Генератор высокой частоты своими руками схема. Схемы генераторов высокой частоты

РадиоМир 2008 №9

Предлагаемый ВЧ-генератор является попыткой заменить громоздкий промышленный Г4-18А более малогабаритным и надёжным прибором.

Обычно при ремонте и налаживании КВ-аппаратуры необходимо "уложить" КВ-диапазоны с помощью LC-контуров, проверить прохождение сигнала по ВЧ- и ПЧ-тракту, настроить отдельные контура в резонанс и т.д. Чувствительность, избирательность, динамический диапазон и другие важные параметры КВ-устройств определяются схемотехническими решениями, так что для домашней лаборатории не обязательно иметь многофункциональный и дорогой ВЧ-генератор. Если генератор имеет достаточно стабильную частоту с "чистой синусоидой", значит, он подходит радиолюбителю. Конечно, считаем, что в арсенал лаборатории также входят частотомер, ВЧ-вольтметр и тестер. К сожалению, большинство испробованных мной схем ВЧ-генераторов КВ-диапазона выдавало очень искажённую синусоиду, улучшить которую без неоправданного усложнения схемы не удавалось. ВЧ-генератор, собранный по приведённой на рис.1 схеме, зарекомендовал себя очень хорошо (получалась практически чистая синусоида во всём КВ-диапазоне). За основу взята схема из . В моей схеме вместо настройки контуров варикапом применён КПЕ, а индикаторная часть схемы не используется.

В данной конструкции использован конденсатор переменной ёмкости типа КПВ-150 и малогабаритный переключатель диапазонов ПМ (11П1Н). С данным КПЕ (10...150 пФ) и катушками индуктивности L2...L5 перекрывается участок КВ-диапазона 1,7...30 МГц. По ходу работы над конструкцией были добавлены ещё три контура (L1, L6 и L7) на верхний и нижний участки диапазона. В экспериментах с КПЕ ёмкостью до 250 пФ весь КВ-диапазон перекрывался тремя контурами.

ВЧ-генератор собран на печатной плате из фольгированного стеклотекстолита толщиной 2 мм и размерами 50x80 мм (рис.2). Дорожки и монтажные "пятачки" вырезаны ножом и резаком. Фольга вокруг деталей не удаляется, а используется вместо "земли". На рисунке печатной платы для наглядности эти участки фольги условно не показаны. Конечно, можно изготовить и печатную плату, приведённую в .

Вся конструкция генератора вместе с блоком питания (отдельная плата со стабилизатором напряжения на 9 В по любой схеме) размещена на дюралевом шасси и помещена в металлический корпус подходящих размеров. Я использовал кассету от старой аппаратуры с размерами 130x150x90 мм. На переднюю панель выводятся ручка переключателя диапазонов, ручка настройки КПЕ, малогабаритный ВЧ-разъём (50-Омный) и светодиодный индикатор включения в сеть. При необходимости можно установить регулятор выходного уровня (переменный резистор сопротивлением 430...510 Ом) и аттенюатор с дополнительным разъёмом, а также проградуированную шкалу.

В качестве каркасов катушек контуров использованы унифицированные секционные каркасы СВ и ДВ диапазонов от устаревших радиоприёмников. Количество витков каждой катушки зависит от ёмкости используемого КПЕ и первоначально берется "с запасом". При налаживании ("укладке" диапазонов) генератора часть витков отматывается. Контроль ведётся по частотомеру.

Катушка индуктивности L7 имеет ферритовый сердечник М600-3 (НН) Ш2,8х14. Экраны на катушки контуров не устанавливаются. Намоточные данные катушек, границы поддиапазонов и выходные уровни ВЧ-генератора приведены в таблице.

Диапазон, МГц

Количество витков

Провод (диаметер, мм)

Каркас, сердечник

Выходной уровень, В

Бескаркасная диаметром 6 мм. L=12 мм

Керамический диаметром 6 мм, L=12 мм

Унифицированный
3-секционный

Унифицированный
4-секционный

В схеме генератора, кроме указанных транзисторов, можно применить полевые КП303Е(Г), КП307 и биполярные ВЧ-транзисторы BF324, 25С9015, ВС557 и т.д. Блокировочные ёмкости желательно использовать импортные малогабаритные.

Конденсатор связи С5 ёмкостью 4,7...6,8 пФ - типа КМ, КТ, КА с малыми потерями по ВЧ. В качестве КПЕ очень желательно использовать высококачественные (на шарикоподшипниках), однако они дефицитны. Более доступны регулировочные КПЕ типа КПВ с максимальной ёмкостью 80...150 пФ, но они легко ломаются и имеют заметный "гистерезис" при вращении вперёд и назад.

Тем не менее, при жёстком монтаже, качественных деталях и прогреве генератора в течение 10...15 минут можно добиться "ухода" частоты не более 500 Гц в час на частотах 20...30 МГц (при стабильной температуре в помещении).

Форма сигнала и выходной уровень изготовленного ВЧ генератора проверялись по осциллографу С1-64А.

На заключительном этапе наладки все катушки индуктивности (кроме L1, которая припаяна одним концом к корпусу) закрепляются клеем вблизи переключателя диапазонов и КПЕ.

Литература:
1. Коротковолновый ГИР - Радио, 2006, №11, С.72.

А.ПЕРУЦКИЙ, г.Бендеры, Молдова.

Радиолюбителям необходимо получать различные радиосигналы. Для этого необходимо наличие нч и вч генератора. Зачастую такой тип приборов называют генератор на транзисторе за его конструктивную особенность.

Дополнительная информация. Генератор тока – это автоколебательное устройство, созданное и используемое для появления электрической энергии в сети или преобразования одного вида энергии в другой с заданной эффективностью.

Автоколебательные транзисторные приборы

Генератор на транзисторе разделяют на несколько видов:

  • по частотному диапазону выдаваемого сигнала;
  • по типу выдаваемого сигнала;
  • по алгоритму действия.

