Модель Взаимодействия Открытых Систем. Модель взаимодействия открытых систем

Управление процессом передачи и обработки данных в сети, требует стандартизации следующих процедур:

· выделения и освобождения ресурсов компьютеров и системы телекоммуникации;

· установления и разъединения соединений;

· маршрутизации, согласования, преобразования и передачи данных;

· контроля правильности передачи;

· исправления ошибок и др.

Указанные задачи решаются с помощью системы протоколов и стандартов, определяющих процедуры взаимодействия элементов сети при установлении связи и передаче данных. Протокол - это набор правил и методов взаимодействия объектов вычислитель­ной сети.
Необходимость стандартизации протоколов важна для понимания сетями друг друга при их взаимодействии.
Протоколы для сетей - то же самое, что язык для людей. Говоря на разных язы­ках, люди могут не понимать друг друга, - также и сети, использующие разные протоколы. От эффективности протоколов, их надежности, простоты зависит то, насколько эффективна и удобна вообще работа человека в сети.
Международной организацией по стандартизации (ISO) разработана система стандартных протоколов, получившая название модели взаимодействия открытых систем (OSI), часто называемая также эталонной семиуровневой логической моделью открытых систем.
Открытая система - система, доступная для взаимодействия с другими система­ми в соответствии с принятыми стандартами.
Эта система протоколов базируется на разделении всех процедур взаимодействия на отдельные мелкие уровни, для каждого из которых легче создать стандартные алгоритмы их по­строения.
Модель OSI представляет собой самые общие рекомендации для построения стан­дартов совместимых сетевых программных продуктов, она же служит базой для производителей при разработке совместимого сетевого оборудования. В настоящее время модель взаимодействия открытых систем является наиболее популярной сетевой архитектурной моделью.
В общем случае сеть должна иметь 7 функциональных уровней

Прикладной уровень (application) - управляет запуском программ пользователя, их выполнением, вводом-выводом данных, управлением терминалами, административным управ­лением сетью. На этом уровне обеспечивается предоставление пользователям раз­личных услуг, связанных с запуском его программ. На этом уровне функционируют технологии, являющиеся как бы надстройкой над передачей данных.
Уровень представления (presentation) - интерпретация и преобразование пере­даваемых в сети данных к виду, удобному для прикладных процессов. На практике многие функции этого уровня задействованы на прикладном уровне, поэтому про­токолы уровня представлений не получили развития и во многих сетях практи­чески не используются.
Сеансовый уровень (session) - организация и проведение сеансов связи между прикладными процессами (инициализация и поддержание сеанса между абонен­тами сети, управление очередностью и режимами передачи данных). Многие функции этого уровня в части установле­ния соединения и поддержания упорядоченного обмена данными на практике реализуются на транспортном уровне, поэтому протоколы сеансового уровня име­ют ограниченное применение.
Транспортный уровень (transport) - управление сегментированием данных и транспорти­ровкой данных от источника к потребителю (т.е. обмен управляющей информацией и установление между абонентами логического канала, обеспечение качества пе­редачи данных). Протоколы транспортного уровня развиты очень широко и интенсивно используются на практике. Большое внимание на этом уровне уделено контролю достоверности передаваемой информации.
Сетевой уровень (network) - управление логическим каналом передачи данных в сети (адресация и маршрутизация данных). Каждый пользователь сети обязательно использует протоколы этого уровня и имеет свой уникальный сетевой адрес, используемый протоколами сетевого уровня. На этом уровне выполняется структуризация данных - разбивка их на пакеты и присвое­ние пакетам сетевых адресов.
Канальный уровень (data-link) - формирование и управление физическим ка­налом передачи данных между объектами сетевого уровня (установление, поддер­жание и разъединение логических каналов), обеспечение “прозрачности” физических соединений, контроля и исправления ошибок передачи.
Физический уровень (physical) - установление, поддержание и расторжение со­единений с физическим каналом сети. Управление выполняется на уров­не битов цифровых (импульсы, их амплитуда, форма) и аналоговых (амплитуда, частота, фаза непрерывного сигнала).

Блоки информации, передаваемые между уровнями, имеют стандартный формат: заголовок (header), служебная информация, данные, концевик. Каждый уровень при передаче блока информации нижестоящему уровню снабжает его своим заго­ловком. Заголовок вышестоящего уровня воспринимается нижестоящим как пе­редаваемые данные.

Средства каждого уровня отрабатывают протокол своего уровня и интерфейсы с со­седними уровнями.
Указанные уровни управления можно по разным признакам объединять в группы:
- уровни 1, 2 и частично 3 реализуются в большей части за счет аппаратных средств; верхние уровни с 4 по 7 и частично 3 обеспечиваются программными средствами;

Уровни 1 и 2 ответственны за физические соединения; уровни 3-6 заняты орга­низацией передачи, передачей и преобразованием информации в понятную для абонентской аппаратуры форму; уровень 7 обеспечивает выполнение приклад­ных программ пользователя.

4. Стек протоколов. Интерфейс. Характеристика стандартных стеков протоколов, применяемых в современных сетях ЭВМ.

При передаче сообщений оба участника сетевого обмена должны принять множество соглашений. Например, они должны согласовать уровни и форму электрических сигналов, способ определения длины сообщений, договориться о методах контроля достоверности и т.п. Другими словами, соглашения должны быть приняты для всех уровней, начиная от самого низкого уровня передачи битов, до самого высокого уровня, детализирующего, как информация должна быть интерпретирована. Такие формализованные правила, определяющие последовательность и формат сообщений, которыми обмениваются сетевые компоненты, лежащие на одном уровне, но в разных узлах, называются протоколами .

Иерархически организованная совокупность протоколов, решающих задачу взаимодействия узлов сети называется стеком коммуникационных протоколов .

Протоколы соседних уровней, находящихся в одном узле, взаимодействуют друг с другом также в соответствии с четко определенными правилами и с помощью стандартизованных форматов сообщений. Эти правила принято называть интерфейсом. Интерфейс определяет набор услуг, которые нижележащий уровень предоставляет вышележащему.

Важнейшим направлением стандартизации в области вычислительных сетей является стандартизация коммуникационных протоколов. В настоящее время в сетях используется большое количество стеков коммуникационных протоколов. Наиболее популярны следующие стеки: TCP/IP, IPX/SPX, NetBIOS/SMB, OSI.

Все эти стеки на нижних уровнях - физическом и канальном, - используют одни и те же хорошо стандартизованные протоколы Ethernet, Token Ring, FDDI и ряд других, которые позволяют задействовать во всех сетях одну и ту же аппаратуру. Зато на верхних уровнях все стеки работают по своим протоколам. Эти протоколы часто не соответствуют рекомендуемому моделью OSI разбиению на уровни. В частности, функции сеансового и представительного уровня, как правило, объединены с прикладным уровнем. Такое несоответствие связано с тем, что модель OSI появилась как результат обобщения уже существующих и реально используемых стеков, а не наоборот.

