Базовая частота процессора и как это работает. Частота процессора: тактовая, максимальная

Утверждение:

Чем выше тактовая частота процессора, тем выше его производительность.


Скорость работы процессоров всегда сравнивали на основе их ведущей и самой доступной для понимания характеристики - тактовой частоты. Моду на это в 1984 году ввели маркетологи IBM PC, которые утверждали, что процессор Intel 8088 в их компьютере почти в пять раз превосходит по тактовой частоте MOS Technology 6502
из Apple II - а значит, он почти в пять раз быстрее. Той же логике в 90-х следовали Intel и Microsoft, утверждая, что Pentium производительнее PowerPC из компьютеров Apple только потому, что у него выше тактовая частота. После того как в конце 90-х к гонке подключилась AMD, компании пришлось ввести специальную маркировку, которая сопоставляла их процессоры с процессорами Intel. Большинство потребителей были уверены, что тактовая частота - главная характеристика, и Intel, делавшая ставку на её рост, только поддерживала их в этом убеждении.

ДЖОН СПУНЕР

журналист

«После выхода процессоров Pentium III, работающих на частоте до 667 МГц, компания AMD может утратить лидерство. Представленные
в этом месяце процессоры Athlon работают
с максимальной частотой 650 МГц. Но долго лидерство Intel не продлится. Как заявили представители AMD, к концу года они выпустят процессор с частотой 700 МГц».

Почему это не так:

Время, которое занимает выполнение операций, важнее тактовой частоты.


Тактовую частоту корректно сравнивать только
у процессоров одного модельного ряда с одинаковой архитектурой. Хотя частота Intel 8088 и была почти в пять раз выше, чем у MOS Technology 6502, на деле одна и та же операция могла занимать у Intel 8088 больше тактов, из-за чего преимущество в частоте нивелировалось. Так было и
в дальнейшем: сначала Apple, а потом и AMD пытались разоблачить «миф о мегагерцах». В 2006 году к ним наконец присоединилась и Intel, которая достигла предела тактовой частоты на архитектуре, которую тогда использовала в настольных процессорах, и сменила парадигму.

Сегодня число операций, которое выполняет процессор
за один такт, как никогда важнее тактовой частоты. Дело
в том, что чем выше частота, тем выше тепловыделение,
а потому создатели мобильных процессоров делают упор
на оптимизацию, а не сухие цифры. Миф, впрочем, никуда
не исчез, и даже эволюционировал: так, многие начали считать, что скорость работы процессора пропорциональна числу ядер в нём. Да и если назвать обывателю два процессора с разной тактовой частотой, то он всё равно
по инерции выберет тот, у которого больше мегагерц.

04. 07.2018

Блог Дмитрия Вассиярова.

Тактовая частота и производительность — одно и тоже?

Приветствую всех читателей, и мне будет особенно приятно порадовать вас своим рассказом на тему что такое тактовая частота процессора? Возможно, для некоторых эта тема покажется азбучной и малополезной, но я уверен что несколько интересных фактов и простых сравнений позволит по-новому взглянуть на работу ЦПУ.

Подбирая железо для компьютера или новый смартфон мы первым делом интересуемся, сколько ядер имеет процессор и какова частота их работы. Бренд самого ЦПУ в этом случае – дело вкуса (AMD или Intel, MTK или Snapdragon), но, если из представленных моделей, одна имеет в характеристиках большее значение частоты, но наверняка выбор будет сделан в ее пользу. Давайте разберемся, почему это так важно.

«Импульсивное поведение» процессора

Процессор это сердце любой вычислительной машины, а к таковым относятся не только калькуляторы и компьютеры, используемые в сложных расчетах, но и любое устройство, работающее с оцифрованными данными. Чтобы преобразовать их в музыку, видео, изображение или, тем более, заставить программу совершить определенные операции, поток «нулей» и «единиц» записанный в необходимо пропустить через блок, выполняющий логические операции. Такие обрабатывающие модули, созданные из множества полупроводниковых микротранзисторов и составляют основу кристалла процессора, или, как говорят знатоки «камня».

