Что такое файловая система. Файловые системы. Структура файловой системы

Одной из компонент ОС является файловая система – основное хранилище системной и пользовательской информации. Все современные ОС работают с одной или несколькими файловыми системами, например, FAT (File Allocation Table), NTFS (NT File System), HPFS (High Performance File System), NFS (Network File System), AFS (Andrew File System), Internet File System.

Файловая система – это часть операционной системы, назначение которой состоит в том, чтобы обеспечить пользователю удобный интерфейс при работе с данными, хранящимися во внешней памяти, и обеспечить совместное использование файлов несколькими пользователями и процессами.

В широком смысле понятие "файловая система" включает:

Совокупность всех файлов на диске;

Наборы структур данных, используемых для управления файлами, такие, например, как каталоги файлов, дескрипторы файлов, таблицы распределения свободного и занятого пространства на диске;

Комплекс системных программных средств, реализующих управление файлами, в частности: создание, уничтожение, чтение, запись, именование, поиск и другие операции над файлами.

Файловая система используется обычно как при загрузке ОС после включения компьютера, так и в процессе работы. Файловая система выполняет следующие основные функции:

Определяет возможные способы организации файлов и файловой структуры на носителе;

Реализует методы доступа к содержимому файлов и предоставляет средства работы с файлами и файловой структурой. При этом доступ к данным может быть организован файловой системой как по именам, так и по адресам (номер сектора, поверхности и дорожки носителя);

Отслеживает свободное пространство на носителе.

Когда прикладная программа обращается к файлу, она не имеет никакого представления о том, каким образом расположена информация в конкретном файле, так же, как и на каком физическом типе носителя (CD, жестком диске или блоке флэш-памяти) он записан. Все, что знает программа – это имя файла, его размер и атрибуты. Эти данные она получает от драйвера файловой системы. Именно файловая система устанавливает, где и как будет записан файл на физическом носителе (например, жёстком диске).

С точки зрения операционной системы, весь диск представляет собой набор кластеров (участков памяти) размером от 512 байт и больше. Драйверы файловой системы организуют кластеры в файлы и каталоги (реально являющиеся файлами, содержащими список файлов в этом каталоге). Эти же драйверы отслеживают, какие из кластеров в настоящее время используются, какие свободны, какие помечены как неисправные. Чтобы ясно представлять, как же хранятся данные на дисках, и как ОС обеспечивает доступ к ним необходимо представлять, хотя бы в общем виде логическую структуру диска.


3.1.5 Логическая структура диска

Для того чтобы компьютер мог хранить, читать и записывать информацию жесткий диск предварительно должен быть размечен. На нем с помощью соответствующих программ создаются разделы – это и называется "разбить жесткий диск". Без этой разметки на жесткий диск не удастся установить операционную систему (хотя Windows XP и 2000 могут устанавливаться на неразбитый диск, но они такую разметку проводят сами в процессе установки).

Жесткий диск можно разбить на несколько разделов, каждый из которых будет использоваться автономно. Для чего это надо? Один диск может содержать несколько различных операционных систем, расположенных в разных разделах. Внутренняя структура раздела, выделенного какой-либо ОС, полностью определяется этой операционной системой.

Кроме того, существуют и другие причины разбиения диска на разделы, например:

Возможность использования под управлением MS DOS дисков с емкостью большей, чем
32 Мб;

В случае повреждения диска, пропадает только та информация, которая находилась на этом диске;

Реорганизация и выгрузка диска маленького размера проще и быстрее, чем большого;

Каждому пользователю можно выделить свой логический диск.

Операция подготовки диска к работе называется форматированием , или инициализацией . Всё доступное дисковое пространства разбивается на стороны, дорожки и сектора, причем дорожки и стороны нумеруются с нуля, а сектора – с единицы. Совокупность дорожек, находящихся на одинаковом удалении от оси диска или пакета дисков, называется цилиндром. Таким образом физический адрес сектора определяется следующими координатами: номер дорожки (цилиндра – С), номер стороны диска (головки – H), номера сектора – R, т.е. CHR.

В самом первом секторе жесткого диска (C=0, H=0, R=1) содержится главная загрузочная запись Master Boot Record . Эта запись занимает не весь сектор, а только его начальную часть. Главная загрузочная запись является программой – внесистемным загрузчиком.

В конце первого сектора жесткого диска располагается таблица разделов диска – Partition Table . Эта таблица содержит четыре строки, описывающих максимально четыре раздела. Каждая строка в таблице описывает один раздел:

1) активный раздел или нет;

2) номер сектора, соответствующего началу раздела;

3) номер сектора, соответствующего концу раздела;

4) размер раздела в секторах;

5) код операционной системы, т.е. какой ОС принадлежит данный раздел.

Раздел называется активным, если он содержит программу загрузки операционной системы. Первым байтом в элементе раздела идет флаг активности раздела (0 – не активен, 128 (80H) – активен). Он служит для определения, является ли раздел системным (загрузочным), и для необходимости производить загрузку операционной системы с него при старте компьютера. Активным может быть только один раздел. Небольшие программы, называемые менеджерами загрузки (Boot Manager), могут располагаться в первых секторах диска. Они интерактивно запрашивают пользователя, с какого раздела производить загрузку и соответственно корректируют флаги активности разделов. Поскольку в Partition Table четыре строки, то на диске может быть до четырех различных ОС, следовательно, диск может содержать несколько первичных разделов, принадлежащих разным операционным системам.

Пример логической структуры жесткого диска, состоящего из трех разделов, два из которых принадлежат DOS, а один принадлежит UNIX, приведен на рисунке 3.2а.

Каждый активный раздел имеет свою загрузочную запись – программу, которая осуществляет загрузку данной ОС.

На практике диск разбивается чаще всего на два раздела. Размеры разделов, объявление их активными или нет, устанавливаются пользователем в процессе подготовки жесткого диска к работе. Делается это с помощью специальных программ. В DOS эта программа называется FDISK, в версиях Windows-XX – Diskadministrator.

В DOS первичный раздел – Primary Partition , это тот раздел, который содержит загрузчик операционной системы и саму ОС. Таким образом, первичный раздел является активным разделом, используется как логический диск с именем C:.

Операционная система WINDOWS (а именно WINDOWS 2000) изменила терминологию: активный раздел называется системным, а загрузочным называется логический диск, который содержит системные файлы WINDOWS. Загрузочный логический диск может совпадать с системным разделом, но может находиться в другом разделе того же жесткого диска или на другом жестком диске.

Расширенный раздел Extended Partition может разбиваться на несколько логических дисков с именами от D: до Z:.

На рисунке 3.2б представлена логическая структура жесткого диска, в котором всего два раздела и четыре логических диска.

Общее. В теории информатики определены следующие три основных типа структур данных – линейная, табличная, иерархическая. Пример книга: последовательность листов – линейная структура. Части, разделы, главы, параграфы – иерархия. Оглавление – таблица – связывает – иерархическую с линейной. У структурированных данных появляется новый атрибут - Адрес. И так:

      Линейные структуры (списки, вектора). Обычные списки. Адрес каждого элемента однозначно определяется его номером. Если все элементы списка имеют равную длину – вектора данных.

      Табличные структуры (таблицы, матрицы). Отличие таблицы от списка – каждый элемент – определяется адресом, состоящим не из одного, а нескольких параметров. Самый распространенный пример – матрица - адрес – два параметра – номер строки и номер столбца. Многомерные таблицы.

      Иерархические структуры. Используются для представления нерегулярных данных. Адрес – определяется маршрутом – от вершины дерева. Файловая система – компьютера. (Маршрут может превысить – величину данных, дихотомия – всегда два разветвления – влево и вправо).

Упорядочение структур данных. Основной способ – сортировка. ! При добавлении нового элемента в упорядоченную структуру – возможно изменения адреса у существующих. Для иерархических структур – индексация – каждому элементу уникальный номер – который далее используется в сортировке и поиске.

    Основные элементы файловой системы

Историческим первым шагом в области хранения и управления данными стало использование систем управления файлами.

Файл - это именованная область внешней памяти, в которую можно записывать и из которой можно считывать данные. Три параметра:

    последовательность произвольного числа байтов,

    уникальное собственное имя (фактически – адрес).

    данные одного типа – тип файла.

Правила именования файлов, способ доступа к данным, хранящимся в файле, и структура этих данных зависят от конкретной системы управления файлами и, возможно, от типа файла.

Первая, в современном понимании, развитая файловая система была разработана фирмой IBM для ее серии 360 (1965-1966 годы). Но в нынешних системах она практически не применяется. Использовала списочные структуры данных (ЕС- том, раздел, файл).