Стек OSI

В отличие от других стеков протоколов, стек OSI полностью соответствует модели OSI, он включает спецификации протоколов для всех семи уровней взаимодействия, определенных в этой модели. На нижних уровнях стек OSI поддерживает Ethernet, Token Ring, FDDI, протоколы глобальных сетей, X.25 и ISDN, - то есть использует разработанные вне стека протоколы нижних уровней, как и все другие стеки. Протоколы сетевого, транспортного и сеансового уровней стека OSI специфицированы и реализованы различными производителями, но распространены пока мало. Наиболее популярными протоколами стека OSI являются прикладные протоколы. К ним относятся: протокол передачи файлов FTAM, протокол эмуляции терминала VTP, протоколы справочной службы X.500, электронной почты X.400 и ряд других.

Протоколы стека OSI отличаются сложностью и неоднозначностью спецификаций. Эти свойства стали результатом общей политики разработчиков стека, стремившихся учесть в своих протоколах все случаи и все существующие технологии. К этому нужно еще добавить и последствия большого количества политических компромиссов, неизбежных при принятии международных стандартов по такому злободневному вопросу, как построение открытых вычислительных сетей.

Стек TCP/IP

Популярность этой операционной системы привела к широкому распространению протоколов TCP, IP и других протоколов стека. Сегодня этот стек используется для связи компьютеров всемирной информационной сети Internet, а также в огромном количестве корпоративных сетей.

Стек TCP/IP на нижнем уровне поддерживает все популярные стандарты физического и канального уровней: для локальных сетей - это Ethernet, Token Ring, FDDI, для глобальных - протоколы работы на аналоговых коммутируемых и выделенных линиях SLIP, PPP, протоколы территориальных сетей X.25 и ISDN.

Основными протоколами стека, давшими ему название, являются протоколы IP и TCP. Эти протоколы в терминологии модели OSI относятся к сетевому и транспортному уровням, соответственно. IP обеспечивает продвижение пакета по составной сети, а TCP гарантирует надежность его доставки.

За долгие годы использования в сетях различных стран и организаций стек TCP/IP вобрал в себя большое количество протоколов прикладного уровня. К ним относятся такие популярные протоколы, как протокол пересылки файлов FTP, протокол эмуляции терминала telnet, почтовый протокол SMTP, используемый в электронной почте сети Internet, гипертекстовые сервисы службы WWW и многие другие.

Сегодня стек TCP/IP представляет собой один из самых распространенных стеков транспортных протоколов вычислительных сетей.

Стек IPX/SPX ( Novell) ( Internetwork Packet Exchange (IPX и Sequenced Packet Exchange, SPX),

Этот стек является оригинальным стеком протоколов фирмы Novell, разработанным для сетевой операционной системы NetWare еще в начале 80-х годов Популярность стека IPX/SPX непосредственно связана с операционной системой Novell NetWare, которая долгое время сохраняла мировое лидерство по числу установленных систем.

Многие особенности стека IPX/SPX обусловлены ориентацией ранних версий ОС NetWare на работу в локальных сетях небольших размеров, состоящих из персональных компьютеров со скромными ресурсами. Протоколы стека IPX/SPX до недавнего времени хорошо работали в локальных сетях и не очень - в больших корпоративных сетях, так как они слишком перегружали медленные глобальные связи широковещательными пакетами, которые интенсивно используются несколькими протоколами этого стека. Это обстоятельство, а также тот факт, что стек IPX/SPX является собственностью фирмы Novell, и на его реализацию нужно получать лицензию долгое время ограничивали его поле деятельности только сетями NetWare.

Стек NetBIOS/SMB ( IBM и Microsoft)

Этот стек широко применяется в продуктах компаний IBM и Microsoft. На его физическом и канальном уровнях используются все наиболее распространенные протоколы Ethernet, Token Ring, FDDI и другие. На верхних уровнях работают протоколы NetBIOS и SMB.

Протокол NetBIOS выполняет много полезных сетевых функций, которые можно отнести к сетевому, транспортному и сеансовому уровням модели OSI, однако он не обеспечивает возможность маршрутизации пакетов. Это ограничивает применение протокола NetBIOS локальными сетями, не разделенными на подсети, и делает невозможным его использование в составных сетях.

Протокол SMB (Server Message Block) выполняет функции сеансового, представительного и прикладного уровней. На основе SMB реализуется файловая служба, а также службы печати и передачи сообщений между приложениями.


Похожая информация.


Лекция 3

Вопросы к лекции 2.

1.На какие подсистемы делится ТфОП?

2. Какие иерархические уровни имеет ТфОП?

3. Как связаны ТМгУС с ТМнУС?

4. Для чего служит индекс АВС в корпоративных сетях?

3. С помощью каких средств реализуется установление соединœения в системах с КК?

4. Каким является соединœение в сети с КК логическим или физическим?

5. Какие функции выполняет узел STP при сигнализации по ОКС №7?

6. Какой узел сети сигнализации устанавливается при обслуживании каналом ОКС №7 соединœения ЗУС- ТМгУС?

Для упорядочения принципов взаимодействия устройств в сетях международная организация стандартизации (Organization of Standardization - ISO) предложила семиуровневую эталонную коммуникационную модель ʼʼВзаимодействия Открытых Системʼʼ (ВОС) или (Open System Interconnection, OSI). Модель OSI стала основой для разработки стандартов на взаимодействие систем. Она определяет только схему выполнения необходимых задач, но не дает конкретного описания их выполнения. Это описывается конкретными протоколами или правилами, разработанными для определœенной технологии с учетом модели OSI. Уровни OSI могут реализовываться как аппаратно, так и программно.

Существует семь базовых уровней модели OSI (рис. 4.1). Οʜᴎ начинаются с физического уровня и заканчиваются прикладным. Каждый уровень предоставляет услуги для более высокого уровня. Седьмой уровень обслуживает непосредственно пользователœей.

Рис. 4.1 Модель OSI-ВОС.

Модель OSI послужила основой для стандартизации всœей сетевой индустрии. Вместе с тем, модель OSI является хорошей методологической основой для изучения сетевых технологий. Несмотря на то что были разработаны и другие модели большинство поставщиков сетевого оборудования определяет свои продукты в терминах эталонной модели OSI.

Эталонная модель OSI сводит передачу информации в сети к семи относительно простым подзадачам. Каждая из них соответствует своему строго определœенному уровню модели OSI. Тем не менее, в реальной жизни некоторые аппаратные и программные средства отвечают сразу за несколько уровней. Два самых низких уровня модели OSI реализуются как аппаратно, так и программно. Остальные пять уровней, в основном, программные.

Эталонная модель OSI определяет назначение каждого уровня и правила взаимодействия уровней (табл.).