Но вернемся к оцифрованному потоку данных, которые в реальности представляют собой наличие или отсутствие сигнала в электроцепи, ведь именно его и обрабатывает транзистор. Но чтобы сделать такие сигналы читаемыми (отличаемыми друг от друга) его подают импульсами, Создает их тактовый генератор, интегрированный в архитектуру самого процессора.

В лучших современных за одну секунду происходит до 5 000 000 000 (пяти миллиардов!) импульсов. Это величина измеряется в гигагерцах (ГГц) и является тактовой частотой работы ядра процессора, выполняющего главные вычислительные функции. Чем больше она, тем лучше.

Но за дополнительные герцы приходится расплачиваться повышенным энергопотреблением и сильным нагревом.

А вы знаете частоту своего ЦПУ?

Узнать тактовую частоту установленного на вашем компьютере процессора можно несколькими способами:

  • Заглянуть в паспорт, лежащий в коробке от CPU;
  • Найти на мониторе «Мой компьютер», открыть в его контекстном меню «Свойства» и изучить общие параметры устройства;

  • Установить программы AIDA64 или CPU-Z , которые показывают максимально подробную информацию о вашем процессоре.

Считаем ядра и гигагерцы

В реальности более объективным показателем скорости работы ЦПУ является количество операций, выполняемых в единицу времени. А на это уже влияет количество микротранзисторов, способных одновременно обработать несколько сигналов. Может вы что-то слышали о нано технологиях, так вот чем меньшего размера вычислительный элемент, тем их больше можно разместить на «камне» процессора.

Так же тактовую производительность процессора определяет его (оптимизация взаимодействия между отдельными модулями) и количество потоков (каналов одновременного обращения к ядру).

Кроме того, для одновременного решения нескольких задач в ЦПУ используется несколько ядер. Причем имеются процессоры для смартфонов с различной тактовой частотой отдельных ядер: по 4-е энергоэффективных (1,8 ГГц) и по 4-е мощных (свыше 2,3 Ггц). Многоядерные устройства, установленные на ПК, имеют свой алгоритм оптимизации, что дает ядрам возможность работать с разной тактовой частотой.

Раз, уж я затронул тему многоядерности, то расскажу вам об одном распространенном заблуждении, касающимся нашей основной темы. Некоторые пользователи, покупая, например, процессор Intel Core 2 Quad, с частотой каждого ядра 2,5 ГГц считают, что они получат устройство способное выдавать 4 х 2,5 = 10 млрд. тактов в секунду.

Это, друзья мои, заблуждение. Потому как тактовый генератор быстрее работать от этого не станет. Единственно, чем я могу вас порадовать, что каждое ядро теоретически может выполнять отдельную операцию, но и для этого обычно требуется несколько тактов.

Разгон, троттлинг и нагрев

Здесь же считаю нужным ответить на часто задаваемый вопрос: что важнее при выборе процессора количество ядер или тактовая частота.

Оба показателя определяют производительность процессора, поэтому 2-а ядра на 4,5 GHz могут работать не хуже 4-х на 2,5 GHz. Все зависит от выполняемых задач и от реализованной в чипе архитектуры.

Правда, все-таки есть один нюанс: ядер вы в ЦПУ не добавите, а вот разогнать процессор, увеличив его тактовую частоту можно. Для этого существует несколько способов, но все они требуют выполнения ряда условий:

  • Теоретическая возможность разгона процессора;
  • Устойчивость его элементов к работе в высокотемпературном режиме или наличие дополнительной эффективной системы охлаждения;
  • Необходимый разгонный потенциал материнской платы.

Есть даже несколько недорогих ЦПУ, наиболее приспособленных к такому частотному апгрейду: AMD FX-6300, AMD FX-4350, AMD Athlon X4 860K, Intel Pentium G3258.