Частотный диапазон принято подразделять на следующие группы:

  • 30 Гц-300 кГц – низкий диапазон, обозначается нч;
  • 300 кГц-3 МГц – средний диапазон, обозначается сч;
  • 3-300 МГц – высокий диапазон, обозначается вч;
  • более 300 МГц – сверхвысокий диапазон, обозначается свч.

Так подразделяют диапазоны радиолюбители. Для звуковых частот используют промежуток 16 Гц-22 кГц и тоже делят его на низкие, средние и высокие группы. Эти частоты присутствуют в любом бытовом приёмнике звука.

Следующее разделение – по виду выдаваемого сигнала:

  • синусоидальный – происходит выдача сигнала по синусоиде;
  • функциональный – на выходе у сигналов появляется специально заданная форма, например, прямоугольная или треугольная;
  • генератор шума – на выходе наблюдается равномерный диапазон частот; диапазоны могут быть различны, в зависимости от нужд потребителя.

Транзисторные усилители различаются по алгоритму действия:

  • RC – основная область применения – низкий диапазон и звуковые частоты;
  • LC – основная область применения – высокие частоты;
  • Блокинг-генератор – используется для производства сигналов-импульсов с большой скважностью.

Изображение на электрических схемах

Для начала рассмотрим получение синусоидального типа сигнала. Самый известный генератор на транзисторе такого типа – генератор колебаний Колпитца. Это задающий генератор с одной индуктивностью и двумя последовательно соединёнными ёмкостями. С помощью него производится генерация требуемых частот. Оставшиеся элементы обеспечивают требуемый режим работы транзистора на постоянном токе.

Дополнительная информация. Эдвин Генри Колпитц – руководитель отдела инноваций «Вестерн Электрик» в начале прошлого века. Был пионером в разработке усилителей сигнала. Впервые произвёл радиотелефон, позволяющий разговаривать через Атлантику.

Также широко известен задающий генератор колебаний Хартли. Он, как и схема Колпитца, достаточно прост в сборке, однако требуется индуктивность с отводом. В схеме Хартли один конденсатор и две последовательно соединённые катушки индуктивности производят генерацию. Также в схеме присутствует дополнительная ёмкость для получения плюсовой обратной связи.

Основная область применения вышеописанных приборов – средние и высокие частоты. Используют для получения несущих частот, а также для генерации электрических колебаний малой мощности. Принимающие устройства бытовых радиостанций также используют генераторы колебаний.

Все перечисленные области применения не терпят нестабильного приёма. Для этого в схему вводят ещё один элемент – кварцевый резонатор автоколебаний. В этом случае точность высокочастотного генератора становится практически эталонной. Она достигает миллионных долей процента. В принимающих устройствах радиоприёмников для стабилизации приёма применяют исключительно кварц.

Что касается низкочастотных и звуковых генераторов, то здесь есть очень серьёзная проблема. Для увеличения точности настройки требуется увеличение индуктивности. Но увеличение индуктивности ведёт к нарастанию размеров катушки, что сильно сказывается на габаритах приёмника. Поэтому была разработана альтернативная схема генератора Колпитца – генератор низких частот Пирса. В ней индуктивность отсутствует, а на её месте применён кварцевый резонатор автоколебаний. Кроме того, кварцевый резонатор позволяет отсечь верхний предел колебаний.

В такой схеме ёмкость не даёт постоянной составляющей базового смещения транзистора дойти до резонатора. Здесь могут формироваться сигналы до 20-25 МГц, в том числе звуковые.

Производительность всех рассмотренных устройств зависит от резонансных свойств системы, состоящей из емкостей и индуктивностей. Отсюда следует, что частота будет определена заводскими характеристиками конденсаторов и катушек.

Важно! Транзистор – это элемент, произведённый из полупроводника. Имеет три вывода и способен от поданного входного сигнала небольшой величины управлять большим током на выходе. Мощность элементов бывает разная. Используется для усиления и коммутации электрических сигналов.

Дополнительная информация. Презентация первого транзистора была проведена в 1947 г. Его производная – полевой транзистор, появился в 1953г. В 1956г. за изобретение биполярного транзистора была вручена Нобелевская премия в области физики. К 80-м годам прошлого века электронные лампы были полностью вытеснены из радиоэлектроники.

Функциональный транзисторный генератор

Функциональные генераторы на транзисторах автоколебания изобретены для производства методично повторяющихся сигналов-импульсов заданной формы. Форма их задаётся функцией (название всей группы подобных генераторов появилось вследствие этого).

Различают три основных вида импульсов:

  • прямоугольные;
  • треугольные;
  • пилообразные.

Как пример простейшего нч производителя прямоугольных сигналов зачастую приводится мультивибратор. У него самая простая схема для сборки своими руками. Часто с её реализации начинают радио электронщики. Главная особенность – отсутствие строгих требований к номиналам и форме транзисторов. Это происходит из-за того, что скважность в мультивибраторе определяется емкостями и сопротивлениями в электрической цепи транзисторов. Частота на мультивибраторе находится в диапазоне от 1 Гц до нескольких десятков кГц. Высокочастотные колебания здесь организовать невозможно.

Получение пилообразных и треугольных сигналов происходит путём добавления в типовую схему с прямоугольными импульсами на выходе дополнительной цепочки. В зависимости от характеристик этой дополнительной цепочки, прямоугольные импульсы преобразуются в треугольные или пилообразные.

Блокинг-генератор

По своей сути, является усилителем, собранным на базе транзисторов, расположенных в один каскад. Область применения узка – источник внушительных, но скоротечных по времени (продолжительность от тысячных долей до нескольких десятков мкс) сигналов-импульсов с большой индуктивной плюсовой обратной связью. Скважность – больше 10 и может доходить до нескольких десятков тысяч в относительных величинах. Наблюдается серьезная резкость фронтов, по своей форме практически не отличающихся от геометрически правильных прямоугольников. Применяются в экранах электронно-лучевых приборов (кинескоп, осциллограф).