Большинство из Вас знакомо с файловыми системами современных ОС. Это прежде всего MS DOS, Windows, а некоторые с построением файловой системы для различных вариантов UNIX.

Структура файлов. Файл представляет совокупность блоков данных, размещенных на внешнем носителе. Для произведения обмена с магнитным диском на уровне аппаратуры нужно указать номер цилиндра, номер поверхности, номер блока на соответствующей дорожке и число байтов, которое нужно записать или прочитать от начала этого блока. Поэтому во всех файловых системах явно или неявно выделяется некоторый базовый уровень, обеспечивающий работу с файлами, представляющими набор прямо адресуемых в адресном пространстве блоков.

Именование файлов. Все современные файловые системы поддерживают многоуровневое именование файлов за счет поддержания во внешней памяти дополнительных файлов со специальной структурой - каталогов. Каждый каталог содержит имена каталогов и/или файлов, содержащихся в данном каталоге. Таким образом, полное имя файла состоит из списка имен каталогов плюс имя файла в каталоге, непосредственно содержащем данный файл. Разница между способами именования файлов в разных файловых системах состоит в том, с чего начинается эта цепочка имен. (Unix, DOS-Windows)

Защита файлов. Системы управления файлами должны обеспечивать авторизацию доступа к файлам. В общем виде подход состоит в том, что по отношению к каждому зарегистрированному пользователю данной вычислительной системы для каждого существующего файла указываются действия, которые разрешены или запрещены данному пользователю. Существовали попытки реализовать этот подход в полном объеме. Но это вызывало слишком большие накладные расходы как по хранению избыточной информации, так и по использованию этой информации для контроля правомочности доступа. Поэтому в большинстве современных систем управления файлами применяется подход к защите файлов, впервые реализованный в ОС UNIX (1974). В этой системе каждому зарегистрированному пользователю соответствует пара целочисленных идентификаторов: идентификатор группы, к которой относится этот пользователь, и его собственный идентификатор в группе. Соответственно, при каждом файле хранится полный идентификатор пользователя, который создал этот файл, и отмечается, какие действия с файлом может производить он сам, какие действия с файлом доступны для других пользователей той же группы, и что могут делать с файлом пользователи других групп. Эта информация очень компактна, при проверке требуется небольшое количество действий, и этот способ контроля доступа удовлетворителен в большинстве случаев.

Режим многопользовательского доступа. Если операционная система поддерживает многопользовательский режим вполне реальна ситуация, когда два или более пользователей одновременно пытаются работать с одним и тем же файлом. Если все эти пользователи собираются только читать файл, ничего страшного не произойдет. Но если хотя бы один из них будет изменять файл, для корректной работы этой группы требуется взаимная синхронизация. Исторически в файловых системах применялся следующий подход. В операции открытия файла (первой и обязательной операции, с которой должен начинаться сеанс работы с файлом) помимо прочих параметров указывался режим работы (чтение или изменение). + имеется специальные процедуры синхронизации действий пользователей. Нельзя по записям!

    Журналирование в файловых системах. Общие принципы.

Запуск проверки системы (fsck) на больших файловых системах может занять много времени, что очень плохо, учитывая сегодняшние высоко скоростные системы. Причиной, по которой целостность отсутствует в файловой системе, может являться не корректное размонтирование, например в момент прекращения работы на диск велась запись. Приложения могли обновлять данные, содержащиеся в файлах и система могла обновлять мета-данные файловой системы, которые являются «данными о данных файловой системы», иными словами, информация о том какие блоки связаны с какими файлами, какие файлы размещены в каких директориях и тому подобное. Ошибки (отсутствие целостности) в файлах данных – это плохо, но куда хуже ошибки в мета-данных файловой системы, что может привести к потерям файлов и другим серьезным проблемам.

Для минимизации проблем связанных с целостностью и минимизации времени перезапуска системы, журналируемая файловая система хранит список изменений, которые она будут проводить с файловой системой перед фактической записью изменений. Эти записи хранятся в отдельной части файловой системы, называемой «журналом» или «логом». Как только эти записи журнала (лога) безопасно записаны, журналируемая файловая система вносит эти изменения в файловую систему и затем удаляет эти записи из «лога» (журнала регистраций). Записи журнала организованы в наборы связанных изменений файловой системы, что очень похоже на то, как изменения добавляемые в базу данных организованны в транзакции.

Журналируемая файловая система увеличивает вероятность целостности, потому что записи в лог-файл ведутся до проведения изменений файловой системы, и потому что файловая система хранит эти записи до тех пор, пока они не будут целиком и безопасно применены к файловой системе. При перезагрузке компьютера, который использует журналируемую файловую систему, программа монтирования может гарантировать целостность файловой системы простой проверкой лог-файла на наличие ожидаемых, но не произведенных изменений и записью их в файловую систему. В большинстве случаев, системе не нужно проводить проверку целостности файловой системы, а это означает, что компьютер использующий журналируемую файловую систему будет доступен для работы практически сразу после перезагрузки. Соответственно шансы потери данных в связи с проблемами в файловой системе значительно снижаются.

Классический вид журналируемой файловой системы это хранение в журнале (логе) изменений метаданных файловой системы и хранение изменений всех данных файловой системы, включая изменения самих файлов.

    Файловая система MS-DOS (FAT)

Файловая система MS-DOS представляет собой древовидную файловую систему для небольших дисков и простых структур каталогов, в корне которой находится корневой каталог, а листьями являются файлы и другие каталоги, возможно пустые. Размещение файлов под управлением этой файловой системы происходит по кластерам, размер которых может колебаться от 4 КБ до 64 КБ кратно 4, без использования свойства смежности смешанным способом выделения дисковой памяти. Например, на рисунке показано три файла. Файл File1.txt является достаточно большим: он задействует три следующих друг за другом блока. Небольшой файл File3.txt использует пространство только одного размещаемого блока. Третий файл File2.txt. является большим фрагментированным файлом. В каждом случае точка входа указывает на первый распределяемый блок, принадлежащий файлу. Если файл использует несколько распределяемых блоков, то предшествующий блок указывает на следующий в цепочке. Значение FFF отождествляется с концом последовательности.

Дисковый раздел FAT

Для эффективного доступа к файлам используется таблица размещения файлов – File Allocation Table, которая размещается в начале раздела (или логического диска). Именно от названия таблицы размещения и происходит название этой файловой системы – FAT. В целях защиты раздела на нем хранятся две копии FAT, на тот случай, если одна из них окажется поврежденной. Кроме того, таблицы размещения файлов должны размещаться по строго фиксированным адресам, чтобы файлы, необходимые для запуска системы, были размещены корректно.

Таблица размещения файлов состоит из 16-разрядных элементов и содержит следующую информацию о каждом кластере логического диска:

    кластер не используется;

    кластер используется файлом;

    плохой кластер;

    последний кластер файла;.

Так как каждому кластеру должен быть присвоен уникальный 16-разрядный номер, то следовательно, FAT поддерживает максимально 216, или 65 536 кластеров на одном логическом диске (да еще некоторую часть кластеров резервирует для своих нужд). Таким образом получаем предельный размер диска, обслуживаемого MS-DOS, в 4 ГБ. Размер кластера можно увеличить или уменьшить в зависимости от размера диска. Однако, когда размер диска превышает некоторую величину, кластеры становятся слишком большого размера что ведет к внутренней дефрагментации диска. Кроме информации о файлах, в таблице размещения файлов может быть помещена информация и о каталогах. При этом каталоги рассматриваются как специальные файлы с 32-байтовыми элементами для каждого файла, содержащегося в этом каталоге. Корневой каталог имеет фиксированный размер – 512 записей для жесткого диска, а для дискет этот размер определяется объемом дискеты. Кроме того, корневой каталог расположен сразу же после второй копии FAT, поскольку в нем находятся файлы, необходимые загрузчику MS-DOS.

При поиске файла на диске MS-DOS вынуждена просматривать структуру каталога, чтобы найти его. Например, чтобы запустить исполняемый файл С:\Program\NC4\nc.exe находит исполнимый файл, выполнив следующие действия:

    читает корневой каталог диска C: и ищет в нем каталог Program;

    читает начальный кластер Program и ищет в этом каталоге запись о вложенном каталоге NC4;

    читает начальный кластер вложенного каталога NC4 и ищет в нем запись о файле nc.exe;

    читает все кластеры файла nc.exe.

Такой способ поиска не является самым быстрым среди действующих файловых систем. Причем, чем больше глубина каталогов, тем медленнее будет происходить поиск. Для ускорения операции поиска следует придерживаться сбалансированной файловой структуры.