Наверное, вы уже заметили, что в нашем разговоре о тактовой частоте периодически упоминается такое явление как нагрев процессора. Эти два параметра тесно взаимосвязаны между собой. Уже понятно, что искусственное увеличение температуры повлечет за собой повышение температуры CPU.

А что будет, если в силу определенных причин нагреется сам процессор (поломка или загрязнение кулера, высыхание термопасты, работа в жару)?

В этом случае разработчики ЦПУ предусмотрели функцию тротлинга, которая отслеживает температуру чипа, и при достижении критических значений автоматически снижает тактовую частоту ядер и, соответственно, быстродействие всей системы.

Напоследок хочу отметить, что своя рабочая частота имеется и у ОЗУ, и у системной шины материнской платы и даже у кэш-памяти самого процессора, но именно тактовая частота ядер является максимальной.

Запомните это, чтобы случайно не запутаться в терминах и устройствах.

На этом я заканчиваю свой рассказ, и буду готовить новую статью, с целью порадовать вас новыми интересными сведениями из жизни компьютерного железа.

* всегда актуальные вопросы, на что стоит обращать внимание при выборе процессора, чтобы не ошибиться.

Наша цель в данной статье — описать все факторы влияющие на производительность процессора и другие эксплуатационные характеристики.

Наверняка ни для кого не секрет, что процессор – является главной вычислительной единицей компьютера. Можно даже сказать – самая главная часть компьютера.

Именно он занимается обработкой практически всех процессов и задач, которые происходят в компьютере.

Будь то — просмотр видео, музыка, интернет сёрфинг, запись и чтение в памяти, обработка 3D и видео, игр. И многого другого.

Поэтому к выбору Ц ентрального П роцессора, стоит отнестись очень тщательно. Может получиться ситуация, что вы решили поставить мощную видеокарту и не соответствующий её уровню процессор. В этом случае процессор, не будет раскрывать потенциал видеокарты, что будет тормозить её работу. Процессор будет полностью загружен и буквально кипеть, а видеокарта будет ожидать своей очереди, работая на 60-70% от своих возможностей.

Именно поэтому, при выборе сбалансированного компьютера, не стоит пренебрегать процессором в пользу мощной видеокарты. Мощности процессора должно быть достаточно для раскрытия потенциала видеокарты, иначе это просто выброшенные деньги.

Intel vs. AMD

*догонялки навсегда

Корпорация Intel , располагает огромными человеческими ресурсами, и почти неисчерпаемыми финансами. Многие инновации в полупроводниковой индустрии и новые технологии идут именно из этой компании. Процессоры и разработки Intel , в среднем на 1-1,5 года опережают наработки инженеров AMD . Но как известно, за возможность обладать самыми современными технологиями – приходится платить.

Ценовая политика процессоров Intel , основывается как на количестве ядер , количестве кэша , но и на «свежести» архитектуры , производительности на такт ватт , техпроцесса чипа . Значение кэш-памяти, «тонкости техпроцесса» и другие важные характеристики процессора рассмотрим ниже. За обладание такими технологии как и свободного множителя частоты, тоже придётся выложить дополнительную сумму.

Компания AMD , в отличии от компании Intel , стремится к доступности своих процессоров для конечного потребителя и к грамотной ценовой политике.

Можно даже сказать, что AMD – «Народная марка ». В её ценниках вы найдёте то, что вам нужно по очень привлекательной цене. Обычно через год, после появления новой технологии у компании Intel , появляется аналог технологии от AMD . Если вы не гонитесь за самой высокой производительностью и больше обращаете внимание на ценник, чем на наличие передовых технологий, то продукция компании AMD – именно для вас.

