутренние сопротивление. Если емкость проверить нечем, меняем все конденсаторы на заведомо рабочие.

Резисторы.

Номинал резистора определятся по цветовой маркировке. Резисторы следует менять только на аналогичные, т.к. небольшое отличие в номиналах сопротивления может привести к тому, что резистор будет перегреваться. А если это подтягивающий резистор, то напряжение в цепи может выйти за пределы логического входа, и ШИМ не будет генерировать сигнал Power Good. Если резистор сгорел в уголь, и у вас нет второго такого же БП, чтобы посмотреть его номинал, то считайте, что вам не повезло. Особенно, это касается дешевых БП, на которые практически не возможно достать принципиальных схем. Ниже представлена таблица цветовой маркировки резисторов:

Диоды и стабилитроны.

Проверяются методом прозвона в обе стороны. Если звонятся в обе стороны как К.З. или разрыв, то не исправны. Сгоревшие диоды следует менять на аналогичные или сходные по характеристикам, внимание обращаем на напряжение, силу тока и частоту работы.

Транзисторы, диодные сборки.

Транзисторы и диодный сборки, которые установлены на радиатор, удобнее всего выпаивать вместе с радиатором. В «первичке» находятся силовые транзисторы, один отвечает за дежурное напряжение, а другие формируют рабочие напряжения 12в и 3,3в. Во вторичке на радиаторе находятся выпрямительные диоды выходных напряжений (диоды Шоттки).

Проверка транзисторов заключается в “позвонке” р-п-переходов, также следует проверить сопротивление между корпусом и радиатором. Транзисторы не должны замыкать на радиатор. Проверка диодного моста: Если он выполнен в виде отдельной сборки, его нужно просто аккуратно выпаять и протестировать уже разделенную цепь на печатной плате. В том случае, если выпрямитель выполнен из отдельных диодов, вполне возможно проверить его, не выпаивая их все из платы. Достаточно прозвонить каждый из них на короткое замыкание в обоих направлениях, и выпаивать только подозреваемые в неисправности. Исправный диод должен иметь сопротивление в прямом направлении около 600 Ом и в обратном - порядка 1.3 МОм.

Если все транзисторы и диодные сборки оказались исправные, то не спешите запаивать радиаторы обратно, т.к. они затрудняют доступ к другим элементам.

Если ШИМ визуально не поврежден и не греется, то без осциллографа его проверить довольно сложно.
Простым способом проверки ШИМ, является проверка контрольных контактов и контактов питания на пробой.
Для этого нам понадобиться мультиметр и дата шит на микросхему ШИМ. Диагностику ШИМ следует проводить, предварительно выпаяв её. Проверка производится прозвоном следующих контактов относительно земли (GND): V3.3, V5, V12, VCC, OPP. Если между одним из этих контактов и землей сопротивление крайне мало, до десятков Ом, то ШИМ под замену.

Способ проверки внутреннего стабилизатора: Суть способа заключается в проверке внутреннего стабилизатора микросхемы. Этот метод годится для модели tl494 и ее полных аналогов. При отключенном от сети блоке питания нужно подать на 12-ю ножку микросхемы постоянное напряжение от +9 до +12 вольт, при этом подсоединив «минус» к 7-ой ножке, после чего необходимо замерить напряжение на 14-й ножке - оно должно быть равно 5 вольтам. Если напряжение сильно отклонено (±0.5 В), это свидетельствует о неисправности внутреннего стабилизатора микросхемы. Данный элемент лучше купить новый.

По поводу ремонта дежурного питания что-либо конкретное посоветовать трудно - может сгореть все, что угодно, но это компенсируется довольно простым устройством данной части. Будет вполне достаточно полазить по форумам по данной тематике, чтобы найти причину неисправности и метод ее устранения.

Дежурное питание и POWER GOOD.

Теперь рассмотрим другую ситуацию: предохранитель не сгорает, все элементы, упомянутые выше, исправны, но устройство не запускается.