Уровень Ключевое слово Данные Ответственность
Прикладной Разделœение Сообщение Предоставление сетевого сервиса
Представления Формирова-ние (сжатие) Пакет Трансляция файлов. Шифрова-ние данных. Сжатие данных
Сеансовый Диалог Пакет Управление сессией. Диалоᴦ. Контроль за ошибками. Обработка транзакций.
Транспортный Надежность Сегмент. Дейтаграм-ма. Пакет Надежность передачи. Гарантированная доставка.
Сетевой Маршрутиза-ция. Коммутация. Дейтаграм-ма. Ячейка. Пакет Маршрутизация логических адресов. Ведение таблиц марш-рутизации. Неориентированная на соединœение доставка.
Канальный Кадр Пакет Доставка по физическому адресу. Синхронизация кадров. Доступ к среде передачи.
Физический Биты Биты Синхронизация битов. Электрические спецификации.

Рис. Уровни модели ВОС и их основные свойства.

Модель OSI описывает путь информации через сетевую среду от одной прикладной программы на одном компьютере до другой программы на другом компьютере. При этом пересылаемая информация проходит вниз через всœе уровни системы. Уровни на разных системах не могут общаться между собой напрямую. Это умеет только физический уровень. По мере прохождения информации вниз внутри системы она преобразуется в вид, удобный для передачи по физическим каналам связи. Для указания адресата к этой преобразованной информации добавляется заголовок с адресом. После получения адресатом этой информации, она проходит через всœе уровни наверх. По мере прохождения информация преобразуется в первоначальный вид. Каждый уровень системы должен полагаться на услуги, предоставляемые ему смежными уровнями.

Основная идея модели OSI в том, что одни и те же уровни на разных системах, не имея возможности связываться непосредственно, должны работать абсолютно одинаково. Одинаковым должен быть и сервис между соответствующими уровнями различных систем. Нарушение этого принципа может привести к тому, что информация, посланная от одной системы к другой, после всœех преобразований будет не похожа на исходную. Проходящие через уровни данные имеют определœенный формат. Сообщение, как правило, делится на заголовок и информационную часть. Конкретный формат зависит от функционального назначения уровня, на котором информация находится в данное время. К примеру, на сетевом уровне информационный блок состоит из сетевого адреса и следующими за ним данными. Данные сетевого уровня, в свою очередь, могут содержать заголовки более высоких уровней - транспортного, сеансового, уровня представления и прикладного. И, наконец, не всœе уровни нуждаются в присоединœении заголовков. Некоторые уровни просто выполняют преобразование получаемых физических данных к формату, подходящему для смежных уровней.

Эталонная модель OSI не определяет реализацию сети. Она только описывает функции каждого уровня и общую схему передачи данных в сети. Она служит основой сетевой стратегии в целом.

Протоколы и интерфейсы

Чтобы упростить проектирование, анализ и реализацию обмена сообщениями между компьютерами, эту процедуру разбивают на несколько иерархически связанных между собой подзадач.

При передаче сообщений оба участника сетевого обмена должны следовать множеству соглашений. К примеру, они должны согласовать уровни и форму электрических сигналов, способ определœения длины сообщений, договориться о методах контроля и т. п. Соглашения должны быть едиными для всœех уровней, от самого низкого уровня передачи битов до самого высокого уровня, определяющего интерпретацию информации. Такие формализованные правила, определяющие последовательность и формат сообщений на одном уровне, называются протоколами. Иерархически организованная совокупность протоколов принято называть стеком коммуникационных протоколов.

Протоколы сосœедних уровней на одном узле взаимодействуют друг с другом также в соответствии с четко определœенными правилами, описывающими формат сообщений. Эти правила принято называть интерфейсом. Интерфейс определяет набор услуг, которые нижелœежащий уровень предоставляет вышелœежащему.

Модель OSI описывает только системные средства взаимодействия, не касаясь пользовательских приложений. Приложения реализуют свои собственные схемы взаимодействия, обращаясь к системным средствам.

Приложение может использовать системные средства взаимодействия не только для организации диалога с другим приложением, выполняющимся на другой машинœе, но и для получения услуг того или иного сетевого сервиса, к примеру, доступа к удаленным файлам, передачу почты или печати на общем принтере.

Предположим, что приложение обращается с запросом к прикладному уровню, к примеру к файловому сервису. На основании этого запроса программное обеспечение прикладного уровня формирует сообщение стандартного формата͵ в ĸᴏᴛᴏᴩᴏᴇ помещает служебную информацию (заголовок) и необходимые данные. Далее это сообщение направляется уровню представления. Уровень представления добавляет к сообщению свой заголовок и передает результат вниз сеансовому уровню, который добавляет свой заголовок и т. д. Наконец, сообщение достигает самого низкого, физического уровня, который непосредственно передает его по линиям связи.

Когда сообщение по сети поступает на другую машину, оно последовательно перемещается вверх с уровня на уровень. Каждый уровень анализирует, обрабатывает и удаляет заголовок своего уровня, выполняет соответствующие функции и передает сообщение вышелœежащему уровню. Как правило, между взаимодействующими машинами оказываются промежуточные устройства различных типов.

В модели OSI различается два базовых типа протоколов. В протоколах с установлением соединœения (Connection-Oriented Network Service, CONS) перед обменом данными отправитель и получатель должны сначала установить соединœение и, возможно, выбрать протокол, который они будут использовать. После завершения диалога они должны разорвать соединœение.

Вторая группа протоколов - протоколы без предварительного установления соединœения (Connectionless Network Service, CLNS). Такие протоколы называются также дейтаграммными протоколами. Отправитель просто передает сообщение, когда оно готово. В сетях используются как те, так и другие протоколы.

Уровни модели OSI

Понятие и виды. Классификация и особенности категории "Модель Взаимодействия Открытых Систем." 2017, 2018.

  • - Эталонная модель взаимодействия открытых систем (OSI – Open Systems Interconnection)

    Модель взаимодействия открытых систем состоит из семи уровней. Уровень Прикладной Представительный Сеансовый Транспортный Сетевой Канальный Физический 7-й уровень - прикладной - обеспечивает поддержку прикладных... .


  • - Модель взаимодействия открытых систем. Характеристика уровней.

    Эталонная модель взаимодействия открытых систем состоит из семи уровней: 1. Физический уровень – базовый уровень в иерархии протоколов модели взаимодействия открытых систем. Назначение физического уровня состоит в обеспечении механических, электрических,... .


  • - Модель взаимодействия открытых систем

    Основной задачей, решаемой при создании компьютерных сетей, является обеспечение совместимости оборудования по электрическим и механическим характеристикам и обеспечение совместимости информационных ресурсов (программ и данных) по системе кодирования и формату... .