Достоинства FAT

    Является лучшим выбором для логических дисков небольшого размера, т.к. стартует с минимальными накладными расходами. На дисках, размер которых не превышает 500 МБ, она работает с приемлемыми характеристиками.

Недостатки FAT

    Поскольку размер записи о файле ограничен 32 байтами, а информация должна включать в себя и размер файла и дату, и атрибуты и т.д., то размер под название файла также ограничен и не может превышать 8+3 символа на каждый файл. Использование так называемых коротких имен файлов делает FAT менее привлекательной для использования по сравнению с другими файловыми системами.

    Использование FAT на дисках, объем которых превышает 500 МБ нерационально по причине дефрагментации диска.

    Файловая система FAT не обладает никакими средствами защиты и поддерживает минимальные возможности по обеспечению безопасности информации.

    Скорость выполнения операций в FAT происходит обратно пропорционально глубине вложенности каталогов и объему диска.

    Файловая система UNIX – систем (ext3)

Современная, мощная и бесплатная операционная система Linux предоставляет широкую территорию для разработки современных систем и пользовательского программного обеспечения. Некоторые из наиболее интересных разработок в недавних ядрах Linux это новые, высоко производительные технологии для управления хранением, размещением и обновлением данных на диске. Один из наиболее интересных механизмов – это файловая система ext3, которая интегрируется в ядро Linux начиная с версии 2.4.16, и уже доступна по умолчанию в Linux дистрибутивах от компаний Red Hat и SuSE.

Файловая система ext3 является журналируемой файловой системой, 100% совместимой со всеми утилитами созданными для создания, управления и тонкой настройки файловой системы ext2, которая используется в Linux системах несколько последних лет. Перед детальным описанием различий между файловыми системами ext2 и ext3, уточним терминологию файловых систем и хранения файлов.

На системном уровне, все данные на компьютере существуют как блоки данных на неком устройстве хранения, организованных с помощью специальных структур данных в разделы (логические наборы на устройстве хранения), которые в свою очередь организованы в файлы, директории и неиспользуемое (свободное) пространство.

Файловые системы созданы на разделах диска для упрощения хранения и организации данных в форме файлов и директорий. Linux, как Unix система, использует иерархическую файловую систему составленную из файлов и директорий, которые соответственно содержат либо файлы либо каталоги. Файлы и директории в файловой системе Linux становятся доступным пользователю путем их монтирования (команда «mount»), которая обычно является частью процесса загрузки системы. Список файловых систем доступных для использования хранится в файле /etc/fstab (FileSystem TABle). Список файловых систем не смонтированных в данные момент системой хранится в файле /etc/mtab (Mount TABle).

В момент монтирования файловой системы в процессе загрузки, бит в заголовке («чистый бит» / «clean bit») стирается, это означает что файловая система используется, и что структуры данных используемые для управления размещением и организации файлов и директорий, в данной файловой системы могут быть изменены.

Файловая система расценивается как целостная если все блоки данных в ней либо используются, либо свободны; каждый размещенный блок данных занят одним и только одним файлом или директорией; все файлы и директории могут быть доступны после обработки серии других директорий в файловой системе. Когда система Linux намеренно прекращает работу используя команды оператора, все файловые системы размонтируются. Размонтирование файловой системы в процессе завершения работы устанавливает «чистый бит» в заголовок файловой системы, указывая на то, что файловая система была размонтирована должным образом и, тем самым, может рассматриваться как целостная.

Года отладки и переработки файловой системы и использование улучшенных алгоритмов для записи данных на диск в большой степени уменьшили повреждение данных вызываемых приложениями или самим ядром Linux, но устранение повреждения и потери данных в связи с отключением питания и другими системными проблемами до сих пор является сложной задачей. В случае аварийной остановки или простого отключения Linux системы без использования стандартных процедур остановки работы «чистый бит» в заголовке файловой системы не устанавливается. При следующей загрузке системы, процесс монтировки обнаруживает, что система не маркирована как «чистая», и физически проверяет ее целостность использую Linux/Unix утилиту проверки файловой системы "fsck" (File System ChecK).

Существует несколько журналируемых файловых систем доступных для Linux. Наиболее известные из них: XFS, журналируемая файловая система разработанная Silicon Graphics, но сейчас выпущенная открытым кодом (open source); RaiserFS, журналируемая файловая система разработанная специально для Linux; JFS, журналируемая файловая система первоначально разработанная IBM, но сейчас выпущенная как открытый код; ext3 – файловая система разработанная доктором Стефаном Твиди (Stephan Tweedie) в Red Hat, и несколько других систем.

Файловая система ext3 – это журналируемая версия Linux файловой системы ext2. Файловая система ext3 имеет одно значительно преимущество перед другими журналируемыми файловыми системами – она полностью совместима с файловой системой ext2. Это делает возможным использование всех существующих приложений разработанных для манипуляции и настройки файловой системы ext2.

Файловая система ext3 поддерживается ядрами Linux версии 2.4.16 и более поздними, и должна быть активизирована использованием диалога конфигурации файловых систем (Filesystems Configuration) при сборке ядра. В Linux дистрибутивы, такие как Red Hat 7.2 и SuSE 7.3 уже включена встроенная поддержка файловой системы ext3. Вы можете использовать файловую систему ext3 только в том случае, когда поддержка ext3 встроена в ваше ядро и у вас есть последние версии утилит «mount» и «e2fsprogs».

В большинстве случаев перевод файловых систем из одного формата в другой влечет за собой резервное копирование всех содержащихся данных, переформатирование разделов или логических томов, содержащих файловую систему, и затем восстановление всех данных на эту файловую систему. В связи с совместимостью файловых систем ext2 и ext3, все эти действия можно не проводить, и перевод может быть сделать с помощью одной команды (запущенной с полномочиями root):

# /sbin/tune2fs -j <имя-раздела >

Например, перевод файловой системы ext2 расположенной на разделе /dev/hda5 в файловую систему ext3 может быть осуществлен с помощью следующей комманды:

# /sbin/tune2fs -j /dev/hda5

Опция "-j" команды "tune2fs" создает журнал ext3 на существующей ext2 файловой системе. После перевода файловой системы ext2 в ext3, вы так же должны внести изменения в записи файла /etc/fstab, для указания что теперь раздел является файловой системой "ext3". Так же вы можете использовать авто определение типа раздела (опция «auto»), но все же рекомендуется явно указывать тип файловой системы. Следующий пример файл /etc/fstab показывает изменения до и после перевода файловой системы для раздела /dev/hda5:

/dev/ hda5 /opt ext2 defaults 1 2

/dev/ hda5 /opt ext3 defaults 1 0

Последнее поле в /etc/fstab указывает этап в загрузке, во время которого целостность файловой системы должна быть проверена с помощью утилиты «fsck». При использовании файловой системы ext3, вы можете установить это значение в «0», как показано на предыдущем примере. Это означает что программа "fsck" никогда не будет проверять целостность файловой системе, в связи с тем что целостность файловой системы гарантируется путем отката в журнале.

Перевод корневой файловой системы в ext3 требует особого подхода, и лучше всего его проводить в режиме одного пользователя (single user mode) после создания RAM диска поддерживающего файловую систему ext3.

Кроме совместимости с утилитами файловой системы ext2 и простым переводом файловой системы из ext2 в ext3, файловая система ext3 так же предлагает несколько различных типов журнилирования.

Файловая система ext3 поддерживает три различных режима журналирования, которые могут быть активированы из файла /etc/fstab. Эти режимы журналирования следующие:

    Журнал / journal – запись всех изменений данных файловой системы и мета-данных. Наиболее медленный из всех трех режимов журналирования. Этот режим минимизирует шанс потери изменений файлов которые вы проводите в файловой системе.

    Последовательный / ordered – записываются изменения только мета-данных файловой системы, но записывает обновления данных файла на диск перед изменениями ассоциируемых мета-данных файловой системы. Этот режим журналирования ext3 установлен по умолчанию.

    Обратная запись / writeback – записываются только изменения мета-данных файловой системы, основан на стандартном процессе записи изменений данных файлов. Это наиболее быстрый метод журналирования.

Различия между этими режимами журналирования одновременно и едва заметны, и основательны. Использование режима «журнал» требует, что бы файловая система ext3 записывала каждое изменение файловой системы дважды – первый раз в журнал, а затем в саму файловую систему. Это может снизить общую производительность вашей файловой системы, но этот режим наиболее любим пользователями, потому что он минимизирует шанс потери изменения данных ваших файлов, так как и изменения мета - данных и изменения данный файлов записывается в журнал ext3 и может быть повторено при перезагрузке системы.