Генераторы импульсов на полевых транзисторах

Главное отличие полевых транзисторов – сопротивление на входе соизмеримо с сопротивлением электронных ламп. Схемы Колпитца и Хартли можно собирать и на полевых транзисторах, только катушки и конденсаторы необходимо подбирать с соответствующими техническими характеристиками. В противном случае генераторы на полевых транзисторах работать не будут.

Цепи, задающие частоту, подчиняются таким же законам. Для производства высокочастотных импульсов лучше приспособлен обычный прибор, собранный с использованием полевых транзисторов. Полевой транзистор не шунтирует индуктивность в схемах, поэтому генераторы вч сигнала работают более стабильно.

Регенераторы

LC-контур у генератора можно заменить путём добавления активного и отрицательного резистора. Это регенеративный путь получения усилителя. Такая схема обладает положительной обратной связью. Благодаря этому происходит компенсация потерь в колебательном контуре. Описанный контур называется регенерированным.

Генератор шума

Главное отличие – равномерная характеристика нч и вч частот в требуемом диапазоне. Это означает, что амплитудная характеристика всех частот этого диапазона не будет отличаться. Используются преимущественно в аппаратуре для измерений и в военной отрасли (особенно самолёто,- и ракетостроении). Кроме того, применяют для восприятия звука человеческим ухом – так называемый «серый» шум.

Простой звуковой генератор своими руками

Рассмотрим простейший пример – ревун. Понадобятся всего четыре элемента: плёночный конденсатор, 2 биполярных транзистора и резистор для подстройки. Нагрузкой будет электромагнитный излучатель. Для питания устройства достаточно простой батарейки на 9В. Работа схемы проста: резистор задаёт смещение на базу транзистора. Через конденсатор происходит обратная связь. Резистор для подстройки изменяет частоту. Нагрузка должна быть с высоким сопротивлением.

При всём многообразии типов, размеров и форм исполнения рассмотренных элементов мощных транзисторов для сверхвысоких частот до сих пор не придумано. Поэтому генераторы на транзисторах автоколебания применяют в основном для нч и вч диапазонов.

Видео


Высокочастотный генератор сигналов необходим при ремонте и настройке радиоприёмных устройств и потому довольно востребован. Имеющиеся на рынке лабораторные генераторы ещё советского производства имеют хорошие характеристики, как правило, избыточные для любительских целей, но стоят они довольно дорого и зачастую перед использованием требуют ремонта. Несложные генераторы иностранных производителей стоят ещё дороже и при этом не отличаются высокими параметрами. Это вынуждает радиолюбителей изготавливать такие устройства самостоятельно.

Генератор разработан как альтернатива простым промышленным приборам, аналогичным GRG-450B . Он работает во всех радиовещательных диапазонах, его изготовление не требует намотки катушек индуктивности и трудоёмкого налаживания. В приборе реализованы растянутые КВ-диапазоны, что позволило отказаться от сложного механического верньера, встроенный милливольтметр выходного сигнала, частотная модуляция. Изготавливается устройство из дешёвых распространённых деталей, которые найдутся у любого радиолюбителя, занимающегося ремонтом радиоприёмников.

Анализ множества любительских конструкций подобных генераторов выявил ряд общих характерных для них недостатков: ограниченный диапазон частот (большинство перекрывают только диапазоны ДВ, СВ и КВ); значительное перекрытие частоты на высокочастотных диапазонах затрудняет её точную установку и приводит к необходимости изготовления верньера. Зачастую требуется намотка катушек индуктивности с отводами. К тому же описания этих конструкций слишком краткие, а нередко вообще отсутствуют.

Было принято решение самостоятельно сконструировать высокочастотный генератор сигналов, удовлетворяющий следующим требованиям: предельно простая схема и конструкция, катушки индуктивности без отводов, отсутствие самостоятельно изготавливаемых механических узлов, работа во всех вещательных диапазонах, включая УКВ, растянутые диапазоны и электрический верньер. Желателен 50-омный коаксиальный выход.

Таблица

Диапазон

Частота, МГц

Напряжение 1) , мВ

94...108 2)

1) На коаксиальном выходе при сопротивлении нагрузки 50 Ом, аффективное значение.

2) При отключенном конденсаторе переменной емкости и напряжении на варикапе 0...5 В.

В результате проверки множества технических решений и неоднократных доработок появился описанный ниже прибор. Диапазоны генерируемых им частот указаны в таблице. Точность установки частоты генератора - не хуже ±2 кГц на частоте 10 МГц и ±10 кГц на частоте 100 МГц. Её уход за час работы (после часового прогрева) не превышает 0,2 кГц на частоте 10 МГц и 10 кГцначастоте 100 МГц. В той же таблице приведены максимальные эффективные значения выходного напряжения в каждом диапазоне. Нелинейность шкалы милливольтметра - не более 20 %. Напряжение питания - 7,5...15 В. Схема генератора сигналов представлена на рис. 1.

Рис. 1. Схема генератора сигналов

Как правило, генераторы с двухточечным подключением колебательного контура, способные работать на частоте более 100 МГц, в средневолновом диапазоне генерируют скорее искажённый меандр, чем синусоиду. Для уменьшения искажений требуется значительное изменение режимов работы активных элементов генератора в зависимости от частоты. Сигнал применённого в описываемом устройстве задающего генератора с включёнными последовательно по постоянному току полевым и биполярным транзисторами имеет гораздо меньшие искажения. Их можно снижать, регулируя режим работы лишь биполярного транзистора.