  • - Модель взаимодействия открытых систем

    Открытая система – система, доступная для взаимодействия с другими системами в соответствии с принятыми стандартами. В настоящее время модель взаимодействия открытых систем является наиболее популярной сетевой архитектурной моделью. В общем случае сеть должна иметь... .


  • - Тема 9. Модель взаимодействия открытых систем OSI

    Контрольные вопросы 1. Перечислите способы соединения компьютеров и виды сетей. 2. Что представляет собой временная (простейшая) компьютерная сеть? 3. Что такое нуль-модем? 4. Назначение выделенных каналов связи. Как они реализуются физически? 5. Что называется... .


  • - Эталонная модель взаимодействия открытых систем

    Обмен информацией в телекоммуникационных сетях осуществляться по определенным, заранее оговоренным правилам (стандартам). Эти правила разрабатываются рядом международных организаций. Взаимодействие в современных телекоммуникационных сетях организуется в... .


  • В начале 80-х годов ряд международных организаций разработали модель, которая сыграла значительную роль в развитии сетей. Эта модель называется моделью взаимодействия открытых систем (Open System Interconnection). Полное описание этой модели занимает более 1000 страниц текста.

    Согласно модели OSI весь процесс взаимодействия систем в сети можно представить как иерархию 7 уровней:

    7. Прикладной уровень (Application).

    6. Представительский уровень (Presentation)

    5. Сеансовый уровень (Sission).

    4. Транспортный уровень (Transport). 3. Сетевой уровень (Network). 2. Канальный уровень (Data Link). 1. Физический уровень (Physical).

    Перед подачей в сеть данные разбиваются на пакеты, часто называемые кадрами. Пакет (кадр) - это элементарная порция информации, передаваемая между узлами сети как единое целое. Пакет проходит через все уровни, и каждый уровень добавляет к пакету заголовки - некоторую служебную информацию. Когда пакет доходит до физического уровня, он обрастает заголовками всех уровней. Физический уровень передает пакет, вместе с заголовками, по линиям связи машине-адресату.

    Когда сообщение по сети поступает на машину-адресат, оно принимается ее физическим уровнем и последовательно перемещается вверх с уровня на уровень. Каждый уровень анализирует и обрабатывает заголовок своего уровня, выполняя соответствующие данному уровню функции, а затем удаляет этот заголовок и передает сообщение вышележащему уровню.

    Правила взаимодействия в пределах одного уровня называют протоколом взаимодействия. Правила взаимодействия сетевых уровней называют межуровневым интерфейсом. Таким образом, взаимодействие в сети на одном уровне определяется протоколом, а соседние по вертикали уровни взаимодействуют друг с другом через межуровневый интерфейс.

    Задача каждого низшего уровня, например N-1, состоит в обеспечении функционирования более высокого уровня N-2.

    В модели OSI различают два вида диалога между узлами для передачи информации.

    1. Диалог с установлением соединения. При его использовании перед обменом данными отправитель и получатель должны сначала установить соединение. После завершения диалога они должны разорвать это соединение. Телефон - это пример взаимодействия, основанного на установлении соединения.

    2. Диалог без предварительного установления соединения (дейтаграммный диалог). В этом случае отправитель передает сообщение, когда оно готово. Опускание письма в почтовый ящик - пример.

    1. Физический уровень - имеет дело с передачей битов по физическим каналам связи, такими например, как коаксиальный кабель, витая пара, оптоволоконный кабель и другие. К этому уровню имеют отношение характеристике и физических сред передачи данных, такие как помехозащищенность, волновое сопротивление и др. На этом же уровне определяются характеристики электрических сигналов, передающих информацию: уровни напряжения или тока передаваемого сигнала, тип кодирования скорость передачи сигнала.Функции физического уровня реализуются во всех устройствах, подключенных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером.

    2. Канальный уровень. На физическом уровне просто пересылаются биты. При этом не учитывается, что в некоторых сетях, в которых линии связи используются попеременно несколькими парами, взаимодействующих компьютеров, физическая среда передачи может быть занята. Поэтому одной из задач канального уровня является проверка доступности среды передачи. Другой задачей канального уровня является реализация механизмов обнаружения и коррекции ошибок. Для этого на канальном уровне биты группируются в наборы, называемые кадрами. Канальный уровень обеспечивает корректность передачи каждого кадра, помещая специальную последовательность бит в начало и конец каждого кадра, для его выделения, а также вычисляет контрольную сумму, обрабатывая все байты кадра определенным способом, и добавляя контрольную сумму. Когда кадр приходит по сети, получатель снова вычисляет контрольную сумму полученных данных и сравнивает результат с контрольной суммой из кадра. Если они совпадают, то кадр считается правильным и принимается. Если же контрольные суммы не совпадают, то фиксируется ошибка. Канальный уровень может не только обнаруживать ошибки но и исправлять их за счет повторной передачи поврежденных кадров.

    3. Сетевой уровень. Сетевой уровень служит для образования единой транспортной системы, объединяющей несколько сетей.

    Протоколы канального уровня обеспечивают доставку данных между любыми двумя узлами в сетях с определенной топологией: общая шина, звезда, кольцо. Для доставки сообщений из сети с одной топологией в сеть с другой топологией (из одной локальной сети в другую) используются протоколы сетевого уровня. Сети соединяются между собой специальными устройствами - маршрутизаторами. Чтобы передать сообщение от отправителя, находящегося в одной сети, получателю находящемуся в другой сети, нужно совершить некоторое количество транзитных передач между сетями (хотов), каждый раз, выбирая подходящий маршрут. Таким образом, маршрут - последовательность маршрутизаторов, через которые проходит пакет.

    Проблема выбора наилучшего пути называется маршрутизацией - одна из главных задач сетевого уровня. Это проблема усложняется тем, что самый короткий путь не всегда лучший. Критериями при выборе маршрута являются: время, скорость передачи данных, надежность передачи.

    Сетевой уровень решает также задачи упрощения адресации в крупных сетях, создание надежных и гибких барьеров на пути нежелательного трафика между сетями.

    Трафик - это объем информации, передаваемый по сети.

    Адрес получателя на сетевом уровне состоит из старшей части - номера сети и младшей - номера узла в этой сети. Все узлы в одной сети должны иметь одну и туже старшую часть адреса. Поэтому сеть на сетевом уровне - это совокупность узлов, сетевой адрес которых содержит один и тот же номер сети.

    4. Транспортный уровень. На пути от отправителя к получателю пакеты могут быть искажены или утеряны. Транспортный уровень обеспечивает верхним уровням - прикладному и сеансовому - передачу данных с той степенью надежности, которая им требуется. Модель OSI определяет 5 классов сервиса, отличающихся качеством предоставляемых услуг.

    Выбор класса сервиса зависит от того, насколько надежной является система транспортировки данных в сети, обеспечиваемая уровнями, расположенными ниже транспортного. Например, если качество каналов передачи данных очень высокое и вероятность возникновения ошибок невелика, то разумно воспользоваться одним из облегченных сервисов. Если же транспортные средства нихних уровней изначально очень ненадежны, то целесообразно обратиться к наиболее развитому сервису транспортного сервиса.