Ценовая политика AMD , больше основывается на количестве ядер и совсем немного — на количестве кэш памяти, наличии архитектурных улучшений. В некоторых случаях, за возможность обладать кэш памятью третьего уровня, придётся немного доплатить (Phenom имеет кэш память 3 уровня, Athlon довольствуется только ограниченной, 2 уровня). Но иногда AMD «балует» своих фанатов возможность разблокировать более дешёвые процессоры, до более дорогих. Разблокировать можно ядра или кэш-память. Улучшить Athlon до Phenom . Такое возможно благодаря модульной архитектуре и при недостатке некоторых более дешёвых моделей, AMD просто отключает некоторые блоки на кристалле более дорогих (программно).

Ядра – остаются практически неизменными, отличается только их количество (справедливо для процессоров 2006-2011 годов). За счёт модульности своих процессоров, компания отлично справляется со сбытом отбракованных чипов, которые при отключении некоторых блоков, становятся процессором из менее производительной линейки.

Компания много лет работала над совершенно новой архитектурой под кодовым именем Bulldozer , но на момент выхода в 2011 году, новые процессоры показали не самую лучшую производительность. AMD грешила на операционные системы, что они не понимают архитектурных особенностей сдвоенных ядер и «другой многопоточности».

Со слов представителей компании, следует ждать особых исправлений и заплаток, чтобы ощутить всю производительность данных процессоров. Однако в начале 2012 года, представители компании отложили выход обновления для поддержки архитектуры Bulldozer на вторую половину года.

Частота процессора, количество ядер, многопоточность.

Во времена Pentium 4 и до него – частота процессора , была главным фактором производительности процессора при выборе процессора.

Это не удивительно, ведь архитектуры процессоров — специально разрабатывались для достижения высокой частоты, особенно сильно это отразилось как раз в процессоре Pentium 4 на архитектуре NetBurst . Высокая частота, была не эффективна при том длинном конвейере, что был использован в архитектуре. Даже Athlon XP частотой 2Ггц , по уровню производительности был выше чем Pentium 4 c 2,4Ггц . Так что, это был чистой воды маркетинг. После этой ошибки, компания Intel осознала свои ошибки и вернулась на сторону добра начала работать не над частотной составляющей, а над производительностью на такт. От архитектуры NetBurst пришлось отказаться.

Что же нам даёт многоядерность ?

Четырёх-ядерный процессор с частотой 2,4 Ггц , в много-поточных приложениях, теоретически будет примерным эквивалентом, одноядерного процессора с частотой 9,6Ггц или 2-х ядерному процессору с частотой 4,8 Ггц . Но это только теоретически . Практически же, два двухъядерных процессора в двух сокетной материнской плате, будут быстрее одного 4-ядерного, на той же частоте функционирования. Ограничения по скорости шины и задержки памяти дают о себе знать.

* при условии одинаковых архитектур и количества кэш памяти

Многоядерность, даёт возможность выполнять инструкции и вычисления по частям. К примеру нужно выполнить три арифметических действия. Первые два выполняются на каждом из ядер процессора и результаты складываются в кэш-память, где с ними может быть выполнено следующее действие любым из свободных ядер. Система очень гибкая, но без должной оптимизации может и не работать. Потому очень важна оптимизация под многоядерность для архитектуры процессоров в среде ОС.

Приложения, которые «любят» и используют многопоточность: архиваторы , плееры и кодировщики видео , антивирусы , программы дефрагментаторы , графические редакторы , браузеры , Flash .

Так же, к «любителям» многопоточности, можно отнести такие операционные системы как Windows 7 и Windows Vista , а так же многие ОС , основанные на ядре Linux , которые работают заметно быстрее при наличии многоядерного процессора.

Большинству игр , бывает вполне достаточно 2-х ядерного процессора на высокой частоте. Сейчас однако, выходит всё больше игр «заточенных» под многопоточность. Взять хотя бы такие SandBox игры, как GTA 4 или Prototype , в которые на 2-х ядерном процессоре с частотой ниже 2,6 Ггц – комфортно себя не чувствуешь, фреймрейт проваливается ниже 30 кадров в секунду. Хотя в данном случае, скорее всего причиной таких казусов является «слабая» оптимизация игр, недостаток времени или «не прямые» руки тех, кто переносил игры с консолей на PC .