На низкочастотных диапазонах режим работы транзистора VT2 задан включёнными последовательно резисторами R1 и R9. С переходом на высокочастотные диапазоны переключатель SA1.2 замыкает резистор R1. Для увеличения крутизны характеристики полевого транзистора VT1 на его затвор подано постоянное смещение, равное половине напряжения питания. Напряжение питания задающего генератора стабилизировано интегральным стабилизатором DA1. Резистор R10 служит минимальной нагрузкой стабилизатора, без которой его выходное напряжение засорено шумом.

В качестве катушек индуктивности L1-L10 задающего генератора использованы дроссели промышленного производства. Их коммутирует переключатель SA1.1. В диапазоне УКВ2 индуктивностью L11 служит отрезок провода длиной около 75 мм, соединяющий переключатель с печатной платой.

Отклонение фактической индуктивности дросселя от номинальной может быть довольно значительным, поэтому границы диапазонов выбраны с некоторым перекрытием, чтобы исключить их трудоёмкую укладку. Указанные в таблице границы диапазонов получены без какого-либо подбора дросселей. Предпочтительно применять дроссели большого размера, стабильность индуктивности которых (следовательно, и генерируемой частоты) выше, чем у малогабаритных.

Для перестройки частоты в приборе использован трёхсекционный конденсатор переменной ёмкости с редуктором, применявшийся в радиоприёмниках "Океан", радиолах "Мелодия" и многих других. Чтобы его корпус не имел электрического контакта с корпусом прибора, он закреплён внутри него через изолирующую прокладку. Это дало возможность включить одну секцию конденсатора последовательно с двумя другими соединёнными параллельно. Так реализованы растянутые КВ-диапазоны. В диапазонах ДВ, СВ1 и СВ2, где требуется большое перекрытие по частоте, переключатель SA1.2 соединяет корпус переменного конденсатора с общим проводом. В диапазонах КВ6, УКВ1 и УКВ2 предусмотрено отключение конденсатора переменной ёмкости выключателем SA2. Когда выключатель замкнут, частота устойчивой генерации не превышает 37 МГц.

Параллельно переменному конденсатору подключена цепь из варикапной матрицы VD1, конденсаторов C6, C9 и резистора R6, служащая частотным модулятором, электрическим верньером, а при отключённом переменном конденсаторе - основным элементом настройки. Поскольку амплитуда высокочастотного напряжения на колебательном контуре достигает нескольких вольт, соединённые встречно-последовательно варикапы матрицы вносят гораздо меньшие искажения, чем вносил бы одиночный варикап. Напряжение настройки на варикапы матрицы VD1 поступает с переменного резистора R5. Резистор R2 несколько линеаризует шкалу настройки.

Задающий генератор связан с выходным повторителем на транзисторе VT4 через конденсатор C12, предельно малая ёмкость которого уменьшает влияние нагрузки на генерируемую частоту и снижение амплитуды выходного напряжения на частоте выше 30 МГц. Для частичного устранения снижения амплитуды на низкой частоте конденсатор C12 зашунтирован цепью R11C14. Простой эмиттерный повторитель с высоким выходным сопротивлением на биполярном транзисторе оказался наиболее подходящим решением для такого широкополосного прибора. Влияние нагрузки на частоту сравнимо с истоковым повторителем на полевом транзисторе, а зависимость амплитуды от частоты гораздо меньше. Применение дополнительных буферных ступеней только ухудшало развязку. Для обеспечения хорошей развязки в диапазонах ДВ-КВ транзистор VT4 должен иметь высокий коэффициент передачи тока, а в диапазонах УКВ - предельно малые межэлектродные ёмкости.

Выход повторителя соединён с зажимом XT1.4, предназначенным в основном для подключения частотомера, что приводит к некоторому снижению выходного напряжения. Внутреннее сопротивление этого выхода на КВ-диапазонах - около 120 Ом, выходное напряжение более 1 В. На диодахVD2, VD3, транзисторе VT3 и светодиоде HL1 реализован индикатор наличия ВЧ-напряжения на выходе повторителя.

С движка переменного резистора R18, служащего регулятором выходного напряжения, сигнал поступает на делитель R19R20, который, помимо дополнительной развязки генератора и нагрузки, обеспечивает выходное сопротивление коаксиального выхода (разъём XW1) на КВ-диапазонах, близкое к 50 Ом. На УКВ оно снижается до 20 Ом.

Уход частоты при изменении положения движка R18 из верхнего по схеме положения в нижнее достигает 70...100 кГц на частоте 100 МГц без нагрузки, а при подключённой нагрузке 50 Ом - не более 2 кГц (на той же частоте).

Для измерения выходного напряжения на разъёме XW1 предусмотрен детектор, выполненный на резисторах R15, R17, диоде VD4 и конденсаторе C17. Вместе с внешним цифровым вольтметром или мультиметром в режиме вольтметра, подключённым к контактам XT 1.3 (плюс) и XT1.1 (минус), он образует милливольтметр эффективного значения выходного напряжения генератора. Для получения более линейной шкалы на диод VD4 подано постоянное напряжение смещения 1 В, которое устанавливают многооборотным подстро-ечным резистором R17.

Внешний вольтметр должен иметь предел измерения 2 В. В этом случае в старшем разряде его индикатора будет постоянно выведена единица, а в младших разрядах - измеренное выходное напряжение в милливольтах. Минимальное измеряемое напряжение - около 20 мВ. Выше 100 мВ показания будут несколько завышены. При напряжении 200 мВ погрешность доходит до 20 %.

Питают генератор от стабилизированного источника постоянного напряжения 7...15 В либо от аккумуляторной батареи. При нестабилизированном блоке питания генерируемый высокочастотный сигнал неизбежно будет модулирован частотой 100 Гц.

К монтажу генератора следует подойти очень тщательно, от этого зависит стабильность его параметров. Большинство деталей установлены на печатной плате из фольгированного с двух сторон изоляционного материала, изображённой на рис. 2.