    5. Сеансовый уровень - обеспечивает управление диалогом: фиксирует какая из сторон является активной в настоящий момент, предоставляет средства синхронизации. Последние позволяют вставлять контрольные точки в длинные передачи, чтобы в случае отказа можно было вернуться назад к последней контрольной точке, а не начинать все сначала.

    6. Представительный уровень имеет дело с формой представления передаваемой по сети информации, не меняя при этом ее содержание. За счет этого уровня информация, передаваемая прикладным уровнем одной системы, всегда понятна прикладному уровню другой системы. На этом уровне преодалеваются различия в представлении данных, кодах символов (например, ASCII и EBCDIC). На этомуровне также может выполняться шифрование и дешифрование данных, для обеспечения секретности передаваемой информации.

    7. Прикладной уровень - это просто набор разнообразных протоколов, с помощью которых пользователи сети получают доступ к разделяемым ресурсам, таким как файлы, принтеры и др., а также организуют свою совместную работу.

    Сетевая модель OSI (англ.open systems interconnection basic reference model - базовая эталонная модельвзаимодействия открытых систем) -сетевая модельстекасетевых протоколовOSI/ISO.

    В связи с затянувшейся разработкой протоколов OSI, в настоящее время основным используемым стеком протоколов является TCP/IP, он был разработан ещё до принятия модели OSI и вне связи с ней.

    Модель OSI

    Тип данных

    Уровень (layer)

    Функции

    7. Прикладной (application)

    Доступ к сетевым службам

    6. Представительский (presentation)

    Представление и шифрование данных

    5. Сеансовый (session)

    Управление сеансом связи

    Сегменты / Дейтаграммы

    4. Транспортный (transport)

    Прямая связь между конечными пунктами и надежность

    3. Сетевой (network)

    Определение маршрута и логическая адресация

    2. Канальный (data link)

    Физическая адресация

    1. Физический (physical)

    Работа со средой передачи, сигналами и двоичными данными

    Уровни модели osi

    В литературе наиболее часто принято начинать описание уровней модели OSI с 7-го уровня, называемого прикладным, на котором пользовательские приложения обращаются к сети. Модель OSI заканчивается 1-м уровнем - физическим, на котором определены стандарты, предъявляемые независимыми производителями к средам передачи данных:

      тип передающей среды (медный кабель, оптоволокно, радиоэфир и др.),

      тип модуляции сигнала,

      сигнальные уровни логических дискретных состояний (нуля и единицы).

    Любой протокол модели OSI должен взаимодействовать либо с протоколами своего уровня, либо с протоколами на единицу выше и/или ниже своего уровня. Взаимодействия с протоколами своего уровня называются горизонтальными, а с уровнями на единицу выше или ниже - вертикальными. Любой протокол модели OSI может выполнять только функции своего уровня и не может выполнять функций другого уровня, что не выполняется в протоколах альтернативных моделей.

    Каждому уровню с некоторой долей условности соответствует свой операнд - логически неделимый элемент данных, которым на отдельном уровне можно оперировать в рамках модели и используемых протоколов: на физическом уровне мельчайшая единица - бит, на канальном уровне информация объединена в кадры, на сетевом - в пакеты (датаграммы), на транспортном - в сегменты. Любой фрагмент данных, логически объединённых для передачи - кадр, пакет, датаграмма - считается сообщением. Именно сообщения в общем виде являются операндами сеансового, представительского и прикладного уровней.

    К базовым сетевым технологиям относятся физический и канальный уровни.

    Прикладной уровень

    Прикладной уровень (уровень приложений) - верхний уровень модели, обеспечивающий взаимодействие пользовательских приложений с сетью:

      позволяет приложениям использовать сетевые службы:

      • удалённый доступ к файлам и базам данных,

        пересылка электронной почты;

      отвечает за передачу служебной информации;

      предоставляет приложениям информацию об ошибках;

      формирует запросы к уровню представления.

    Протоколы прикладного уровня: RDP HTTP (HyperText Transfer Protocol), SMTP (Simple Mail Transfer Protocol), SNMP (Simple Network Management Protocol), POP3 (Post Office Protocol Version 3), FTP (File Transfer Protocol), XMPP, OSCAR,Modbus, SIP,TELNETи другие.

    Представительский уровень

    Представительский уровень (уровень представления; англ.presentation layer ) обеспечивает преобразование протоколов и шифрование/дешифрование данных. Запросы приложений, полученные с прикладного уровня, на уровне представления преобразуются в формат для передачи по сети, а полученные из сети данные преобразуются в формат приложений. На этом уровне может осуществляться сжатие/распаковка или кодирование/декодирование данных, а также перенаправление запросов другому сетевому ресурсу, если они не могут быть обработаны локально.

    Уровень представлений обычно представляет собой промежуточный протокол для преобразования информации из соседних уровней. Это позволяет осуществлять обмен между приложениями на разнородных компьютерных системах прозрачным для приложений образом. Уровень представлений обеспечивает форматирование и преобразование кода. Форматирование кода используется для того, чтобы гарантировать приложению поступление информации для обработки, которая имела бы для него смысл. При необходимости этот уровень может выполнять перевод из одного формата данных в другой.

    Уровень представлений имеет дело не только с форматами и представлением данных, он также занимается структурами данных, которые используются программами. Таким образом, уровень 6 обеспечивает организацию данных при их пересылке.

    Чтобы понять, как это работает, представим, что имеются две системы. Одна использует для представления данных расширенный двоичный код обмена информацией EBCDIC, например, это может бытьмейнфреймкомпанииIBM, а другая - американский стандартный код обмена информациейASCII(его используют большинство других производителей компьютеров). Если этим двум системам необходимо обменяться информацией, то нужен уровень представлений, который выполнит преобразование и осуществит перевод между двумя различными форматами.

    Другой функцией, выполняемой на уровне представлений, является шифрование данных, которое применяется в тех случаях, когда необходимо защитить передаваемую информацию от приема несанкционированными получателями. Чтобы решить эту задачу, процессы и коды, находящиеся на уровне представлений, должны выполнить преобразование данных.

    Стандарты уровня представлений также определяют способы представления графических изображений. Для этих целей может использоваться формат PICT- формат изображений, применяемый для передачи графики QuickDraw между программами. Другим форматом представлений является тэгированный формат файлов изображенийTIFF, который обычно используется для растровых изображений с высокимразрешением. Следующим стандартом уровня представлений, который может использоваться для графических изображений, является стандартJPEG.

    Существует другая группа стандартов уровня представлений, которая определяет представление звука и кинофрагментов. Сюда входят интерфейс электронных музыкальных инструментов (MIDI) для цифрового представления музыки, разработанный Экспертной группой по кинематографии стандартMPEG.