При покупке нового процессора для игр, сейчас стоит обращать внимание на процессоры с 4-мя и более ядрами. Но всё же, не стоит пренебрегать 2-х ядерными процессорами из «верхней категории». В некоторых играх, данные процессоры чувствуют себя порой лучше, чем некоторые многоядерные.

Кэш память процессора.

– это выделенная область кристалла процессора, в которой обрабатываются и хранятся промежуточные данные между процессорными ядрами, оперативной памятью и другими шинами.

Она работает на очень высокой тактовой частоте (обычно на частоте самого процессора), имеет очень высокую пропускную способность и процессорные ядра работают с ней напрямую (L1 ).

Из-за её нехватки , процессор может простаивать в трудоёмких задачах, ожидая пока в кэш поступят новые данные для обработки. Так же кэш-память служит для записи часто повторяющихся данных, которые при необходимости могут быть быстро восстановлены без лишних вычислений, не заставляя процессор тратить время на них снова.

Производительности, так же добавляет факт, если кэш память объединённая, и все ядра равноправно могут использовать данные из неё. Это даёт дополнительные возможности для многопоточной оптимизации.

Такой приём, сейчас используется для кэш памяти 3-го уровня . У процессоров Intel существовали процессоры с объединённой кэш памятью 2-го уровня (C2D E 7*** , E 8*** ), благодаря которым и появился данный способ увеличить многопоточную производительность.

При разгоне процессора, кэш память может стать слабым местом, не давая разогнать процессор больше, чем её предельная частота функционирования без ошибок. Однако плюсом является то, что она будет работать на той же частоте, что и разогнанный процессор.

В общем, чем больше кэш памяти, тем быстрее процессор. В каких именно приложениях?

Во всех приложениях, где используется множество числовых данных с плавающей запятой, инструкций и потоков, кэш память активно используется. Кэш память очень любят архиваторы , кодировщики видео , антивирусы и графические редакторы и т.д.

Благоприятно к большому количеству кэш-памяти относятся игры . Особенно стратегии, авто-симуляторы, RPG, SandBox и все игры, где есть много мелких деталей, частиц, элементов геометрии, потоков информации и физических эффектов.

Кэш память играет очень немалую роль в раскрытии потенциала систем с 2-мя и более видеокартами. Ведь какая то доля нагрузки, ложится на взаимодействие ядер процессора как между собой, так и для работы с потоками нескольких видео-чипов. Именно в этом случае важна организация кэш — памяти, и очень полезна кэш память 3-го уровня большого объёма.

Кэш память, всегда оснащается защитой от возможных ошибок (ECC ), при обнаружении которых, ведётся их исправление. Это очень важно, ведь маленькая ошибочка в кэш памяти, при обработке может превратиться в гигантскую, сплошную ошибку, от которой «ляжет» вся система.

Фирменные технологии.

(гипер-поточность, HT )–

впервые технология была применена в процессорах Pentium 4 , но работала не всегда корректно и зачастую больше тормозила процессор, чем ускоряла. Причиной был слишком длинный конвейер и не доведённая до ума система предсказания ветвлений. Применяется компанией Intel , аналогов технологии пока нет, если не считать аналогом то? что реализовали инженеры компании AMD в архитектуре Bulldozer .

Принцип системы таков, что на каждое физическое ядро, создаётся по два вычислительных потока , вместо одного. То есть, если у вас 4-х ядерный процессор с HT (Core i 7 ), то виртуальных потоков у вас 8 .

Прирост производительности достигается за счёт того, что в конвейер могут поступать данные уже в его середине, а не обязательно сначала. Если какие то блоки процессора, способные выполнить это действие простаивают, они получают задачу к выполнению. Прирост производительности не такой как у настоящих физических ядер, но сопоставимый(~50-75%, в зависимости от рода приложения). Довольно редко бывает, что в некоторых приложениях, HT отрицательно влияет на производительность. Связано это с плохой оптимизацией приложений под данную технологию, невозможность понять, что присутствуют потоки «виртуальные» и отсутствие ограничителей для нагрузки потоков равномерно.