Немного отойдем от темы и вспомним, как работает блок питания стандарта АТХ. В ждущем режиме (именно в нем находится «выключенный» компьютер) БП все равно работает. Он обеспечивает дежурное питание для материнской платы, чтобы ты мог включить или отключить компьютер кнопкой, по таймеру, или при помощи какого-либо устройства. «Дежурка» представляет собой 5 вольт, которые постоянно (пока компьютер включен в электрическую сеть) подаются на материнскую плату. Когда ты включаешь компьютер, материнская плата формирует сигнал PS_ON и запускает блок питания. В процессе запуска системы проходит проверка всех питающих напряжений и формируется сигнал POWER GOOD. В том случае, если по каким-либо причинам напряжение сильно завышено или занижено, этот сигнал не формируется, и система не стартует. Впрочем, как уже упомяналось выше, во многих NONAME блоках питания защита отсутствует напрочь, что пагубно сказывается на всем компьютере.

Итак, первым делом нужно проверить наличие 5 вольт на контактах +5VSB и PS_ON. Если на какомто из этих контактов напряжения нет или оно сильно отличается от номинала, это указывает на неисправности либо в цепи вспомогательного преобразователя (если нет +5 vsb), либо на неисправность ШИМ контроллера или его обвязки (неработоспособность PS_ON).

Дроссель групповой стабилизации (ДГС).

Выходит из строя из-за перегрева (при остановке вентилятора) или из-за просчетов в конструкции самого БП (пример Microlab 420W). Сгоревший ДГС легко определить по потемневшему, шелушащемуся, обугленному изоляционному лаку. Сгоревший ДГС можно заменить на аналогичный или смотать новый. Если вы решите смотать новый ДГС, то следует использовать новое ферритовое кольцо, т.к. из за перегрева старое кольцо могло уйти по параметрам.

Трансформаторы.

Для проверки трансформаторов их следует предварительно выпаять. Их проверяют на короткозамкнутые витки, обрыв обмоток, потерю или изменение магнитных свойств сердечника.

Чтобы проверить трансформатор на предмет обрыва обмоток достаточно простого мультиметра, остальные неисправности трансформаторов определить гораздо сложнее и рассматривать их мы не будем. Иногда пробитый трансформатор можно определить визуально.

Опыт показывает, что трансформаторы выходят из строя крайне редко, поэтому их нужно проверять в последнюю очередь.

Профилактика вентилятора.


После удачного ремонта следует произвести профилактику вентилятора. Для этого вентилятор надо снять, разобрать, почистить и смазать.

Отремонтированный блок питания следует длительное время проверить под нагрузкой.
Прочитав эту статью, вы самостоятельно сможете произвести легкий ремонт блока питания, тем самым сэкономив пару монет и избавить себя от похода в сервис или магазин.

Ситуация, когда не включается компьютер, конечно же не приятна. Рано или поздно это может случиться с любым ПК. Но если захотеть, то из любой ситуации можно найти выход, главное не паниковать, трезво оценить ситуацию и начать действовать.

Давайте разберемся, как может проявить себя проблема не включения компьютера и какие могут быть причины и как найти выход из данной ситуации.

Проявлять она себя может по-разному :

  1. При нажатии на кнопку «Пуск», компьютер полностью «молчит»;
  2. Он запустился, но дальше черного экрана дело не идет, и слышен звуковой сигнал;
  3. После, казалось бы, удачного включение, через несколько секунд выключается;
  4. Вроде бы все работает, но виден только черный экран;
  5. На этапе, казалось бы, удачной загрузке, неожиданно появляется синий экран с множеством не понятных кодов, и ситуация не исправляется.

Причинами данных проблем могут быть :

  1. Отсутствие в сети напряжения 220V;
  2. Скачки напряжения;
  3. Вышла из строя кнопка включения – Power;
  4. Проблемы с блоком питания;
  5. Проблемы с аппаратными устройствами (неисправны, конфликты устройств);
  6. Села батарейка CMOS памяти BIOS;
  7. Не правильные настройки BIOS;
  8. Перегрев процессора и видео карты;
  9. Вышла из строя системная плата;
  10. Проблемы со шлейфами;
  11. Слетела Windows или существует конфликт на программном уровне с драйверами устройств;

Теперь давайте разберем каждую ситуацию по подробнее.