Используя «последовательный» режим, записываются только изменения мета - данных файловой системы, что понижает избыточность между записью в файловую систему и в журнал, именно в связи с эти метод более быстрый. Не смотря на то, что изменения данных файла не записываются в журнал, они должны быть сделаны до изменений ассоциируемых мета - данных файловой системы, которые проводит журналирующий ext3 демон, что может немного снизить производительность вашей системы. Использование этого метода журналирования гарантирует что файлы в файловой системе никогда не будет рассинхронизированы со связанными мета-данными файловой системы.

Метод «обратная запись» наиболее быстрый, чем остальные два журналируемых метода, так как хранятся данные только о изменениях мета-данных файловой системы, и нет ожидания изменения ассоциируемых данных файла при записи (перед обновлением таких вещей как размер файла и информация о директории). Так как обновление данных файла производиться асинхронно по отношению к журналируемым изменениям мета-данных файловой системы, файлы в файловой системе могут показывать ошибки в мета-данных, например ошибка в указании владельца блоков данных (обновление которых к моменту перезагрузки системы было не закончено). Это не фатально, но может помешать пользователю.

Указание журналируемого режима, используемого в ext3 файловой системе производиться в файле /etc/fstab для этой файловой системы. «Последовательный» режим используется по умолчанию, но вы можете указать различные режимы журналирования, путем изменения опций для требуемого раздела в файле /etc/fstab. Например, запись в /etc/fstab указывающая на использование режима журналирования «обратная запись» будет выглядеть следующим образом:

/dev/hda5 /opt ext3 data=writeback 1 0

    Файловая система семейства Windows NT (NTFS)

      Физическая структура NTFS

Начнем с общих фактов. Раздел NTFS, теоретически, может быть почти какого угодно размера. Предел, конечно, есть, но я даже не буду указывать его, так как его с запасом хватит на последующие сто лет развития вычислительной техники - при любых темпах роста. Как обстоит с этим дело на практике? Почти так же. Максимальный размер раздела NTFS в данный момент ограничен лишь размерами жестких дисков. NT4, правда, будет испытывать проблемы при попытке установки на раздел, если хоть какая-нибудь его часть отступает более чем на 8 Гб от физического начала диска, но эта проблема касается лишь загрузочного раздела.

Лирическое отступление. Метод инсталляции NT4.0 на пустой диск довольно оригинален и может навести на неправильные мысли о возможностях NTFS. Если вы укажете программе установки, что желаете отформатировать диск в NTFS, максимальный размер, который она вам предложит, будет всего 4 Гб. Почему так мало, если размер раздела NTFS на самом деле практически неограничен? Дело в том, что установочная секция просто не знает этой файловой системы:) Программа установки форматирует этот диск в обычный FAT, максимальный размер которого в NT составляет 4 Гбайт (с использованием не совсем стандартного огромного кластера 64 Кбайта), и на этот FAT устанавливает NT. А вот уже в процессе первой загрузки самой операционной системы (еще в установочной фазе) производится быстрое преобразование раздела в NTFS; так что пользователь ничего и не замечает, кроме странного "ограничения" на размер NTFS при установке. :)

      Структура раздела - общий взгляд

Как и любая другая система, NTFS делит все полезное место на кластеры - блоки данных, используемые единовременно. NTFS поддерживает почти любые размеры кластеров - от 512 байт до 64 Кбайт, неким стандартом же считается кластер размером 4 Кбайт. Никаких аномалий кластерной структуры NTFS не имеет, поэтому на эту, в общем-то, довольно банальную тему, сказать особо нечего.

Диск NTFS условно делится на две части. Первые 12% диска отводятся под так называемую MFT зону - пространство, в которое растет метафайл MFT (об этом ниже). Запись каких-либо данных в эту область невозможна. MFT-зона всегда держится пустой - это делается для того, чтобы самый главный, служебный файл (MFT) не фрагментировался при своем росте. Остальные 88% диска представляют собой обычное пространство для хранения файлов.

Свободное место диска, однако, включает в себя всё физически свободное место - незаполненные куски MFT-зоны туда тоже включаются. Механизм использования MFT-зоны таков: когда файлы уже нельзя записывать в обычное пространство, MFT-зона просто сокращается (в текущих версиях операционных систем ровно в два раза), освобождая таким образом место для записи файлов. При освобождении места в обычной области MFT зона может снова расширится. При этом не исключена ситуация, когда в этой зоне остались и обычные файлы: никакой аномалии тут нет. Что ж, система старалась оставить её свободной, но ничего не получилось. Жизнь продолжается... Метафайл MFT все-таки может фрагментироваться, хоть это и было бы нежелательно.

      MFT и его структура

Файловая система NTFS представляет собой выдающееся достижение структуризации: каждый элемент системы представляет собой файл - даже служебная информация. Самый главный файл на NTFS называется MFT, или Master File Table - общая таблица файлов. Именно он размещается в MFT зоне и представляет собой централизованный каталог всех остальных файлов диска, и, как не парадоксально, себя самого. MFT поделен на записи фиксированного размера (обычно 1 Кбайт), и каждая запись соответствует какому либо файлу (в общем смысле этого слова). Первые 16 файлов носят служебный характер и недоступны операционной системе - они называются метафайлами, причем самый первый метафайл - сам MFT. Эти первые 16 элементов MFT - единственная часть диска, имеющая фиксированное положение. Интересно, что вторая копия первых трех записей, для надежности (они очень важны) хранится ровно посередине диска. Остальной MFT-файл может располагаться, как и любой другой файл, в произвольных местах диска - восстановить его положение можно с помощью его самого, "зацепившись" за самую основу - за первый элемент MFT.

        Метафайлы

Первые 16 файлов NTFS (метафайлы) носят служебный характер. Каждый из них отвечает за какой-либо аспект работы системы. Преимущество настолько модульного подхода заключается в поразительной гибкости - например, на FAT-е физическое повреждение в самой области FAT фатально для функционирования всего диска, а NTFS может сместить, даже фрагментировать по диску, все свои служебные области, обойдя любые неисправности поверхности - кроме первых 16 элементов MFT.

Метафайлы находятся корневом каталоге NTFS диска - они начинаются с символа имени "$", хотя получить какую-либо информацию о них стандартными средствами сложно. Любопытно, что и для этих файлов указан вполне реальный размер - можно узнать, например, сколько операционная система тратит на каталогизацию всего вашего диска, посмотрев размер файла $MFT. В следующей таблице приведены используемые в данный момент метафайлы и их назначение.

копия первых 16 записей MFT, размещенная посередине диска

файл поддержки журналирования (см. ниже)

служебная информация - метка тома, версия файловой системы, т.д.

список стандартных атрибутов файлов на томе

корневой каталог

карта свободного места тома

загрузочный сектор (если раздел загрузочный)

файл, в котором записаны права пользователей на использование дискового пространства (начал работать лишь в NT5)

файл - таблица соответствия заглавных и прописных букв в имен файлов на текущем томе. Нужен в основном потому, что в NTFS имена файлов записываются в Unicode, что составляет 65 тысяч различных символов, искать большие и малые эквиваленты которых очень нетривиально.

        Файлы и потоки

Итак, у системы есть файлы - и ничего кроме файлов. Что включает в себя это понятие на NTFS?

    Прежде всего, обязательный элемент - запись в MFT, ведь, как было сказано ранее, все файлы диска упоминаются в MFT. В этом месте хранится вся информация о файле, за исключением собственно данных. Имя файла, размер, положение на диске отдельных фрагментов, и т.д. Если для информации не хватает одной записи MFT, то используются несколько, причем не обязательно подряд.

    Опциональный элемент - потоки данных файла. Может показаться странным определение "опциональный", но, тем не менее, ничего странного тут нет. Во-первых, файл может не иметь данных - в таком случае на него не расходуется свободное место самого диска. Во-вторых, файл может иметь не очень большой размер. Тогда идет в ход довольно удачное решение: данные файла хранятся прямо в MFT, в оставшемся от основных данных месте в пределах одной записи MFT. Файлы, занимающие сотни байт, обычно не имеют своего "физического" воплощения в основной файловой области - все данные такого файла хранятся в одном месте - в MFT.