Рис. 2. Печатная плата из фольгированного с двух сторон изоляционного материала

Рис. 3. Расположение деталей на плате

Расположение деталей на плате показано на рис. 3. Площадки фольги общего провода с двух сторон платы соединяют между собой проволочными перемычками, впаянными в отверстия, которые показаны залитыми. Элементы выходного повторителя после монтажа закрывают с двух сторон платы металлическими экранами, контуры которых показаны штриховыми линиями. Эти экраны должны быть надёжно, пайкой по периметру, соединены с фольгой общего провода. В экране, находящемся со стороны печатных проводников, над контактной площадкой, с которой соединён эмиттер транзистора VT4, сделано отверстие, сквозь которое проходит припаянный к этой площадке медный штырь. В дальнейшем к нему припаивают центральную жилу коаксиального кабеля, идущего к переменному резистору R18 и конденсатору C18. Оплётку кабеля соединяют с экраном повторителя.

В генераторе применены в основном постоянные резисторы и конденсаторы для поверхностного монтажа типоразмера 0805. Резисторы R19 и R20 - МЛТ-0,125. Конденсатор C3 - оксидный с низким ЭПС, C7 - оксидный танталовый К53-19 или аналогичный. Катушки индуктивности L1-L10 - стандартные дроссели, предпочтительно отечественные серий ДПМ, ДП2. По сравнению с импортными, они имеют значительно меньшее отклонение индуктивности от номинальной и большую добротность.

При отсутствии дросселя нужного номинала катушку L10 можно изготовить самостоятельно, намотав восемь витков провода диаметром 0,08 мм на резистор МЛТ-0,125 сопротивлением не менее 1 МОм. В качестве индуктивности L11 применён отрезок жёсткого центрального провода от коаксиального кабеля длиной около 75 мм.

Трёхсекционные конденсаторы переменной ёмкости с редуктором чрезвычайно распространены, но если такой отсутствует, можно применить и двухсекционный. В этом случае корпус конденсатора соединяют с корпусом прибора, а каждую секцию подключают через отдельный выключатель, причём одну из секций - через растягивающий конденсатор. Управлять прибором с таким переменным конденсатором заметно сложнее.

Переключатель SA1 - ПМ 11П2Н, также применимы аналогичные переключатели серии ПГ3 или П2Г3. Выключатель SA2 - МТ1. Переменный резистор R18 - СП3-9б, причём заменять его переменным резистором другого типа не рекомендуется. Если переменного резистора указанного на схеме номинала не нашлось, то можно заменить его имеющим меньший номинал, но при этом нужно увеличить сопротивление резистора R16 так, чтобы общее сопротивление параллельно соединённых резисторов R16 и R18 осталось неизменным. Переменный резистор R5 - любого типа, R17 - импортный многооборотный подстроечный 3296.

Диоды ГД407А можно заменить на Д311, Д18, а диод 1 N4007 - на любой выпрямительный. Вместо варикапной матрицы КВС111А допускается применить КВС111Б, вместо 3AR4UC10 - любой светодиод красного свечения.

Задающий генератор малочувствителен к типам применённых транзисторов. Полевой транзистор КП303И может быть заменён на КП303Г- КП303Ж, КП307А-КП307Ж, а с корректировкой печатной платы - на BF410B-BF410D, КП305Ж. Для транзисторов с начальным током более 7 мА резистор R7 не требуется. Биполярный транзистор КТ3126А можно заменить любым СВЧ-транзистором структуры p-n-p с минимальными межэлектродными ёмкостями. В качестве замены транзистора КТ368АМ можно рекомендовать SS9018I.

Разъём XW1 - типа F. В него легко заделывается любой кабель, а при необходимости можно просто вставить провод. Зажимная колодкаXT1 - WP4-7 для подключения акустических систем. Разъёмы XS1 и XS2 - стандартные монофонические гнёзда под штекер диаметром 3,5 мм.

Генератор собран в корпусе от компьютерного блока питания. Его монтаж показан на фотоснимке рис. 4. Решётку вентилятора удалите, а сторону корпуса, где она находилась, закройте пластиной из листовой стали с отверстиями для разъёмов и элементов управления. Для крепления пластины следует использовать все имеющиеся в корпусе отверстия под винты.

Рис. 4. Монтаж генератора

Плату закрепите на латунной стойке высотой 30 мм, рядом с переключателем SA1, вверх печатными проводниками. Место контакта стойки с корпусом залудите и подложите под неё контактный лепесток, который соедините с экраном выходного повторителя. По возможности избегайте образования больших замкнутых контуров протекания высокочастотного тока по общему проводу, приводящих к снижению выходного напряжения на УКВ-диапазонах.

Переменный резистор R18 поместите в дополнительный металлический экран, зажав его под фланец резистора. Монтаж резисторов R19 и R20 - навесной. Их общую точку соедините с разъёмом XW1 коаксиальным кабелем. Элементы детектора милливольтметра установите на небольшой монтажной плате, которую закрепите непосредственно на разъёме XW1.

Конденсатор переменной ёмкости C4 установите в корпусе через изолирующие прокладки. Желательно сделать диэлектрический удлинитель оси конденсатора, на который будет надета ручка настройки. Но это не обязательно, допустимо надеть её и на ось самого конденсатора. Соединение переменного конденсатора с выключателем SA2 и с платой выполните жёсткой центральной жилой от коаксиального кабеля. Конденсатор C5установи-те и соедините с корпусом рядом с конденсатором C4.

Перед установкой в прибор галетно-го переключателя SA1 смонтируйте на нём катушки индуктивности L1-L10 и резистор R1. Оси соседних катушек должны быть взаимно перпендикулярны, иначе не избежать их взаимного влияния. Особенно это касается низкочастотных диапазонов. Удобно чередовать катушки с аксиальными и радиальными выводами. Общий провод к галете SA1.1 подключите жгутом из десяти и более проводов МГТФ. Отдельным проводом соедините с общим проводом резистор R1 и подвижный контакт галеты SA1.2.