Компьютер полностью «молчит»

Когда компьютер никак не реагирует на кнопку включения, а вчера он еще работал, то нужно идти от простого к сложному. И начинать нужно с розетки.

Убедитесь, что там именно 220 В, а не 360 или 150, уже были прецеденты, поэтому не смейтесь.

Компьютер может не запуститься и при напряжении в 210В, все зависит от качества блока питания.

Встречаются блоки питания (БП), где на обратной стороне предусмотрен специальный включатель.

Проверьте, включен ли он.

Также существуют модели, где можно переключать уровень входного напряжения – 127 и 220 В.

127 В, это для стран, где предусмотрено такое напряжение в сети, к примеру США. Такие типы устройств, как правило, используются людьми, которые часто меняют место работы перемещаясь по всему миру.

Если все нормально и к компьютеру подходит 220 В, то последний придется разбирать.

Кнопка включения

Задача кнопки ПУСК — POWER на короткое время замкнуть между собой провода идущие от системной платы.

Вид кнопки при снятой передней крышки.

На конце проводов имеется фишка, которая одевается на контакты. По проводам найдите эти контакты, смотрите .

Проверьте, чтобы фишка была плотно надета и хорошо зафиксирована на контактах.

Снимите ее и вновь оденьте. Если это результата не дало, аккуратно замкните между собой контакты отверткой. Не бойтесь, там 220В нет, но отвертка все же должна быть с изолятором. Береженого бог бережет.

Смотрите видео в конце статьи .

Если компьютер запустился, значит, прозвоните провода, идущие от системной платы к кнопке и если с проводами все нормально, то меняйте кнопку.

При наличии тестера, чтобы проверить кнопку Power, можно пойти еще более простым путем.

Выставите настройки тестера таким образом, как показано ниже.

И нажмите на кнопку ПУСК – POWER. Если все нормально, то Вы услышите характерный звук из тестера, значит цепь замкнута, если звука нет, то где-то разрыв.

Блок питания

Если компьютер не включается, то одной из главных причин этого может быть неисправность блока питания.

Основным признаком того, что блок питания выдает хоть какое-то напряжение является свечение индикаторной лампы, которая находится на системной плате.

Современные блоки питания подключаются к системной плате через 20 – ти или 24 – х контактные разъемы АТХ.

В нашем случае разъем 24 контактный.

А штекер 20 – ти контактный – правильным будет сказать, соединитель АТХ.

Тут ничего страшного нет. Просто такой штекер подключается к 24 контактному разъему со смещением в крайнее левое положение. При этом 4 контакта остаются не использованы.

При включении компьютера в сеть через вспомогательный преобразователь БП на системную плату поступает напряжение 5 V. Об этом нам «говорит» индикаторная лампа на материнской плате.

Но бывает так, что такого индикатора нет, поэтому необходимо проверить доходит ли хоть какое-то напряжение до системной платы.

Возьмите тестер и выставите на нем настойки, показанные ниже.

Отключите соединитель АТХ от системной платы и подключите питание к компьютеру.

По схеме, указанной выше ищем напряжение 5 V которое должно доходить до системной платы.

Также выясняем поступает ли напряжение 5 V на контакт PS_ON.

Опят же с помощью тестера проверяем если ли напряжение на определенных контактах соединителя АТХ.

Если хотя бы в одном из случаев напряжения нет, или оно не значительное, то проблемы в блоке питания.

Если хотите разобраться сами, то причину ищите в резисторе самого блока. Он имеет сопротивление около 1 кОм и через него проходит так называемое дежурное напряжение 5 V.

Резисторы блока питания бывают разные. Взаимозамену нужно проводить только идентичной маркой. Некоторые характеристики резисторов можно посмотреть ниже.

Чтобы не возникло ни каких сомнений, если есть возможность, установите на компьютер другой блок питания, в 99% случаем это проясняет ситуацию.

Что такое PS_ON

PS_ON, это сигнал, который разблокирует запуск основного преобразователя блока питания для включения компьютера.

Когда компьютер выключен, как мы уже выяснили выше, на контакте PS_ON имеется напряжение пять вольт.