Довольно интересно обстоит дело и с данными файла. Каждый файл на NTFS, в общем-то, имеет несколько абстрактное строение - у него нет как таковых данных, а есть потоки (streams). Один из потоков и носит привычный нам смысл - данные файла. Но большинство атрибутов файла - тоже потоки! Таким образом, получается, что базовая сущность у файла только одна - номер в MFT, а всё остальное опционально. Данная абстракция может использоваться для создания довольно удобных вещей - например, файлу можно "прилепить" еще один поток, записав в него любые данные - например, информацию об авторе и содержании файла, как это сделано в Windows 2000 (самая правая закладка в свойствах файла, просматриваемых из проводника). Интересно, что эти дополнительные потоки не видны стандартными средствами: наблюдаемый размер файла - это лишь размер основного потока, который содержит традиционные данные. Можно, к примеру, иметь файл нулевой длинны, при стирании которого освободится 1 Гбайт свободного места - просто потому, что какая-нибудь хитрая программа или технология прилепила в нему дополнительный поток (альтернативные данные) гигабайтового размера. Но на самом деле в текущий момент потоки практически не используются, так что опасаться подобных ситуаций не следует, хотя гипотетически они возможны. Просто имейте в виду, что файл на NTFS - это более глубокое и глобальное понятие, чем можно себе вообразить просто просматривая каталоги диска. Ну и напоследок: имя файла может содержать любые символы, включая полый набор национальных алфавитов, так как данные представлены в Unicode - 16-битном представлении, которое дает 65535 разных символов. Максимальная длина имени файла - 255 символов.

      Каталоги

Каталог на NTFS представляет собой специфический файл, хранящий ссылки на другие файлы и каталоги, создавая иерархическое строение данных на диске. Файл каталога поделен на блоки, каждый из которых содержит имя файла, базовые атрибуты и ссылку на элемент MFT, который уже предоставляет полную информацию об элементе каталога. Внутренняя структура каталога представляет собой бинарное дерево. Вот что это означает: для поиска файла с данным именем в линейном каталоге, таком, например, как у FAT-а, операционной системе приходится просматривать все элементы каталога, пока она не найдет нужный. Бинарное же дерево располагает имена файлов таким образом, чтобы поиск файла осуществлялся более быстрым способом - с помощью получения двухзначных ответов на вопросы о положении файла. Вопрос, на который бинарное дерево способно дать ответ, таков: в какой группе, относительно данного элемента, находится искомое имя - выше или ниже? Мы начинаем с такого вопроса к среднему элементу, и каждый ответ сужает зону поиска в среднем в два раза. Файлы, скажем, просто отсортированы по алфавиту, и ответ на вопрос осуществляется очевидным способом - сравнением начальных букв. Область поиска, суженная в два раза, начинает исследоваться аналогичным образом, начиная опять же со среднего элемента.

Вывод - для поиска одного файла среди 1000, например, FAT придется осуществить в среднем 500 сравнений (наиболее вероятно, что файл будет найден на середине поиска), а системе на основе дерева - всего около 10-ти (2^10 = 1024). Экономия времени поиска налицо. Не стоит, однако думать, что в традиционных системах (FAT) всё так запущено: во-первых, поддержание списка файлов в виде бинарного дерева довольно трудоемко, а во-вторых - даже FAT в исполнении современной системы (Windows2000 или Windows98) использует сходную оптимизацию поиска. Это просто еще один факт в вашу копилку знаний. Хочется также развеять распространенное заблуждение (которое я сам разделял совсем еще недавно) о том, что добавлять файл в каталог в виде дерева труднее, чем в линейный каталог: это достаточно сравнимые по времени операции - дело в том, что для того, чтобы добавить файл в каталог, нужно сначала убедится, что файла с таким именем там еще нет:) - и вот тут-то в линейной системе у нас будут трудности с поиском файла, описанные выше, которые с лихвой компенсируют саму простоту добавления файла в каталог.

Какую информацию можно получить, просто прочитав файл каталога? Ровно то, что выдает команда dir. Для выполнения простейшей навигации по диску не нужно лазить в MFT за каждым файлом, надо лишь читать самую общую информацию о файлах из файлов каталогов. Главный каталог диска - корневой - ничем не отличается об обычных каталогов, кроме специальной ссылки на него из начала метафайла MFT.

      Журналирование

NTFS - отказоустойчивая система, которая вполне может привести себя в корректное состояние при практически любых реальных сбоях. Любая современная файловая система основана на таком понятии, как транзакция - действие, совершаемое целиком и корректно или не совершаемое вообще. У NTFS просто не бывает промежуточных (ошибочных или некорректных) состояний - квант изменения данных не может быть поделен на до и после сбоя, принося разрушения и путаницу - он либо совершен, либо отменен.

Пример 1: осуществляется запись данных на диск. Вдруг выясняется, что в то место, куда мы только что решили записать очередную порцию данных, писать не удалось - физическое повреждение поверхности. Поведение NTFS в этом случае довольно логично: транзакция записи откатывается целиком - система осознает, что запись не произведена. Место помечается как сбойное, а данные записываются в другое место - начинается новая транзакция.

Пример 2: более сложный случай - идет запись данных на диск. Вдруг, бах - отключается питание и система перезагружается. На какой фазе остановилась запись, где есть данные, а где чушь? На помощь приходит другой механизм системы - журнал транзакций. Дело в том, что система, осознав свое желание писать на диск, пометила в метафайле $LogFile это свое состояние. При перезагрузке это файл изучается на предмет наличия незавершенных транзакций, которые были прерваны аварией и результат которых непредсказуем - все эти транзакции отменяются: место, в которое осуществлялась запись, помечается снова как свободное, индексы и элементы MFT приводятся в с состояние, в котором они были до сбоя, и система в целом остается стабильна. Ну а если ошибка произошла при записи в журнал? Тоже ничего страшного: транзакция либо еще и не начиналась (идет только попытка записать намерения её произвести), либо уже закончилась - то есть идет попытка записать, что транзакция на самом деле уже выполнена. В последнем случае при следующей загрузке система сама вполне разберется, что на самом деле всё и так записано корректно, и не обратит внимания на "незаконченную" транзакцию.

И все-таки помните, что журналирование - не абсолютная панацея, а лишь средство существенно сократить число ошибок и сбоев системы. Вряд ли рядовой пользователь NTFS хоть когда-нибудь заметит ошибку системы или вынужден будет запускать chkdsk - опыт показывает, что NTFS восстанавливается в полностью корректное состояние даже при сбоях в очень загруженные дисковой активностью моменты. Вы можете даже оптимизировать диск и в самый разгар этого процесса нажать reset - вероятность потерь данных даже в этом случае будет очень низка. Важно понимать, однако, что система восстановления NTFS гарантирует корректность файловой системы, а не ваших данных. Если вы производили запись на диск и получили аварию - ваши данные могут и не записаться. Чудес не бывает.

Файлы NTFS имеют один довольно полезный атрибут - "сжатый". Дело в том, что NTFS имеет встроенную поддержку сжатия дисков - то, для чего раньше приходилось использовать Stacker или DoubleSpace. Любой файл или каталог в индивидуальном порядке может хранится на диске в сжатом виде - этот процесс совершенно прозрачен для приложений. Сжатие файлов имеет очень высокую скорость и только одно большое отрицательное свойство - огромная виртуальная фрагментация сжатых файлов, которая, правда, никому особо не мешает. Сжатие осуществляется блоками по 16 кластеров и использует так называемые "виртуальные кластеры" - опять же предельно гибкое решение, позволяющее добиться интересных эффектов - например, половина файла может быть сжата, а половина - нет. Это достигается благодаря тому, что хранение информации о компрессированности определенных фрагментов очень похоже на обычную фрагментацию файлов: например, типичная запись физической раскладки для реального, несжатого, файла:

кластеры файла с 1 по 43-й хранятся в кластерах диска начиная с 400-го кластеры файла с 44 по 52-й хранятся в кластерах диска начиная с 8530-го...

Физическая раскладка типичного сжатого файла:

кластеры файла с 1 по 9-й хранятся в кластерах диска начиная с 400-го кластеры файла с 10 по 16-й нигде не хранятся кластеры файла с 17 по 18-й хранятся в кластерах диска начиная с 409-го кластеры файла с 19 по 36-й нигде не хранятся....

Видно, что сжатый файл имеет "виртуальные" кластеры, реальной информации в которых нет. Как только система видит такие виртуальные кластеры, она тут же понимает, что данные предыдущего блока, кратного 16-ти, должны быть разжаты, а получившиеся данные как раз заполнят виртуальные кластеры - вот, по сути, и весь алгоритм.

      Безопасность

NTFS содержит множество средств разграничения прав объектов - есть мнение, что это самая совершенная файловая система из всех ныне существующих. В теории это, без сомнения, так, но в текущих реализациях, к сожалению, система прав достаточно далека от идеала и представляет собой хоть и жесткий, но не всегда логичный набор характеристик. Права, назначаемые любому объекту и однозначно соблюдаемые системой, эволюционируют - крупные изменения и дополнения прав осуществлялись уже несколько раз и к Windows 2000 все-таки они пришли к достаточно разумному набору.