С помощью шприца с укороченной иглой нанесите на переднюю панель подкрашенным цапон-лаком все необходимые надписи. Разъём входа пилообразного напряжения XS2 установите на задней панели, чтобы исключить случайное подключение к нему. Туда же выведите шнур питания. Он дублирован контактами XT1.1 (минус) и XT1.2 (плюс), от которых можно питать другие измерительные приборы или настраиваемое устройство. Все лишние отверстия в корпусе закройте припаянными к нему стальными пластинами.

Собранный, согласно рекомендациям, прибор должен заработать сразу. Следует измерить постоянное напряжение на эмиттере транзистора VT4. При верхнем (по схеме) положении движка переменного резистора R18 оно не должно быть менее 2 В, иначе нужно уменьшить сопротивление резистора R13. Далее нужно проверить работу генератора на всех диапазонах. На УКВ при большой введённой ёмкости переменного конденсатора (если он включён) происходит срыв колебаний, что видно по снижению яркости свечения светодиода HL1.

Если переменный резистор R5 включён, как показано на схеме, то полоса перестройки на УКВ-диапазо-нах не превысит 15 МГц, и может потребоваться укладка этих диапазонов в пределы вещательных. Прежде всего сделайте это в диапазоне УКВ1 (65,9...74 МГц) с помощью подстроечного конденсатора C9 при разомкнутом выключателе SA2. Далее переведите переключатель SA1 в положение УКВ2 и, изменяя длину отрезка провода, служащего индуктивностью L11, добейтесь перекрытия вещательного диапазона 87,5...108 МГц. Если нужно сильно увеличить частоту, отрезок провода можно заменить полоской медной фольги или расплющенной оплёткой коаксиального кабеля. Пределы перестройки частоты варикапом можно значительно увеличить, если питать переменный резистор R5 напряжением со входа, а не с выхода интегрального стабилизатора DA1. Но это приведёт к заметному ухудшению стабильности частоты.

Регулировка детектора милливольтметра заключается в установке подстроечным резистором R17 напряжения 1010 мВ на подключённом к выходу детектора мультиметре при нулевом выходном напряжении генератора (движок переменного резистора R18 в нижнем по схеме положении). Далее, увеличив переменным резистором размах выходного напряжения до 280 мВ (контролируют осциллографом), подстраивают R17 так, чтобы мультиметр показал 1100 мВ. Это соответствует эффективному значению выходного напряжения 100 мВ. Следует учитывать, что ВЧ-напряжение менее 20 мВ этим милливольтметром измерять нельзя (мёртвая зона), а при напряжении более 100 мВ его показания будут сильно завышенными.

Файл печатной платы в формате Sprint Layout 6.0 можно скачать .

Литература

1. Генератор сигналов высокочастотный GRG-450B. - URL: http://www.printsip.ru/ cgi/download/instr/GW_instek/generatori_ gw/grg-450b.pdf (26.09.15).

2. Коротковолновый ГИР (За рубежом). - Радио, 2006, № 11, с. 72, 73.


Дата публикации: 12.01.2016

Мнения читателей
  • alex286 / 17.10.2018 - 20:03
    В диапазонах КВ6, УКВ1 и УКВ2 предусмотрено отключение конденсатора переменной ёмкости выключателем SA2. Когда выключатель замкнут, частота устойчивой генерации не превышает 37 МГц.
  • alex286 / 15.10.2018 - 14:46
    В гугле забанили что-ли? Находится на раз, два.. Лять, как дети, все им дай, подай, да принеси..
  • Саша / 08.05.2018 - 14:23
    Не могу запустить генератор ниже 60 мгц
  • Кирилл / 10.08.2017 - 19:22
    Почему не написано для чего R5 SA2 C6 ??? Где ссылка на первоисточник? Возможно там более полное описание?

В предлагаемой книге рассматриваются особенности схемотехнических решений, применяемых при создании миниатюрных транзисторных радиопередающих устройств. В соответствующих главах приводится информация о принципах действия и особенностях функционирования отдельных узлов и каскадов, принципиальные схемы, а также другие сведения, необходимые при самостоятельном конструировании простых радиопередатчиков и радиомикрофонов. Отдельная глава посвящена рассмотрению практических конструкций транзисторных микропередатчиков для систем связи малого радиуса действия.

Книга предназначена для начинающих радиолюбителей, интересующихся особенностями схемотехнических решений узлов и каскадов миниатюрных транзисторных радиопередающих устройств.

В рассмотренных ранее схемотехнических решениях LC-генераторов в качестве активного элемента использовался биполярный транзистор. Однако при разработке миниатюрных радиопередатчиков и радиомикрофонов широко применяются схемы активных элементов, выполненных на полевых транзисторах. Главное достоинство полевых транзисторов, часто называемых канальными или униполярными, заключается в высоком входном сопротивлении, соизмеримом с входным сопротивлением электронных ламп. Особую группу составляют полевые транзисторы с изолированным затвором.

По переменному току полевой транзистор активного элемента высокочастотного генератора может быть включен с общим истоком, с общим затвором или с общим стоком. При разработке микропередатчиков чаще используются схемотехнические решения, в которых полевой транзистор по переменному току включен по схеме с общим стоком. Такая схема включения полевого транзистора аналогична схеме включения с общим коллектором для биполярного транзистора. В активном элементе, выполненном на полевом транзисторе, включенном по схеме с общим стоком, нагрузка подключена в цепь истока транзистора, а выходное напряжение снимается с истока по отношению к шине корпуса.

Коэффициент усиления по напряжению такого каскада, часто называемого истоковым повторителем, близок к единице, то есть выходное напряжение практически равно входному. При этом фазовый сдвиг между входным и выходным сигналами отсутствует. Истоковые повторители отличает сравнительно небольшое входное сопротивление при повышенном входном сопротивлении. Помимо этого для таких каскадов характерна малая входная емкость, что приводит к увеличению входного сопротивления на высоких частотах.