Turbo Boost – очень полезная технология, которая увеличивает частоту функционирования наиболее используемых ядер процессора, в зависимости от уровня их загруженности. Очень полезна тогда, когда приложение не умеет использовать все 4 ядра, и загружает только одно или два, при этом их частота работы повышается, что частично компенсирует производительность. Аналогом данной технологии у компании AMD , является технология Turbo Core .

, 3 dnow ! инструкции . Предназначены для ускорения работы процессора в мультимедиа вычислениях (видео, музыка, 2D/3D графика и т.д.), а так же ускоряют работу таких программ как архиваторы, программы для работы с изображениями и видео (при поддержке инструкций данными программами).

3dnow ! – довольно старая технология AMD , которая содержит дополнительные инструкции по обработке мультимедиа контента, помимо SSE первой версии .

*А именно возможность потоковой обработки вещественных чисел одинарной точности.

Наличие самой новой версии – является большим плюсом, процессор начинает более эффективно выполнять определённые задачи при должной оптимизации ПО. Процессоры AMD носят похожие названия, но немного другие.

* Пример — SSE 4.1(Intel) — SSE 4A(AMD).

К тому же, данные наборы инструкций не идентичны. Это аналоги, в которых есть небольшие отличия.

Cool’n’Quiet, SpeedStep, CoolCore, Enchanced Half State(C1E) и т . д .

Данные технологии, при низкой нагрузке уменьшают частоту процессора, посредством уменьшения множителя и напряжения на ядре, отключения части КЭШа и т.д. Это позволяет процессору гораздо меньше греться и потреблять меньше энергии, меньше шуметь. Если понадобится мощность, то процессор вернётся в обычное состояние за доли секунды. На стандартных настройках Bios практически всегда включены, при желании их можно отключить, для уменьшения возможных «фризов» при переключении в 3D играх.

Некоторые из этих технологий, управляют скоростью вращения вентиляторов в системе. К примеру, если процессор не нуждается в усиленном отводе тепла и не нагружен, скорость вентилятора процессора уменьшается (AMD Cool’n’Quiet, Intel Speed Step ).

Intel Virtualization Technology и AMD Virtualization .

Эти аппаратные технологии позволяют с помощью специальных программ запускать несколько операционных систем сразу, без какой либо сильной потери в производительности. Так же, её используют для правильной работы серверов, ведь зачастую, на них установлена далеко не одна ОС.

Execute Disable Bit и No eXecute Bit технология, призванная защитить компьютер от вирусных атак и программных ошибок, которые могут вызвать крах системы посредством переполнения буфера .

Intel 64 , AMD 64 , EM 64 T – данная технология позволяет процессору работать как в ОС с 32-х битной архитектурой, так и в ОС с 64-х битной. Система 64 bit – с точки зрения выгоды, для рядового пользователя отличается тем, что в данной системе можно использовать более 3.25Гб оперативной памяти. В 32-х битных системах, использовать бо льший объём оперативной памяти не представляется возможным, из-за ограниченного объёма адресуемой памяти* .

Большинство приложений с 32-х bit архитектурой, можно запустить на системе с 64-х битной ОС.

* Что же поделать, если в далёком 1985 году, никто и подумать не мог о таких гигантских, по меркам того времени, объёмах оперативной памяти.

Дополнительно.

Пара слов о .

На этот пункт стоит обратить пристальное внимание. Чем тоньше техпроцесс, тем меньше процессор потребляет энергии и как следствие — меньше греется. И кроме всего прочего — имеет более высокий запас прочности для разгона.