Права файловой системы NTFS неразрывно связаны с самой системой - то есть они, вообще говоря, необязательны к соблюдению другой системой, если ей дать физический доступ к диску. Для предотвращения физического доступа в Windows2000 (NT5) всё же ввели стандартную возможность - об этом см. ниже. Система прав в своем текущем состоянии достаточно сложна, и я сомневаюсь, что смогу сказать широкому читателю что-нибудь интересное и полезное ему в обычной жизни. Если вас интересует эта тема - вы найдете множество книг по сетевой архитектуре NT, в которых это описано более чем подробно.

На этом описание строение файловой системы можно закончить, осталось описать лишь некоторое количество просто практичных или оригинальных вещей.

Эта штука была в NTFS с незапамятных времен, но использовалась очень редко - и тем не менее: Hard Link - это когда один и тот же файл имеет два имени (несколько указателей файла-каталога или разных каталогов указывают на одну и ту же MFT запись). Допустим, один и тот же файл имеет имена 1.txt и 2.txt: если пользователь сотрет файл 1, останется файл 2. Если сотрет 2 - останется файл 1, то есть оба имени, с момента создания, совершенно равноправны. Файл физически стирается лишь тогда, когда будет удалено его последнее имя.

      Symbolic Links (NT5)

Гораздо более практичная возможность, позволяющая делать виртуальные каталоги - ровно так же, как и виртуальные диски командой subst в DOSе. Применения достаточно разнообразны: во-первых, упрощение системы каталогов. Если вам не нравится каталог Documents and settings\Administrator\Documents, вы можете прилинковать его в корневой каталог - система будет по прежнему общаться с каталогом с дремучим путем, а вы - с гораздо более коротким именем, полностью ему эквивалентным. Для создания таких связей можно воспользоваться программой junction (junction.zip(15 Kb), 36 кб), которую написал известный специалист Mark Russinovich (http://www.sysinternals.com). Программа работает только в NT5 (Windows 2000), как и сама возможность. Для удаления связи можно воспользоваться стандартной командой rd. ВНИМАНИЕ: Попытка удаления связи с помощью проводника или других файловых менеджеров, не понимающих виртуальную природу каталога (например, FAR), приведет к удалению данных, на которые ссылается ссылка! Будьте осторожны.

      Шифрование (NT5)

Полезная возможность для людей, которые беспокоятся за свои секреты - каждый файл или каталог может также быть зашифрован, что не даст возможность прочесть его другой инсталляцией NT. В сочетании со стандартным и практически непрошибаемым паролем на загрузку самой системы, эта возможность обеспечивает достаточную для большинства применений безопасность избранных вами важных данных.

Операционная система, которая является основой работы любой компьютерной техники, организует работу с электронными данными, следуя определенному алгоритму, в цепочке которого файловая система не является невостребованной. Что собой представляет вообще файловая система, и какие ее виды применимы в современное время и попытаемся изложить в этой статье.

Описание общих характеристик файловой системы

ФС - это, как уже указано выше, часть операционной системы, которая связана непосредственно с размещением, удалением, перемещением электронной информации на определенном носителе, а также безопасностью ее дальнейшего использования в будущем. Именно это ресурс также применим в случаях, когда требуется восстановление утерянной информации по причине программного сбоя, как такового. То есть это основной инструмент работы с электронными файлами.

Виды файловой системы

На каждом компьютерном устройстве применим особый тип ФС. Особо распространенные следующие ее типы:

Предназначенная для жестких дисков;
- предназначенная для магнитных лент;
- предназначенная для оптических носителей;
- виртуальная;
- сетевая.

Естественно, что основной логической единицей работы с электронными данными является файл, под которым подразумевается документ с систематизированной в нем информацией определенного характера, который имеет свое наименование, что облегчает работу пользователя с большим потоком электронных документов.
Итак, абсолютно вся, используемая операционкой инфа, трансформируется в файлы, независимо от того текст это или изображения, или звук, или видео, или фото. Помимо всего прочего драйвера и программные библиотеки, тоже имеют транскрипцию оных.

У каждой информационной единицы есть имя, определенное расширение, размер, свойственные характеристики, тип. А вот ФС – это их совокупность, а также принципы работы со всеми ними.

В зависимости от того какие свойственные особенности присущи системе, с такими данными она и будет эффективно работать. А это и есть предпосылкой классификации ее на типы и виды.

Взгляд на файловую систему с точки зрения программирования

Изучая понятие ФС, следует понимать, что это многоуровневая составляющая, на первом из которых преобладает трансформатор файловых систем, обеспечивающий эффективное взаимодействие между самой системой и определенным программным приложением. Именно он отвечает за преобразование запроса к электронным данным в определенный формат, который и распознается драйверами, что влечет за собой эффективную работу с файлами, то есть к ним открывается доступ.

У современных приложений, которые имеют стандарт работы клиент-сервер, требования к ФС очень высоки. Ведь современные системы просто обязаны обеспечивать самый эффективнейший доступ ко всем имеющимся типам электронных единиц, а также оказывать колоссальную поддержку носителей больших объемов, а также устанавливать защиту всех данных от нежелательного доступа иными пользователями, а также обеспечивать целостность информации, хранимой в электронном формате.

Ниже мы рассмотрим все существующие на сегодня ФС и их достоинства и недостатки.

FAT
Это самый древний тип файловой системы, который был разработан еще в далеком 1977 году. Она работала с операционкой ОС 86-DOS и не способна работать с жесткими носителями информации, и рассчитана на гибкие их типы и хранение информации до одного мегабайта. Если ограничение размера инфы сегодня не актуально, то иные показатели остались востребованными в неизменном виде.

Эта файловая система использовалась ведущей компанией разработчиком программных приложений – Майкрософт для такой операционки, как ОС MS-DOS 1.0.
Файлы этой системы имеют ряд характерных свойств:

Имя информационной единицы должно содержать в своем начале букву или цифру, а дальнейшее содержание наименование может включать различные символы клавиатуры компа;
- имя файла не должно превышать восьми символов, в конце имени ставится точка, после которой следует расширение из трех букв;
- для создания имени файла может использоваться любой регистр раскладки клавиатуры.

С самого начала разработки файловая система FAT была направлена на работу с операционкой ОС DOS, она не была заинтересована в сохранении данных о пользователе или владельце информации.

Благодаря всевозможным модификациям этой ФС, она стала самой востребованной в современное время и на ее основе работают самые инновационные операционные системы.

Именно данная файловая система способна сохранять файлы в неизменном виде, если компьютерная техника выключилась неверно в силу, например, отсутствия зарядки батареи или выключения света.

Во многих операционных системах, с которыми работает FAT, лежат определенные программные утилиты, корректирующие и проверяющие само дерево содержания ФС и файлы.

NTFS
С операционкой ОС Windows NT работает современная файловая система NTFS, в принципе на нее она и была нацелена. В ее составе действует утилита convert, которая отвечает за конвертацию томов с формата HPFS или FAT, в формат томов NTFS.

Она более модернизирована по сравнению с первым описанным выше вариантом. В этой версии расширены возможности касаемо непосредственного управления доступом ко всем информационным единицам. Здесь можно пользоваться множеством полезных атрибутов, динамическим сжатием файлов, отказоустойчивостью. Одним из преимуществ оной является и поддержка требований POSIX стандарта.

Эта файловая система позволяет создавать информационные файлы с именами длинной в 255 символов.

Если операционка, которая работает с данной файловой системой, дает сбой, то не нужно переживать за сохранность всех файлов. Они остаются в целостности и невредимости, поскольку этот тип файловой системы имеет свойство самовосстанавливаться.

Особенностью ФС NTFS является ее структура, которая представлена в виде определенной таблицы. Первые шестнадцать записей в реестре - это содержание самой файловой системы. Каждая отдельная электронная единица тоже имеет вид таблицы, которая содержит информацию о таблице, зеркальный файл в формате MFT, файл регистрации, используемый при необходимости восстановления информации и последующие данные – это информация о самом файле и его данные, которые были сохранены непосредственно на жестком диске.

Все выполняемые команды с файлами имеют свойство сохраняться, что помогает впоследствии восстанавливаться системе самостоятельно после сбоя операционной системы, с которой она работает.