Одним из критериев классификации LC-генераторов на полевых транзисторах, как и генераторов на биполярных транзисторах, является схемотехническое решение цепи положительной обратной связи. В зависимости от примененной схемы цепи ПОС такие генераторы делятся на генераторы с индуктивной связью, с емкостной связью и трехточечные генераторы (так называемые трехточки). В генераторах с индуктивной связью цепь положительной обратной связи между входным и выходным электродами транзистора образована индуктивной связью, а в генераторах с емкостной связью – емкостной. В трехточечных ВЧ-генераторах, которые в свою очередь делятся на индуктивные и емкостные трехточки, резонансный контур подключен к активному элементу в трех точках.

Следует признать, что при разработке высокочастотных генераторов для миниатюрных радиопередающих устройств особой популярностью пользуются схемотехнические решения с полевыми транзисторами, основанные на применении индуктивной трехточки (схема Хартли). Дело в том, что на высоких частотах комплексное входное сопротивление полевого транзистора велико. Поэтому транзистор практически не шунтирует резонансный контур, то есть не оказывает никакого влияния на его параметры. Принципиальная схема одного из вариантов высокочастотного LC-генератора, выполненного по схеме Хартли на полевом транзисторе, включенном по переменному току по схеме с общим стоком, приведена на рис. 3.10.


Рис. 3.10. Принципиальная схема LC-генератора на полевом транзисторе по схеме Хартли

В рассматриваемой схеме активный элемент LC-генератора выполнен на полевом транзисторе VT1, который по переменному току включен по схеме истокового повторителя, то есть с общим стоком. Электрод стока транзистора замкнут на шину корпуса через конденсатор С2. Резонансный контур образован включенными параллельно подстроечным конденсатором С1 и катушкой индуктивности L1, от параметров которых зависит частота генерируемых колебаний. Этот контур подключен в цепь затвора полевого транзистора VT1.

Возникшие в резонансном контуре колебания подаются на затвор транзистора VT1. При положительной полуволне входного сигнала на затвор поступает соответственно положительное напряжение, в результате чего возрастает проводимость канала, а ток стока растет. При отрицательной полуволне колебания на затвор поступает соответственно отрицательное напряжение, в результате чего проводимость канала снижается, а ток стока уменьшается. Снимаемое с электрода истока транзистора VT1 напряжение подается в резонансный контур, а именно на вывод катушки L1, которая по отношению к истоку транзистора включена по схеме повышающего автотрансформатора. Такое включение позволяет увеличить коэффициент передачи цепи положительной обратной связи до необходимого уровня, то есть обеспечивает соблюдение условия баланса амплитуд. Выполнение условия баланса фаз обеспечивается включением транзистора VT1 по схеме с общим стоком.

Соблюдение условий баланса амплитуд и баланса фаз приводит к возникновению устойчивых колебаний на частоте резонанса колебательного контура. При этом частота генерируемого сигнала может изменяться с помощью подстроечного конденсатора С1 колебательного контура. Выходной сигнал, формируемый генератором, снимается с электрода истока полевого транзистора VT1.

При конструировании высокочастотных генераторов для микропередатчиков нередко используются схемотехнические решения с полевыми транзисторами, основанные на применении емкостной трехточки (схема Колпитца). Принципиальная схема одного из вариантов высокочастотного LC-генератора, выполненного по схеме Колпитца на полевом транзисторе, включенном по переменному току по схеме с общим стоком, приведена на рис. 3.11.


Рис. 3.11. Принципиальная схема LC-генератора на полевом транзисторе по схеме Колпитца

Активный элемент данного LC-генератора выполнен на полевом транзисторе VT1, который по переменному току включен по схеме с общим стоком. При этом электрод стока транзистора замкнут на шину корпуса через конденсатор С5. Параллельный резонансный контур образован катушкой индуктивности L1 и конденсаторами С1 – С4, от параметров которых зависит частота генерируемых колебаний. Этот контур включен в цепь затвора полевого транзистора.

Возникшие в резонансном контуре колебания подаются на затвор транзистора VT1. Снимаемое с электрода истока транзистора VT1 напряжение через цепь обратной связи подается в резонансный контур, а именно в точку соединения конденсаторов С3 и С4, образующих емкостной делитель. Выбор соответствующих величин емкостей конденсаторов С3 и С4, а также необходимого соотношения этих величин позволяет подобрать такой уровень коэффициента передачи цепи положительной обратной связи, при котором обеспечивается соблюдение условия баланса амплитуд. Выполнение условия баланса фаз обеспечивается включением транзистора VT1 по схеме с общим стоком.

Соблюдение условий баланса амплитуд и баланса фаз обеспечивает возникновение устойчивых колебаний на частоте резонанса колебательного контура. При этом частота генерируемого сигнала может изменяться с помощью конденсатора С2 (грубая настройка) и конденсатора С1 (точная настройка). Выходной сигнал частотой около 5 МГц, формируемый генератором, снимается с электрода истока полевого транзистора VT1.

Генератор — это устройство, которое преобразует один вид энергии в другой вид энергии. В нашем случае генератор частот — это устройство, которое преобразует энергию источника питания в периодические колебания различной формы. Или простыми словами — это электротехнический прибор, который может выдавать различные по форме периодические сигналы.