Чем более тонкий техпроцесс, тем больше можно «завернуть» в чип (и не только) и увеличить возможности процессора. Тепловыделение и энергопотребление при этом тоже уменьшается пропорционально, благодаря меньшим потерям по току и уменьшению площади ядра. Можно заметить тенденцию, что с каждым новым поколением той же архитектуры на новом техпроцессе, растёт и энергопотребление, но это не так. Просто производители идут в сторону ещё большей производительности и перешагивают за черту тепловыделения прошлого поколения процессоров из-за увеличения числа транзисторов, которое не пропорционально уменьшению техпроцесса.

Встроенное в процессор .

Если вам не нужно встроенное видео ядро, то не стоит покупать процессор с ним. Вы получите только худший отвод тепла, лишний нагрев (не всегда), худший разгонный потенциал (не всегда), и переплаченные деньги.

К тому же те ядра, что встроены в процессор, годятся только для загрузки ОС, интернет сёрфинга и просмотра видео (и то не любого качества).

Тенденции на рынке все же меняются и возможность купить производительный процессор от Intel без видео ядра выпадает всё реже. Политика принудительного навязывание встроенного видео ядра, появилась с процессоров Intel под кодовым названием Sandy Bridge , основное новшество которых и было встроенное ядро на том же техпроцессе. Видео-ядро, находится совместно с процессором на одном кристалле , и не такое простое как в предыдущих поколениях процессоров Intel . Для тех кто его не использует, есть минусы в виде некоторой переплаты за процессор, смещённость источника нагрева относительно центра тепло — распределительной крышки. Однако есть и плюсы. Отключенное видео ядро, можно использовать для очень быстрой кодировки видео с помощью технологии Quick Sync вкупе со специальным, поддерживающим данную технологию ПО. В будущем, Intel обещает расширить горизонты использования встроенного видео ядра для параллельных вычислений.

Сокеты для процессоров. Сроки жизни платформ .


Intel ведёт грубую политику для своих платформ. Срок жизни каждой (срок начала и конца продаж процессоров для неё), обычно не превышает 1.5 — 2 года. К тому же, у компании есть несколько параллельно развивающихся платформ.

Компания AMD , ведёт противоположную политику совместимости. На её платформу на AM 3 , будут подходить все процессоры будущих поколений, поддерживающие DDR3 . Даже при выходе платформы на AM 3+ и более поздних, отдельно будут выпускаться либо новые процессоры под AM 3 , либо новые процессоры будут совместимы со старыми материнскими платами, и можно будет сделать безболезненный для кошелька апгрейд, поменяв только процессор (без смены мат.платы, ОЗУ и т.д.) и прошив материнской платы. Единственные нюансы несовместимости могут быть при смене типа , так как будет требоваться другой контроллёр памяти, встроенный в процессор. Так что совместимость ограниченная и поддерживается далеко не всеми материнскими платами. Но в целом, экономному пользователю или тем, кто не привык менять платформу полностью каждые 2 года — выбор производителя процессора понятен — это AMD .

Охлаждение процессора.

В стандартной комплектации, с процессором идёт BOX -овый кулер, который будет просто справляться со своей задачей. Представляет он из себя кусок алюминия с не очень высокой площадью рассеивания. Эффективные кулеры на тепловых трубках и закреплёнными на них пластинами, имеют конструкцию, предназначенную для высокоэффективного рассеивания тепла. Если вы не хотите слышать лишний шум от работы вентилятора, то вам стоит приобрести альтернативный, более эффективный кулер с тепловыми трубками, либо систему жидкостного охлаждения замкнутого или не замкнутого типа. Такие системы охлаждения, дополнительно дадут возможность разгона для процессора.

Заключение.

Все важные аспекты, влияющие на производительность и эксплуатационные характеристики процессора, были рассмотрены. Повторим, на что следует обращать внимание:

  • Выбрать производителя
  • Архитектура процессора
  • Техпроцесс
  • Частота процессора
  • Количество ядер процессора
  • Размер и тип кэш-памяти процессора
  • Поддержка технологий и инструкций
  • Качественное охлаждение

Надеемся, данный материал поможет вам разобраться и определиться в выборе соответствующего вашим ожиданиям процессора.