При нажатии на кнопку ПУСК – POWER от системной платы на контакт PS_ON поступает сигнал с одноименным названием.

Этот сигнал обнуляет (0 В) напряжение на контакте PS_ON путем замыкание его на массу (землю), тем самым дав понять блоку питания, чтобы тот включил главные преобразователи.

Блок питания начинает вырабатывать ток заданных параметров, запитывая им все системы компьютера.

Если заданные параметры напряжения по каким-либо причинам превышают допустимые, к примеру, в результате замыкания, то основной преобразователь прекращает работу и компьютер выключается.

Стоит упомянуть и про сигнал PW_OK, без которого работа компьютера тоже не возможна. При выключенном компьютере напряжение на контакте PW_OK равно 0.

Блок питания получает сигнал PS_ON от системной платы на запуск основных преобразователей.

В этот момент в нем формируются два напряжения 3 и 5 V, которые, в свою очередь, начинают по нарастающей формировать сигнал PW_OK имеющий конечное напряжение 5 V + — 0,5 V.

Время формирования сигнала от 0,2 до 0,5 секунд. Это время, за которое в блоке питания будет сформировано стабильное напряжение для запуска процессора и других устройств.

После того, как нужные показатели напряжения сформировались, сигнал PW_OK поступает на одноименный контакт и далее на материнскую плату, где уже формируются сигналы для задания начальных параметров работы процессора, а далее идет полное включение компьютера.

Сигнал PW_OK в 5 вольт существует всегда, пока работает ПК. Он как бы говорит системы, что напряжение «ОК», можно работать.

Если напряжение в сети падает или повышается и блок питания не может справиться с данными скачками, сигнал PW_OK изменяет свои показатели.

Обычно напряжение уменьшается до 3 – х и менее вольт, дав понять системе, что напряжение не стабильно, работа не возможна.

Тогда запуск компьютера будет не возможен или он безопасно выключится благодаря тому, что сигнал на остановку процессора придет раньше, чем пропадет главное напряжение.

Насколько важен сигнал PW_OK

Неудачная первая попытка включения компьютера, в чем причина?

Сначала давайте разберемся, как может повлиять сигнал PW_OK на зависание и ошибки при включении компьютера?

Как Вы думаете, когда у автомобиля большой расход топлива, когда он только начинает ехать или уже при езде по трассе на рекомендуемой скорости?

Ответ очевиден, конечно же на старте.

Также происходит и при запуске компьютера. В первые секунды пусковой ток на много больше, чем потребляемый в ходе его дальнейшей работы.

К примеру, при старте компьютер может потреблять до 300 W, а в рабочем режиме 150 – 200.

В момент старта в работу включаются все транзисторы, конденсаторы, дроссели, идет процесс наполнения цепи энергией.

В этой ситуации блок питания старается как можно лучше стабилизировать напряжение, уменьшить пульсацию токов, которая очень большая.

Если в этот момент подать сигнал PW_OK на включения процессора, то могут произойти сбои в его работе, а значит и в памяти CMOS BIOS .

Для этого и предусмотрена задержка в формировании сигнала (команды) PW_OK.

Первый признак того, что данная команда формируется очень рано, это когда первая попытка включения компьютера терпит фиаско, а при его рестарте кнопкой Reset процесс загрузки нормализуется.

Также можно использовать горячие клавиши Ctrl+Alt+Del .

Итогов несколько :

  1. На компьютере установлен не качественный БП;
  2. Он подложить ремонту или замене.

Перезапуск компьютера

Допустим, попытка включения компьютера увенчалась успехом, но через время он начинает перезагружаться.

В чем может быть причина?

Как мы уже говорили выше, сигнал PW_OK при работе ПК постоянен. Равен он 5 V при условии, если в сети нормативное напряжение, для нашей страны это 220В.

Если напряжение в сети падает, может пропасть или уменьшиться сигнал PW_OK. Это прекращает работу ПК раньше, чем его системы заметили какие-то неполадки в сети.

При нормализации напряжения в сети, данная проблема уйдет сама собой. Поэтому рекомендовано для стабилизации напряжения использовать бесперебойники для ПК.