Описание генератора частот

На моем рабочем столе не так давно прямиком из Китая появился вот такой генератор частоты:

Сзади него находятся вот такие выводы:

Давайте же более подробно разберем для чего они нужны. Итак USB — это просто питание, которое подается на генератор частоты. Один конец шнура втыкаем в этот разъем


а другой в блок питания, который шел в комплекте


Также в комплекте шли высокочастотные


Втыкаем в розетку блок питания и кнопочкой POWER запускаем генератор частот


Буковкой «F» принято обозначать частоту , от англ. frequency — частота. Hz — это Герцы (Hertz) — показывает количество колебаний в секунду. Следовательно и приставки «кило, мега, гига» могут также присутствовать перед Герцами. Что это за приставки, думаю, стыдно не знать. Снизу FUNCtion — функция (гребаная алгебра…) , WAVE — волна, в данном случае, форма сигнала. Представленный в данной статье генератор может формировать три формы сигналов — это синусоида (SIN), прямоугольная (SQR) и треугольная (TRI) форма. Почему такие интересные названия форм сигналов вы поймете далее.

Панель управления генератора частоты выглядит следующим образом:


Здесь мы с вами видим кнопку включения POWER, квадратную желтую кнопку WAVE, с помощью которой мы выбираем форму сигнала: синусоида, прямоугольный или пилообразный. SEL — переключение между режимами задания частоты и формой сигнала. ОК — без комментариев. Верхняя крутилка предназначена для установки частоты, средняя для среза сигнала, и нижняя для изменения величины амплитуды сигнала. Итак, теперь обо всем по порядку.

Какие сигналы умеет выдавать генератор

Для пробы вбиваем частоту 50 Герц


Цепляем кабель генератора частоты к выходу OUT, а зажимы кабеля цепляем к щупам осциллографа.


На осциллограмме наблюдаем вот такую картину:



Чистейшая синусоида 50 Герц!

Переключаем форму волны на треугольную


Вуаля!


Знаете кто это?

Так… Причем здесь Спанчбоб? На английском языке он пишется как Spanch Bob Square Pants — что в переводе Спанч Боб Квадратные штаны. Square — (с англ. квадрат, прямоугольник). Чтобы не запутаться в генераторе частоты или в другой какой-либо технике, вспомните СпанчБоба. SQR — прямоугольная форма сигнала.


А вот собственно и она на осциллограмме


Крутилкой OFFSET можно срезать форму сигнала сверху, снизу и сверху и снизу одновременно.



Скважность и коэффициент заполнения

Есть в электронике такой параметр, как скважность . Это параметр применяется к прямоугольной форме сигналов.

где S — скважность

T — период импульса, с

t — длительность импульса, с


Величина D (Duty) , обратная величине S, называется коэффициентом заполнения

Иллюстрация сигналов с различным коэффициентом заполнения

Вот так выглядит сигнал с коэффициентом заполнения 50%. У этого сигнала длительность импульса ровно в два раза меньше его периода, следовательно S=2, а D=50%. Такой сигнал прямоугольной формы называют


Меняем коэффициент заполнения D на 20%



то же самое, но на 80%



Выход TTL генератора частоты

Также в этом генераторе есть такие примочки, как выход TTL . TTL по-русски звучит, как транзисторно-транзисторная логика. Короче говоря — этот выход предназначен для тактирования импульсов на логические микросхемы. Еще более понятным языком — задает рабочую частоту для различных микросхем, чтобы они работали и выполняли свои функции. Здесь выходит прямоугольная форма сигнала амплитудой более 3 Вольт


и частотой в 1 килогерц.


Режим частотомера и счетчика импульсов

Теперь о примочках, которые китайский производители затолкали в этот генератор. Есть один интересный вывод — Ext.IN. Думаю, нетрудно догадаться. что IN — это вход. В этом генераторе частоты встроен частотомер и счетчик периодов сигнала. Для этих функций как раз и используется вывод Ext IN.


Я хочу измерить частоту электрического тока в розетке. Если вы помните, там переменный ток, который имеет частоту 50 Герц. Так ли это? Сейчас узнаем. Напряжение для входа Ext.IN должно быть от 0,5 и до 20 Вольт. В розетке же 220 Вольт, чтобы его убавить, используем . На выходе я получил напряжение в 2 Вольта. Чтобы вы увидели, что есть напряжение на вторичной обмотке трансформатора, я туда поставил светодиод. Цепляемся за выводы вторичной обмотки крокодильчиками нашего генератора частоты


И начинаем производить замеры. Опа на! Ровно 50 герц;-).



Характеристики генератора

Вот характеристики генератора частоты, кому интересно:

1. Signal Output function

waveforms Sine wave, Square wave and Triangle wave

amplitude ≥10Vp-p(signal output, no load)

impedance 50Ω±10%(signal output)

DC offset ±2.5V(no load)

Display LCD160

Resolution 0.01Hz

Frequency Stability ±1×10 -6

Frequency accuracy ±5×10 -6

Sine wave distortion ≤0.8% (reference frequency is 1kHz)

Trinagle linearity ≥98% (0.01Hz~10kHz)

Rise and fall time of square wave ≤100ns

Square Wave Duty range 1%~99%

2. TTL Output function

Frequency range 0.01Hz ~ 2MHz

Amplitude >3Vp-p

Fan Out >20 TTL loads

3. COUNTER function

Counter Range 0-4294967295

Frequency Meter Range 1Hz~60MHz

Input Voltage Range 0.5Vp-p~20Vp-p

Storage and transferred: 10 set of parameters with storage and recall functions.

Заключение

В заключении хотелось бы сказать пару слов. Как же правильно выбрать генератор частоты? Здесь, конечно, все зависит от функционала, а точнее от того, какую максимальную частоту может выдать генератор. Чем большую частоту может выдавать генератор, тем он дороже. Начинающему электронщику, думаю, 2 Мегагерца сигналов синуса, треугольного и прямоугольного хватит по самое не балуйся, да еще и частотомер+счетчик.

Стоит ли его брать? Думаю, нет. Лучше взять какой-нибудь один, но подороже. У меня сейчас вот такой генератор частоты


Где купить генератор частот

Я бы посоветовал Алиэкспресс. Здесь действительно можно подобрать приличный генератор.

Начиная от простых дешевых


Заканчивая полупрофессиональными


Выбирайте на ваш вкус и цвет!