    Протоколы уровня представления: AFP - Apple Filing Protocol, ICA -Independent Computing Architecture, LPP - Lightweight Presentation Protocol, NCP -NetWare Core Protocol, NDR -Network Data Representation, XDR -eXternal Data Representation, X.25 PAD -Packet Assembler/Disassembler Protocol.

    Сеансовый уровень

    Сеансовый уровень (англ.session layer ) модели обеспечивает поддержание сеанса связи, позволяя приложениям взаимодействовать между собой длительное время. Уровень управляет созданием/завершением сеанса, обменом информацией, синхронизацией задач, определением права на передачу данных и поддержанием сеанса в периоды неактивности приложений.

    Протоколы сеансового уровня: ADSP, ASP, H.245, ISO-SP (OSI Session Layer Protocol (X.225, ISO 8327)), iSNS, L2F, L2TP, NetBIOS, PAP (Password Authentication Protocol), PPTP, RPC, RTCP, SMPP, SCP (Session Control Protocol), ZIP (Zone Information Protocol), SDP (Sockets Direct Protocol)..

    Транспортный уровень

    Транспортный уровень (англ.transport layer ) модели предназначен для обеспечения надёжной передачи данных от отправителя к получателю. При этом уровень надёжности может варьироваться в широких пределах. Существует множество классов протоколов транспортного уровня, начиная от протоколов, предоставляющих только основные транспортные функции (например, функции передачи данных без подтверждения приема), и заканчивая протоколами, которые гарантируют доставку в пункт назначения нескольких пакетов данных в надлежащей последовательности, мультиплексируют несколько потоков данных, обеспечивают механизм управления потоками данных и гарантируют достоверность принятых данных. Например, UDPограничивается контролем целостности данных в рамках одной датаграммы и не исключает возможности потери пакета целиком или дублирования пакетов, нарушения порядка получения пакетов данных;TCPобеспечивает надёжную непрерывную передачу данных, исключающую потерю данных или нарушение порядка их поступления или дублирования, может перераспределять данные, разбивая большие порции данных на фрагменты и, наоборот, склеивая фрагменты в один пакет.

    Протоколы транспортного уровня: ATP, CUDP, DCCP, FCP, IL, NBF, NCP, RTP, SCTP, SPX, SST, TCP (Transmission Control Protocol), UDP (User Datagram Protocol).

    Сетевой уровень

    Сетевой уровень (англ.network layer ) модели предназначен для определения пути передачи данных. Отвечает за трансляцию логических адресов и имён в физические, определение кратчайших маршрутов, коммутацию и маршрутизацию, отслеживание неполадок и «заторов» в сети.

    Протоколы сетевого уровня маршрутизируют данные от источника к получателю. Работающие на этом уровне устройства (маршрутизаторы) условно называют устройствами третьего уровня (по номеру уровня в модели OSI).

    Протоколы сетевого уровня: IP/IPv4/IPv6 (Internet Protocol), IPX, X.25, CLNP (сетевой протокол без организации соединений), IPsec (Internet Protocol Security). Протоколы маршрутизации - RIP, OSPF.

    Канальный уровень

    Канальный уровень (англ.data link layer ) предназначен для обеспечения взаимодействия сетей по физическому уровню и контролем над ошибками, которые могут возникнуть. Полученные с физического уровня данные, представленные в битах, он упаковывает в кадры, проверяет их на целостность и, если нужно, исправляет ошибки (формирует повторный запрос поврежденного кадра) и отправляет на сетевой уровень. Канальный уровень может взаимодействовать с одним или несколькими физическими уровнями, контролируя и управляя этим взаимодействием.

    Спецификация IEEE 802разделяет этот уровень на два подуровня:MAC(англ.media access control ) регулирует доступ к разделяемой физической среде, LLC(англ.logical link control ) обеспечивает обслуживание сетевого уровня.

    На этом уровне работают коммутаторы,мостыи другие устройства. Эти устройства используют адресацию второго уровня (по номеру уровня в модели OSI).

    Протоколы канального уровня- ARCnet,ATMEthernet,Ethernet Automatic Protection Switching(EAPS),IEEE 802.2,IEEE 802.11wireless LAN,LocalTalk, (MPLS),Point-to-Point Protocol(PPP),Point-to-Point Protocol over Ethernet(PPPoE),StarLan,Token ring,Unidirectional Link Detection(UDLD),x.25.

    Физический уровень

    Физический уровень (англ.physical layer ) - нижний уровень модели, который определяет метод передачи данных, представленных в двоичном виде, от одного устройства (компьютера) к другому. Осуществляют передачу электрических или оптических сигналов в кабель или в радиоэфир и, соответственно, их приём и преобразование в биты данных в соответствии с методами кодирования цифровых сигналов.

    На этом уровне также работают концентраторы,повторителисигнала имедиаконвертеры.

    Функции физического уровня реализуются на всех устройствах, подключенных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером или последовательным портом. К физическому уровню относятся физические, электрические и механические интерфейсы между двумя системами. Физический уровень определяет такие виды сред передачи данных как оптоволокно,витая пара,коаксиальный кабель, спутниковый канал передач данных и т. п. Стандартными типами сетевых интерфейсов, относящимися к физическому уровню, являются:V.35,RS-232,RS-485, RJ-11,RJ-45, разъемыAUIиBNC.

    Протоколы физического уровня: IEEE 802.15 (Bluetooth),IRDA,EIARS-232,EIA-422,EIA-423,RS-449,RS-485,DSL,ISDN,SONET/SDH,802.11Wi-Fi,Etherloop,GSMUm radio interface,ITUиITU-T,TransferJet,ARINC 818,G.hn/G.9960.

    Семейство TCP/IP

    Семейство TCP/IPимеет три транспортных протокола: TCP, полностью соответствующий OSI, обеспечивающий проверку получения данных;UDP, отвечающий транспортному уровню только наличием порта, обеспечивающий обмендатаграммамимежду приложениями, не гарантирующий получения данных; иSCTP, разработанный для устранения некоторых недостатков TCP, в который добавлены некоторые новшества. (В семействе TCP/IP есть ещё около двухсот протоколов, самым известным из которых является служебный протоколICMP, используемый для внутренних нужд обеспечения работы; остальные также не являются транспортными протоколами).

    Семейство IPX/SPX

    В семействе IPX/SPXпорты (называемые сокетами или гнёздами) появляются в протоколе сетевого уровня IPX, обеспечивая обмендатаграммамимежду приложениями (операционная система резервирует часть сокетов для себя). Протокол SPX, в свою очередь, дополняет IPX всеми остальными возможностями транспортного уровня в полном соответствии с OSI.

    В качестве адреса хоста IPX использует идентификатор, образованный из четырёхбайтного номера сети (назначаемого маршрутизаторами) и MAC-адреса сетевого адаптера.