Проверяем блок питания дальше

В данной ситуации необходимо проверить поступает ли напряжение на другие устройства ПК, помимо системной платы через соединитель АТХ.

Распространённые типы разъемов на блоке питания, по мимо соединителя АТХ.

Проверяем наличие питания на разъемах начиная с наиболее важных.

На обесточенном компьютере отсоедините провод питания процессора от системной платы и подсоедините к его разъемам щупы тестера.

Подключите ПК к сети и нажмите кнопку ПУСК – POWER.

В обоих случаях постоянное напряжение должно быть в пределах 12 В.

Если напряжения нет, или оно значительно меньше (5, 7В), то стоит задуматься об исправности блока питания.

Таким же методом проверяем разъемы питания двигателей жестких дисков, дисководов и т.д.

Если напряжение ниже нормативного, то блок питания явно неисправен.

Компьютер включается, но слышен сигнал

Если слышно, что компьютер работает, но загрузка системы не происходит, при этом слышны сигналы, то значит есть проблемы с аппаратными устройствами.

Если сигналов нет, то проверьте, стоит ли на материнской плате специальный динамик.

Если его нет, то постарайтесь им обзавестись и подключить к разъемам Speaker на системной плате.

Бывают ситуации, когда динамик сгорел, тогда его нужно просто заменить.

Сигналы, издаваемые из компьютера, могут быть разными. Все зависит от версии BIOS, которая прошита в CMOS памяти.

Желательно такие данные иметь под рукой, или подсмотреть их в документации к системной плате.

Также можно при еще исправном компьютере зайти в БИОС и выписать оттуда его версию.

Распространённые версии BIOS :

  1. Phoenix;
  2. Award;
  3. Compaq;
  4. Dell;
  5. Quadtel.



К примеру, при включении компьютера слышны 1 короткий и 1 длинный сигналы. Версия BIOS Award.

Сморим в таблицу и видим, что присутствует ошибка оперативной памяти.

Вскрываем компьютер, обращаем внимание на планки ОЗУ и видим.

Одна планка установлена неправильно.

Исправляем ошибку.

Планка вставлена правильно, как итог, компьютер запускается без проблем.

Случаются ситуации, когда одна из планок ОЗУ вышла из строя. Выявить ее на глаз не получиться. Необходимо по очереди вынимать каждую планку и пробовать запустить ПК.

Если планка только одна, то ее нужно заменить на аналогичную (DDR, DDR2, DDR3, DDR4) , не перепутайте. Желательно, чтобы все планки ОЗУ были от одного производителя.

Не правильные настройки BIOS

Настройки BIOS это отдельная, очень обширная тема. Если загрузка компьютера прекратилась и на черном экране появилось какое-то сообщение, то просто так оно не возникает.

Изучите его, тогда картина более, менее проясниться.

Частая проблема при включении компьютера, это неправильно выставленный в BIOS источник загрузки операционной системы.

Их может быть несколько: с жесткого диска (HDD), с диска DVD, с USB источника и из сети.

Проверьте, как выставлены данные настройки. Если система, к примеру, не устанавливается с нуля, то первый источник загрузки должен быть HDD.

Часто бывает такая ситуация, когда первичным источником загрузки выставлен USB носитель, а в компьютер вставлена обычная, не загрузочная, флешка. Это может вызвать ошибку.

Многие пользователи ПК даже не знают, что на материнской плате существует батарейка, по причине разрежённости которой компьютер может не запуститься.

Память CMOS, в которой находится BIOS, не может работать энергонезависимо. Для ее стабильной работы предусмотрена 3 – х вольтовая батарейка. Ее легко найти на системной плате.

Время ее работы до 5 лет. Первый признак, что батарейка садиться, это постоянное отставание времени на компьютере без каких-либо причин.

Как правило, модель батарейки CR2032 , стоит она копейки, меняется за несколько секунд.

Но проблема может быть в другом. В результате обесточивания памяти CMOS в BIOS, даже на короткое время, могут быть сброшены все настройки BIOS.

Поэтому придется выставлять их заново. Если не разбираетесь, тогда просто выставите заводские настройки по умолчанию.