EFS
Очень распространенной является файловая система EFS, которая считается шифрованной. Она работает с операционкой Windows. Эта система обуславливает сохранение файлов на жестком диске в зашифрованном виде. Это самая действенная защита всех файлов.
Шифрование устанавливается в свойствах файла с помощью галочки напротив вкладки, говорящей о возможности шифровки. Воспользовавшись этой функцией можно указывать, кому доступны для просмотра файлы, то есть, кому разрешено с ними работать.

RAW
Файловые элементы – это самые уязвимые единицы программирования. Ведь именно они и являются информацией, которая хранится на дисках компьютерной техники. Они могут повреждаться, удаляться, скрываться. В общем, работа пользователя только и нацелена на создание, сохранение и перемещение оных.
Операционная система не всегда показывает идеальные свойства своей работы и имеет характерность выходить из строя. Происходит это по многим причинам. Но сейчас не об этом.

Очень многие пользователи сталкиваются с уведомлением о том, что повреждена система RAW. Это действительно ФС или нет? Таким вопросом задаются многие. Оказывается, это не совсем так. Если объяснять на уровне языка программирования, то RAW – это ошибка, а именно логическая ошибка, которая внедрена уже в операционку Windows в целях обезопасить ее от выхода из строя. Если техника выдает какие-то сообщения по поводу RAW, значит нужно иметь в виду, что под угрозой структура файловой системы, которая работает неверно либо ей грозит постепенное разрушение.

Если такая проблема на лицо, то вы не сможете получить доступ ни к одному файлу в компе, а также он откажется выполнять и иные операционные команды.

UDF
Это файловая система для оптических дисков, котрая имеет свои особенности:

Наименования файлов не должны превышать 255 символов;
- именной регистр может быть как нижним, так и верхним.

Работает она с операционкой Windows XP.

EXFAT
И еще одна современная файловая система – EXFAT, которая является неким посредническим звеном между Windows и Linux, обеспечивающим эффективную трансформацию файлов из одной системы в иную, поскольку файлообменники у них разные. Используется она на переносных накопителях информации, таких как флешки.

Файловая система – это та система, которая используется в работе операционной системой Windows. Она необходима для упорядочивания и хранения данных на каком-либо диске. Именно она в ответе за хранение данных на винчестере. Давайте рассмотрим, что такое файловая система, и какие виды таких систем существуют.

Зачем нужна файловая система

Понять, какая же файловая система используется на вашем компьютере, можно, зайдя в папку под названием «Мой компьютер». Затем необходимо щелкнуть правой кнопкой мыши и выбрать пункт «свойства». В появившемся окне с информацией вы сможете прочесть следующую надпись: Файловая система: (название).

Совершенно не обязательно, что на каждом диске будет стоять одна и та же система файлов. Чтобы это узнать, необходимо просмотреть каждый диск.

Именно от правильного выбора файловой системы и будет зависеть безопасность вашего персонального компьютера, а операционная система не будет сбиваться и терять данные. Давайте рассмотрим, какие файловые системы могут находиться в Windows.

Виды файловых систем

FAT

Первое, что мы рассмотрим – это файловая система под названием FAT. Сегодня она встречается крайне редко, поэтому подробно останавливаться на ней не стоит. Самый большой её недостаток – это максимальный объём диска, который составляет всего 2 Гб, что в современных "железках" практически не встречается. Таким образом, если ваш диск имеет больший объём, то она перестаёт работать. Несколько лет тому назад 2 Гб – это был стандартный объём винчестера, и эта файловая система прекрасно там использовалась. Но сегодня она изжила себя и заняла почетное место на помойке истории.

Следующая файловая система – это знаменитый FAT 32. 32 – это разрядность системы. Данная версия является обновленной разновидностью предыдущей файловой системы. Если вы пользуетесь более ранней версией Windows, то у вас могут возникнуть некоторые проблемы при форматировании диска. Однако данная система гораздо стабильнее, чем её предшественница, а работа с файлами будет протекать намного быстрее.

NTFS

Теперь давайте рассмотрим, что такое файловая система NTFS. Данная система хранения файлов появилась сравнительно недавно и является более современной, чем две предыдущие. Однако, несмотря на огромное количество достоинств, она не обделена и недостатками. Большинство дисков, выпускаемых сегодня коммерческими фирмами, имеют именно такую файловую систему. Она хранит данные намного лучше, однако достаточно требовательна к ресурсам вашего компьютера.

Кроме того, в случае, когда логический диск имеет полную загрузку до 90 процентов, работа файловой системы резко понижается. Также, если операционная система окажется старше, чем Windows XP, то на ней такая файловая система работать просто откажется. Засунув диск в дисковод, ваш компьютер просто не сможет распознать его или будет отмечен как неизвестный раздел. Говоря о достоинствах, можно отметить, что работа такой файловой системы с малыми файлами проходит намного быстрее и качественнее. Самый большой размер, который может иметь диск – это 18 Тб. Здесь же имеется такое понятие, как фрагментация файлов. При ней работа файловой системы не будет замедляться, а продолжит работу в обычном режиме. Также при использовании NTFS вы можете быть целиком и полностью уверены, что порча файла не произойдет. Система очень экономно расходует пространство на диске и позволяет сжимать файлы до минимального размера, совершенно не портя их. Кстати, именно благодаря данной системе стало возможно восстановление данных в случае их потери. Соответственно, если сравнивать эту систему с FAT, то все преимущества налицо. Самое главное, что она вам сможет предложить - это безопасность.

UDF

Теперь пришел черед рассмотреть, что такое файловая система UDF. Эта файловая система, которая независима от операционной системы компьютера и используется для сохранения данных, размещенных на оптических носителях. В отличие от предыдущих систем, UDF позволяет дополнительно записывать информацию на уже заполненную дискету. Также эта файловая система может выборочно стирать определенные файлы на диске, не повреждая остальную информацию. Такие метаданные как корневая территория, располагаются внутри диска хаотично, но основа этих данных имеет три места: 256 сектор, 257 и N-1, в данном случае N – это размер дорожки.

Для дисков в формате DVD, именно UDF является наиболее удачной файловой системой, потому что не имеет совершенно никаких ограничений в размерах файлов. Вы можете записывать, как большие, так и малые видеоролики.

Именно благодаря UDF мы узнали, что такое конечная файловая система, и как её правильно подобрать к своему компьютеру.

Доброго времени суток уважаемый пользователь, в этой статье речь пойдет о такой теме, как файлы. А именно мы рассмотрим: Управление файлами , типы файлов , файловая структура , атрибуты файла .

Файловая система

Одной из основных задач ОС является предоставление удобств пользователю при работе с данными, хранящимися на дисках. Для этого ОС подменяет физическую структуру хранящихся данных некоторой удобной для пользователя логической моделью, которая реализуется в виде дерева каталогов, выводимого на экран такими утилитами, как Norton Commander, Far Manager или Windows Explorer. Базовым элементом этой модели является файл , который так же, как и файловая система в целом, может характеризоваться как логической, так и физической структурой.

Управление файлами

Файл – именованная область внешней памяти, предназначенная для считывания и записи данных.

Файлы хранятся в памяти, не зависящей от энергопитания. Исключением является электронный диск, когда в ОП создается структура, имитирующая файловую систему.

Файловая система (ФС) - это компонент ОС, обеспечивающий организацию создания, хранения и доступа к именованным наборам данных — файлам.

Файловая система включает:Файловая система включает:

  • Совокупность всех фалов на диске.
  • Наборы структур данных, используемых для управления файлами (каталоги файлов, дескрипторы файлов, таблицы распределения свободного и занятого пространства на диске).
  • Комплекс системных программных средств, реализующих различные операции над файлами: создание, уничтожение, чтение, запись, именование, поиск.

Задачи, решаемые ФС, зависят от способа организации вычислительного процесса в целом. Самый простой тип – это ФС в однопользовательских и однопрограммных ОС. Основные функции в такой ФС нацелены на решение следующих задач:

  • Именование файлов.
  • Программный интерфейс для приложений.
  • Отображения логической модели ФС на физическую организацию хранилища данных.
  • Устойчивость ФС к сбоям питания, ошибкам аппаратных и программных средств.

Задачи ФС усложняются в однопользовательских многозадачных ОС, которые предназначены для работы одного пользователя, но дают возможность запускать одновременно несколько процессов. К перечисленным выше задачам добавляется новая задача — совместный доступ к файлу из нескольких процессов.

Файл в этом случае является разделяемым ресурсом, а значит ФС должна решать весь комплекс проблем, связанных с такими ресурсами. В частности: должны быть предусмотрены средства блокировки файла и его частей, согласование копий, предотвращение гонок, исключение тупиков. В многопользовательских системах появляется еще одна задача: Защита файлов одного пользователя от несанкционированного доступа другого пользователя.