    Модель TCP/IP (5 уровней)

      Прикладной (5) уровень (Application Layer) или уровень приложений обеспечивает услуги, непосредственно поддерживающие приложения пользователя, например, программные средства передачи файлов, доступа к базам данных, средства электронной почты, службу регистрации на сервере. Этот уровень управляет всеми остальными уровнями. Например, если пользователь работает с электронными таблицами Excel и решает сохранить рабочий файл в своей директории на сетевом файл-сервере, то прикладной уровень обеспечивает перемещение файла с рабочего компьютера на сетевой диск прозрачно для пользователя.

      Транспортный (4) уровень (Transport Layer) обеспечивает доставку пакетов без ошибок и потерь, а также в нужной последовательности. Здесь же производится разбивка на блоки передаваемых данных, помещаемые в пакеты, и восстановление принимаемых данных из пакетов. Доставка пакетов возможна как с установлением соединения (виртуального канала), так и без. Транспортный уровень является пограничным и связующим между верхними тремя, сильно зависящими от приложений, и тремя нижними уровнями, сильно привязанными к конкретной сети.

      Сетевой (3) уровень (Network Layer) отвечает за адресацию пакетов и перевод логических имен (логических адресов, например, IP-адресов или IPX-адресов) в физические сетевые MAC-адреса (и обратно). На этом же уровне решается задача выбора маршрута (пути), по которому пакет доставляется по назначению (если в сети имеется несколько маршрутов). На сетевом уровне действуют такие сложные промежуточные сетевые устройства, как маршрутизаторы.

      Канальный (2) уровень или уровень управления линией передачи (Data link Layer) отвечает за формирование пакетов (кадров) стандартного для данной сети (Ethernet, Token-Ring, FDDI) вида, включающих начальное и конечное управляющие поля. Здесь же производится управление доступом к сети, обнаруживаются ошибки передачи путем подсчета контрольных сумм, и производится повторная пересылка приемнику ошибочных пакетов. Канальный уровень делится на два подуровня: верхний LLC и нижний MAC. На канальном уровне работают такие промежуточные сетевые устройства, как, например, коммутаторы.

      Физический (1) уровень (Physical Layer) – это самый нижний уровень модели, который отвечает за кодирование передаваемой информации в уровни сигналов, принятые в используемой среде передачи, и обратное декодирование. Здесь же определяются требования к соединителям, разъемам, электрическому согласованию, заземлению, защите от помех и т.д. На физическом уровне работают такие сетевые устройства, как трансиверы, репитеры и репитерные концентраторы.

    Модель взаимодействия открытых систем (Open System Interconnection, OSI) или моделью ISO/OSI четко определяет различные уровни взаимодействия систем, дает им стандартные имена и указывает, какую работу должен делать каждый уровень.

    В модели OSI взаимодействие делится на семь уровней или слоев. Каждый уровень имеет дело с одним определенным аспектом взаимодействия. Таким образом, проблема взаимодействия разделена на 7 частных проблем , каждая из которых может быть решена независимо от других. Каждый уровень поддерживает интерфейсы с выше- и нижележащими уровнями.

    Итак, пусть приложение обращается с запросом к прикладному уровню, например к файловому сервису. На основании этого запроса программное обеспечение прикладного уровня формирует сообщение стандартного формата, в которое помещает служебную информацию (заголовок) и, возможно, передаваемые данные. Затем это сообщение направляется представительному уровню. Представительный уровень добавляет к сообщению свой заголовок и передает результат вниз сеансовому уровню, который в свою очередь добавляет свой заголовок и т.д. Некоторые реализации протоколов предусматривают наличие в сообщении не только заголовка, но и концевика. Наконец, сообщение достигает самого низкого, физического уровня, который действительно передает его по линиям связи.

    Когда сообщение по сети поступает на другую машину, оно последовательно перемещается снизу вверх с уровня на уровень. Каждый уровень анализирует, обрабатывает и удаляет заголовок своего уровня , выполняет соответствующие данному уровню функции и передает сообщение вышележащему уровню.

    Функции уровней модели ISO/OSI

    ФИЗИЧЕСКИЙ УРОВЕНЬ. Этот уровень имеет дело с передачей битов по коаксиальному кабелю, витой паре или оптике.

    Характеристики физических сред передачи данных: полоса пропускания, помехозащищенность, волновое сопротивление и другие.

    На этом же уровне определяются характеристики электрических сигналов , такие как требования к уровням напряжения или тока передаваемого сигнала, тип кодирования, скорость передачи сигналов. Кроме этого, здесь стандартизуются типы разъемов и назначение каждого контакта . Со стороны компьютера функции физического уровня выполняются сетевым адаптером или последовательным портом.

    КАНАЛЬНЫЙ УРОВЕНЬ. На физическом уровне просто пересылаются биты. При этом не учитывается, что физическая среда передачи может быть занята. Поэтому одной из задач канального уровня является проверка доступности среды передачи . Другой задачей канального уровня является реализация механизмов обнаружения и коррекции ошибок . Для этого на канальном уровне биты группируются в наборы , называемые кадрами.



    Канальный уровень обеспечивает корректность передачи каждого кадра , помещая специальную последовательность бит в начало и конец каждого кадра, чтобы отметить его, а также вычисляет контрольную сумму и добавляет контрольную сумму к кадру. Когда кадр приходит, получатель снова вычисляет контрольную сумму полученных данных и сравнивает результат с контрольной суммой из кадра. Если они совпадают, кадр считается правильным и принимается. Если же контрольные суммы не совпадают, то фиксируется ошибка.

    Хотя канальный уровень и обеспечивает доставку кадра между любыми двумя узлами локальной сети, он это делает только в сети с совершенно определенной топологией связей - кольцо, звезда или шина.

    В компьютерах функции канального уровня реализуются совместными усилиями сетевых адаптеров и их драйверов .

    СЕТЕВОЙ УРОВЕНЬ. Этот уровень служит для образования единой транспортной системы , объединяющей несколько сетей с различными принципами передачи информации между конечными узлами.

    "Сеть" -совокупность компьютеров, соединенных между собой в соответствии с одной из стандартных типовых топологий и использующих для передачи данных один из протоколов канального уровня, определенный для этой топологии .

    Главная задача сетевого уровня – выбор наилучшего маршрута . Зависит от: времени передачи данных по этому маршруту, пропускной способности каналов связи, интенсивности трафика, надежности передачи.

    На сетевом уровне определяется два вида протоколов. Первый вид относится к определению правил передачи пакетов с данными конечных узлов от узла к маршрутизатору и между маршрутизаторами. Именно эти протоколы обычно имеют в виду, когда говорят о протоколах сетевого уровня. К сетевому уровню относят и другой вид протоколов, называемых протоколами обмена маршрутной информацией . С помощью этих протоколов маршрутизаторы собирают информацию о топологии межсетевых соединений.