Для этого, в зависимости от версии БИОС, ищем «Load Optimized Defaults» или Load Default Settings. Ключевые слова «Load Defaults».

Перегрев процессора и видео карты

Важность системы охлаждения компьютера трудно переоценить, особенно это касается охлаждения процессора, видео карты, северного и южного мостов системной платы.

От перегрева процессор защищает специальный кулер, который нужно уметь .

Но в результате не правильного подбора последнего, выхода его из строя или сильного запыления, процессор может перегреваться.

Чтобы не сгорел CPU, предусмотрена его защита, которая отключает компьютер при возникновении данной опасности.

Поэтому, если Вы заметили, что через несколько секунд или даже минут после включения ПК, он сам выключается, загляните в системный блок.

Скорее всего там Вы увидите вот такую картину.

После чистки системного блока от пыли, ситуация может быть исправлена, но не всегда.

При продолжении ситуации самовыключения компьютера, придется снять кулер и добраться до процессора.

Снимите последний и посмотрите в каком состоянии термопаста.

Со временем она пересыхает и функцию улучшения теплообмена между CPU и радиатором кулера не выполняет.

Используя спирт или одеколон снимите старый слой термопасты и замените его новой.

В случае с видео картой, перезагрузки ПК не будет. Скорее всего Вы будете видеть только черный экран или услышите сигналы.

Если Вы уверены, что монитор исправен, снимите видеокарту почистите ее от пыли.

Не забудьте удалить старую термопасту и нанести новую. Она тоже там есть.

Также выход из строя видеокарты является причиной, что экран монитора черный и процесс загрузки может быть виден, только на этапе загрузки BIOS. Но про монитор мы поговорим дальше.

Другие устройства

Мы уже выше вкратце затрагивали проблемы с планками оперативной памяти. Все медные контакты любых устройств имеют свойства окисляться, особенно если в помещении повышенная влажность.

Поэтому их нужно периодически чистить. Для этого можно использовать обычную жесткую стерательную резинку.

Также не забудьте про сетевые платы, TV тюнер, WI-FI адаптер и другие устройства, если они есть в компьютере.

Если после чистки контактов компьютер так и не включается, то вспомните, какое устройство было установлено в системную плату недавно. Демонтируйте его.

Если и это не помогает, то идите методом исключения. Начиная с наименее значимых устройств, вынимайте их из слотов и пытайтесь включить компьютер. Если и это не помогло, переходим к следующему подразделу.

Системная плата

Наличие пыли на системной плате может привести к перегреву северного и южного мостов, а также других микро чипов.

Поэтому чистить компьютер от пыли нужно хотя бы раз в 4-6 месяцев.

Виновником выхода из строя системной платы также может быть и не качественный блок питания.

Вывод, на блоке питания экономить не стоит.

Определить то, что системная плата вышла из строя визуально тяжело. Хотя если присмотреться, то причину можно найти.

Замена системной платы может привести к полному апгрейду компьютера, а это не дешево. Ремонтировать же ее стоит лишь тогда, когда ее ремонт не превышает 50% стоимости от новой. Но решение принимает каждый сам.

Шлейфы

Шлейфы редко выходят из строя и как правило проблема лежит не в них, а в местах их подключения.

Особенно стоит обратить внимание на шлейфы : семи контактный шлейф передачи данных и пятнадцати контактный шлейф дополнительного напряжения.

Их недостаток, слабое крепление. Вы переносили системный блок? Задели его ногой или уборочным инвентарем? После этого компьютер не загружается?

Проверьте шлейфы SATA, не отошли ли они от жесткого диска и системной платы. Отключите и снова подключите их. Как правило это проблему решает.

Синий экран

Тема синего экрана при загрузке Windows очень обширна и раскрыть ее в данной, и так не маленькой статье, невозможно.

Проблема этого может лежать в плоскости, как аппаратного, так и программного сбоя.

Как правило она решается путем демонтажа некоторых аппаратных устройств. К примеру, у Вас системная плата от MSI, а видео карта от ASUS.

Но не совместимость устройств от разных производителей хотя и имеет место, но в последнее время встречается крайне редко.