Еще более сложными становятся функции ФС, которая работает в составе сетевой ОС ей необходимо организовать защиту файлов одного пользователя от несанкционированного доступа другого пользователя.

Основное назначение файловой системы и соответствующей ей системы управления файлами – организация удобного управления файлами, организованными как файлы: вместо низкоуровневого доступа к данным с указанием конкретных физических адресов нужной нам записи, используется логический доступ с указанием имени файла и записи в нем.

Термины «файловая система» и «система управления файлами» необходимо различать: файловая система определяет, прежде всего, принципы доступа к данным, организованным как файлы. А термин «система управления файлами» следует употреблять по отношению к конкретной реализации файловой системы, т.е. это комплекс программных модулей, обеспечивающих работу с файлами в конкретной ОС.

Пример

Файловая система FAT (file allocation table) имеет множество реализаций как система управления файлами

  • Система, разработанная для первых ПК называлась просто FAT (сейчас ее называют просто FAT-12) . Ее разрабатывали для работы с дискетами, и некоторое время она использовалась для работы с жесткими дисками.
  • Потом ее усовершенствовали для работы с жесткими дисками большего объема, и эта новая реализация получила название FAT–16. это название используется и по отношению к СУФ самой MS-DOS.
  • Реализация СУФ для OS/2 называется super-FAT (основное отличие – возможность поддерживать для каждого файла расширенные атрибуты).
  • Есть версия СУФ и для Windows 9x/NT и т.д. (FAT-32).

Типы файлов

Обычные файлы : содержат информацию произвольного характера, которую заносит в них пользователь или которая образуется в результате работы системных и пользовательских программ. Содержание обычного файла определяется приложением, которое с ним работает.

Обычные файлы могут быть двух типов:

  1. Программные (исполняемые) – представляют собой программы, написанные на командном языке ОС, и выполняют некоторые системные функции (имеют расширения.exe, .com, .bat).
  2. Файлы данных – все прочие типы файлов: текстовые и графические документы, электронные таблицы, базы данных и др.

Каталоги – это, с одной стороны, группа файлов, объединенных пользователем исходя из некоторых соображений (например, файлы, содержащие программы игр, или файлы, составляющие один программный пакет), а с другой стороны – это особый тип файлов, которые содержат системную справочную информацию о наборе файлов, сгруппированных пользователями по какому-либо неформальному признаку (тип файла, расположение его на диске, права доступа, дата создания и модификация).

Специальные файлы – это фиктивные файлы, ассоциированные с устройствами ввода/вывода, которые используются для унификации механизма доступа к файлам и внешним устройствам. Специальные файлы позволяют пользователю осуществлять операции ввода/вывода посредством обычных команд записи с файлов или чтения из файлов. Эти команды обрабатываются сначала программами ФС, а затем на некотором этапе выполнения запроса преобразуются ОС в команды управления соответствующим устройством (PRN, LPT1 – для порта принтера (символьные имена, для ОС – это файлы), CON – для клавиатуры).

Пример . Copy con text1 (работа с клавиатурой).

Файловая структура

Файловая структура – вся совокупность файлов на диске и взаимосвязей между ними (порядок хранения файлов на диске).

Виды файловых структур:

  • простая , или одноуровневая : каталог представляет собой линейную последовательность файлов.
  • иерархическая или многоуровневая : каталог сам может входить в состав другого каталога и содержать внутри себя множество файлов и подкаталогов. Иерархическая структура может быть двух видов: «Дерево» и «Сеть». Каталоги образуют «Дерево», если файлу разрешено входить только в один каталог (ОС MS-DOS, Windows) и «Сеть» – если файл может входить сразу в несколько каталогов (UNIX).
  • Файловая структура может быть представлена в виде графа, описывающего иерархию каталогов и файлов:



Типы имен файлов

Файлы идентифицируются именами. Пользователи дают файлам символьные имена , при этом учитываются ограничения ОС как на используемые символы, так и на длину имени. В ранних файловых системах эти границы были весьма узкими. Так в популярной файловой системе FAT длина имен ограничивается известной схемой 8.3 (8 символов — собственно имя, 3 символа — расширение имени), а в ОС UNIX System V имя не может содержать более 14 символов.

Однако пользователю гораздо удобнее работать с длинными именами, поскольку они позволяют дать файлу действительно мнемоническое название, по которому даже через достаточно большой промежуток времени можно будет вспомнить, что содержит этот файл. Поэтому современные файловые системы, как правило, поддерживают длинные символьные имена файлов.

Например, Windows NT в своей файловой системе NTFS устанавливает, что имя файла может содержать до 255 символов, не считая завершающего нулевого символа.

При переходе к длинным именам возникает проблема совместимости с ранее созданными приложениями, использующими короткие имена. Чтобы приложения могли обращаться к файлам в соответствии с принятыми ранее соглашениями, файловая система должна уметь предоставлять эквивалентные короткие имена (псевдонимы) файлам, имеющим длинные имена. Таким образом, одной из важных задач становится проблема генерации соответствующих коротких имен.

Символьные имена могут быть трех типов: простые, составные и относительные:

  1. Простое имя идентифицирует файл в пределах одного каталога, присваивается файлам с учетом номенклатуры символа и длины имени.
  2. Полное имя представляет собой цепочку простых символьных имен всех каталогов, через которые проходит путь от корня до данного файла, имени диска, имени файла. Таким образом, полное имя является составным , в котором простые имена отделены друг от друга принятым в ОС разделителем.
  3. Файл может быть идентифицирован также относительным именем . Относительное имя файла определяется через понятие «текущий каталог». В каждый момент времени один из каталогов является текущим, причем этот каталог выбирается самим пользователем по команде ОС. Файловая система фиксирует имя текущего каталога, чтобы затем использовать его как дополнение к относительным именам для образования полного имени файла.

В древовидной файловой структуре между файлом и его полным именем имеется взаимно однозначное соответствие – «один файл — одно полное имя». В сетевой файловой структуре файл может входить в несколько каталогов, а значит может иметь несколько полных имен; здесь справедливо соответствие – «один файл — много полных имен».

Для файла 2.doc определить все три типа имени, при условии, что текущим каталогом является каталог 2008_год.

  • Простое имя: 2.doc
  • Полное имя: C:\2008_год\Документы\2.doc
  • Относительное имя: Документы\2.doc

Атрибуты файлов

Важной характеристикой файла являются атрибуты. Атрибуты – это информация, описывающая свойства файлов. Примеры возможных атрибутов файлов:

  • Признак «только для чтения» (Read-Only);
  • Признак «скрытый файл» (Hidden);
  • Признак «системный файл» (System);
  • Признак «архивный файл» (Archive);
  • Тип файла (обычный файл, каталог, специальный файл);
  • Владелец файла;
  • Создатель файла;
  • Пароль для доступа к файлу;
  • Информация о разрешенных операциях доступа к файлу;
  • Время создания, последнего доступа и последнего изменения;
  • Текущий размер файла;
  • Максимальный размер файла;
  • Признак «временный (удалить после завершения процесса)»;
  • Признак блокировки.

В файловых системах разного типа для характеристики файлов могут использоваться разные наборы атрибутов (например, в однопользовательской ОС в наборе атрибутов будут отсутствовать характеристики, имеющие отношение к пользователю и защите (создатель файла, пароль для доступа к файлу и т.д.).

Пользователь может получать доступ к атрибутам, используя средства, предоставленные для этих целей файловой системой. Обычно разрешается читать значения любых атрибутов, а изменять – только некоторые, например можно изменить права доступа к файлу, но нельзя изменить дату создания или текущий размер файла.

Права доступа к файлу

Определить права доступа к файлу — значит определить для каждого пользователя набор операций, которые он может применить к данному файлу. В разных файловых системах может быть определен свой список дифференцируемых операций доступа. Этот список может включать следующие операции:

  • создание файла.
  • уничтожение файла.
  • запись в файл.
  • открытие файла.
  • закрытие файла.
  • чтение из файла.
  • дополнение файла.
  • поиск в файле.
  • получение атрибутов файла.
  • установление новых значений атрибутов.
  • переименование.
  • выполнение файла.
  • чтение каталога и др.

В самом общем случае права доступа могут быть описаны матрицей прав доступа, в которой столбцы соответствуют всем файлам системы, строки — всем пользователям, а на пересечении строк и столбцов указываются разрешенные операции:

В некоторых системах пользователи могут быть разделены на отдельные категории. Для всех пользователей одной категории определяются единые права доступа, например в системе UNIX все пользователи подразделяются на три категории: владельца файла, членов его группы и всех остальных.