    Протоколы сетевого уровня реализуются программными модулями операционной системы, а также программными и аппаратными средствами маршрутизаторов.

    ТРАНСПОРТНЫЙ УРОВЕНЬ. Работа транспортного уровня заключается в том, чтобы обеспечить приложениям или верхним уровням стека - прикладному и сеансовому - передачу данных с той степенью надежности , которая им требуется. Модель OSI определяет пять классов сервиса, предоставляемых транспортным уровнем. Эти виды сервиса отличаются качеством предоставляемых услуг: срочностью, возможностью восстановления прерванной связи, наличием средств мультиплексирования нескольких соединений между различными прикладными протоколами через общий транспортный протокол, а главное - способностью к обнаружению и исправлению ошибок передачи, таких как искажение, потеря и дублирование пакетов.

    СЕАНСОВЫЙ УРОВЕНЬ. Сеансовый уровень обеспечивает управление диалогом для того, чтобы фиксировать, какая из сторон является активной в настоящий момент, а также предоставляет средства синхронизации. Последние позволяют вставлять контрольные точки в длинные передачи, чтобы в случае отказа можно было вернуться назад к последней контрольной точке, вместо того, чтобы начинать все с начала. На практике немногие приложения используют сеансовый уровень, и он редко реализуется.

    УРОВЕНЬ ПРЕДСТАВЛЕНИЯ. Этот уровень обеспечивает гарантию того, что информация, передаваемая прикладным уровнем, будет понятна прикладному уровню в другой системе. При необходимости уровень представления выполняет преобразование форматов данных в некоторый общий формат представления, а на приеме, соответственно, выполняет обратное преобразование. Таким образом, прикладные уровни могут преодолеть, например, синтаксические различия в представлении данных. На этом уровне может выполняться шифрование и дешифрование данных, благодаря которому секретность обмена данными обеспечивается сразу для всех прикладных сервисов.

    ПРИКЛАДНОЙ УРОВЕНЬ. Прикладной уровень - это в действительности просто набор разнообразных протоколов, с помощью которых пользователи сети получают доступ к разделяемым ресурсам, таким как файлы, принтеры или гипертекстовые Web-страницы, а также организуют свою совместную работу, например, с помощью протокола электронной почты. Единица данных, которой оперирует прикладной уровень, обычно называется сообщением (message) .

    Разные уровни протоколов сервера и клиента не взаимодействуют друг с другом напрямую, но они взаимодействуют через физический уровень. Постепенно переходя с верхнего уровня на нижний, данные непрерывно преобразуются, дополняются данными, которые анализируются протоколами соответствующих уровней на сопредельной стороне. Это создает эффект виртуального взаимодействия уровней между собой. Одновременно с данными, которые клиент направляет серверу, передается масса служебной информации (текущий адрес клиента, дата и время запроса, версия операционной системы, права доступа к запрашиваемым данным и т.д.).

    На виртуальных соединениях основаны все службы современного Интернета. Пересылка сообщения от сервера к клиенту может проходить через десятки различных компьютеров. Это совсем не означает, что на каждом компьютере сообщение должно пройти через все уровни - ему достаточно «подняться» до сетевого уровня, (определяющего адресацию) при приеме и вновь «опуститься» до физического уровня при передаче. В данном случае служба передачи сообщений основывается на виртуальном соединении сетевого уровня и соответствующих ему протоколах. Интернет - это объединение сетей (Всемирная компьютерная сеть). Интернет можно рассматривать в физическом смысле как миллионы компьютеров, связанных друг с другом всевозможными линиями связи, образуя информационное «пространство», внутри которого осуществляется непрерывное движение потоков информации, которая перемешается между компьютерами, составляющими узлы сети, и какое-то время хранится на их жестких дисках.

    Современный Интернет основан на использовании протоколов TCP/IP. TCP/IP - это не один сетевой протокол, а два протокола, лежащих на разных уровнях. Протокол TCP- протокол транспортного уровня. Он управляет тем. как происходит передача информации. Протокол IP - адресный. Он принадлежит сетевому уровню и определяет, куда происходит передача.

    Согласно протоколу TCP, отправляемые данные «нарезаются» на небольшие пакеты, после чего каждый пакет маркируется таким образом, чтобы в нем были данные, необходимые для правильной сборки документа на компьютере получателя. Два компьютера, связанные между собой одним физическим соединением, могут поддерживать одновременно несколько ТСР-соединений точно также как два сервера могут одновременно по одной линии связи передавать друг другу в обе стороны множество TCP-пакетов от многочисленных клиентов.

    Суть протокола - IP (Internet Protocol) состоит в том, что у каждого участника Всемирной сети должен быть свой уникальный адрес (IP-адрес). Без этого нельзя говорить о точной доставке TCP-пакетов на нужное рабочее место. Этот адрес выражается очень просто - четырьмя байтами, например: 195.38.46.11. Структура IP-адреса организована так, что каждый компьютер, через который проходит какой-либо TCP-пакет, может по этим четырем числам определить, кому из ближайших «соседей» надо переслать пакет, чтобы он оказался «ближе» к получателю. В результате конечного числа перебросок ТСР-пакет достигает адресата. В расчет принимаются условия связи и пропускная способность линии. Решением вопросов, что считать «ближе», а что «дальше», занимаются специальные средства - маршрутизаторы Роль маршрутизатора в сети может выполнять как специализированный компьютер, так и специальная программа, работающая на узловом сервере сети.

    Поскольку один байт содержит до 256 различных значений, то теоретически с помощью четырех байтов можно выразить более четырех миллиардов уникальных IP -адресов (256 за вычетом некоторого количества адресов, используемых в качестве служебных). На практике же из-за особенностей адресации к некоторым типам локальных сетей количество возможных адресов составляет порядка двух миллиардов, но и это по современным меркам достаточно большая величина.

    В зависимости от конкретных целей и задач клиенты Сети используют те службы, которые им необходимы. Разные службы имеют разные протоколы. Они называются прикладными протоколами. Их соблюдение обеспечивается и поддерживается работой специальных программ. Таким образом, чтобы воспользоваться какой-то из служб Интернета, необходимо установить на компьютере программу, способную работать по протоколу данной службы. Такие программы называют клиентскими или просто клиентами.

    Для передачи файлов в Интернете используется специальный прикладной протокол FTP (File Transfer Protocol). Соответственно, чтобы получить из Интернета файл, необходимо:

    Иметь на компьютере программу, являющуюся клиентом FTP (FTP-клиент);

    Установить связь с сервером, предоставляющим услуги FTP (FTP-сервером).

    Другой пример: чтобы воспользоваться электронной почтой, необходимо соблюсти протоколы отправки и получения сообщений. Для этого надо иметь программу (почтовый клиент) и установить связь с почтовым сервером. Так же обстоит дело и с другими службами.