Также последние установленные драйвера могут стать причиной, что система «слетела» и т.д.

Решается данная проблема, путем отката системы, через безопасный режим загрузки, восстановление системы с загрузочного диска или специально созданного диска восстановления Windows.

Но об этом мы обязательно поговорим в другой статье.

Безусловно монитор не может на прямую повлиять на проблему с включением компьютера. Но когда появился черный экран, все же на него стоит обратить внимание.

Неожиданный выход его из строя может ввести Вас в заблуждение и на фоне общей проблемы, есть большая вероятность, что Вы пойдете по другому пути поиска ее причин.

Классическое напряжение работы мониторов – 12V. Если блок питания устройства внешний, то проверить выходное напряжение тестером не сложно.

Бывали случаи, что монитор показывал признаки свое работы (светодиоды подключенной сети), но при проверки тестером блока питания, последний выдавал только 7 вольт.

В итоге, проблема была решена путем замены БП монитора.

Итог

Мы рассмотрели основные причины почему компьютер отказывается включаться, а операционная система загружаться.

Нужно понимать, главная проблема лежит не в том, как их устранить, а в том, как их выявить.

Довольно распространенной проблемой является отсутствие реакции на нажатие кнопки включения компьютера. Другими словами когда вы как обычно пытаетесь включить компьютер, нажав на кнопку, ничего не происходит. В этой статье буду описаны возможные причины такого поведения компьютера.

Причины

Итак, начнем. Вот список возможных причин:

  1. Отсутствие напряжения в электрической розетке;
  2. Повреждение либо неконтакт питающего провода, идущего из розетки в блок питания компьютера;
  3. Кнопка включения блока питания находится в выключенном состоянии;
  4. Поломка самой кнопки включения компьютера или ее проводов;
  5. Выход из строя блока питания;
  6. Выход из строя материнской платы.

Первое, с чего стоит начать диагностирование данной неисправности это убедиться что в электрической розетке есть напряжение. Необязательно делать это тестером. Достаточно включить в нее какой — нибудь другой электрический прибор и убедиться в том, что он работает.

Далее нужно проверить надежно ли включен черный питающий провод в электрическую розетку и в блок питания, а также сделать его внешний осмотр на предмет повреждений и переломов, особенно с концов обеих разъемов. Для этого вытащите его конец из блока питания компьютера и вставьте обратно.

Следующим шагом следует обратить внимание на блок питания компьютера. Для этого посмотрите на заднюю часть системного блока в то место, куда приходит питающий кабель из розетки.

Если там есть кнопка — включатель, то она должна быть во включенном состоянии.

Кнопка включения на блоке питания

После этого нужно попробовать запустить компьютер без кнопки включения.

Выключаем компьютер и снимаем боковую крышку системного блока. Далее ищем колодку контактов, куда подключены кнопка включения, перезагрузки, индикаторы включения и работы жесткого диска. Обычно она находится в правом нижнем углу платы.

Расположение колодки контактов на материнской плате кнопки включения компьютера

Когда нашли ее снимаем с нее все контакты. Для этого тянем их за провода вверх, предварительно записав или сфотографировав их расположение.

Теперь берем отвертку, нож или другой подобный металлический предмет и пробуем им замыкать контакты, которые подписаны как «PWR_BTN» или «WP+ WP-» или «PWR SW» просто дотрагиваясь до них отверткой одновременно.

Как включить компьютер без кнопки включения — замыкаем контакты отверткой

Если вы не можете найти эти контакты по надписям под ним или у вас надписи под ними попросту отсутствуют, то пробуйте замыкать отверткой все соседние контакты по очереди.

Если компьютер так и не включился, значит проблема не в кнопке питания.

Теперь чтобы проверить блок питания нужно попробовать установить заведомо рабочий, одолжив его у друзей или знакомых, либо же проверить свой блок на другом компьютере.

В случае если блок питания оказался целым, то единственной оставшейся причиной будет являться нерабочая материнская плата, которую в большинстве случаев придется менять, если только на ней банально не вздулись конденсаторы, которые можно заменить.

Вот так выглядят вздувшиеся конденсаторы на материнской плате