Процессор является пожалуй наиболее важной комплектующей частью компьютера, ведь именно он выполняет обработку данных. К одной из наиболее важных характеристик является тактовая частота процессора , которая указывает на количество выполняемых операций за одну секунду. Однако подобное определение для этого параметра довольно скудное, чтобы понять на самом деле его важность, поэтому постараемся более подробно разобраться в этом вопросе.


Научное определение тактовой частоты звучит следующим образом: это количество операций, которые могут обрабатываться в течение одной секунды и измеряется в Герцах. Но почему, скажут многие, за основу была принята именно эта единица измерения? В физике эта величина отображает количество колебаний за определенный промежуток времени, здесь же по сути все идентично, только вместо колебаний рассчитывается количество операций, то есть повторяющаяся величина за определенный интервал времени.

Если говорить конкретно о процессорах, то в нем производятся не идентичные операции, здесь рассчитываются всевозможные параметры. Ну а соответственно их суммарное количество и является тактовой частотой.

Сейчас технические возможности процессора находятся на высочайшем уровне, поэтому величина Герц не используется, а здесь более приемлемо использовать мегагерцы или гигагерцы. Этот шаг предпринят потому, чтобы не дописывать огромное количество нулей, тем самым упрощая восприятие человеком величины (см. таблицу).

Каким образом рассчитывается тактовая частота?

Для того, чтобы это понять, необходимо хоть чуть-чуть разбираться в физике, однако постараемся раскрыть тему «человеческим» языком, чтобы этот вопрос был понятен любому пользователю. Для понимания этого сложного вычислительного процесса, необходимо привести список комплектующих процессора, которые так или иначе влияют на этот параметр:

  • тактовый резонатор – изготовлен из кристалла кварца, который размещается в специальной защитной оболочке;
  • тактовый генератор – деталь, которая совершает преобразование колебаний в импульсы;
  • шина данных.

Вследствие подачи напряжения на тактовый резонатор, он образует колебания электрического тока.

Далее эти колебания передаются на тактовый генератор, который преобразовывает их в импульсы. Посредством шины данных, производится их передача, а результат вычислений уже подается непосредственно пользователю.

По такой методике и выполняется расчет тактовой частоты. И хоть все вроде бы предельно понятно, множество людей неправильно воспринимают эти вычисления, а соответственно и интерпретация ошибочна. Прежде всего это связано с тем, если процессор имеет не одно ядро, а несколько.

Каким образом тактовая частота связана с ядрами?

По сути, многоядерный процессор ничем не отличается от одноядерного, кроме того, что в нем содержится не один тактовый резонатор, а два и более. Для совместной работы они соединяются дополнительной шиной данных.

И именно здесь происходит заблуждение людей: тактовая частота нескольких ядер не суммируется. Просто при обработке данных производится перераспределение нагрузки на каждое из ядер, но это совершенно не обозначает, что это будет выполняться строго пропорционально, да и скорость обработки от этого не увеличивается. Для примера, существуют некоторые игры, в которых разработчики вовсе не допускают возможность перераспределения нагрузки по ядрам и игрушка работает лишь на одном.

Для примера рассмотрим случай с четырьмя пешеходами. Они идут максимально возможным шагом, рядом друг с другом и кто-то из них несет тяжелую ношу. Если он начинает уставать, другой может взять эту поклажу, чтобы не терять скорость, но при этом они не станут в целом идти быстрее и раньше достичь конечной точки, ведь все и так передвигаются на пределе своих возможностей.

Кстати говоря, при , количество ядер конечно же играет роль. Да и производители стали устанавливать все большее их количество, но при этом следует помнить, что шина данных может банально не справляться и производительность может не то, что увеличиться, а и значительно уступать процессорам с меньшим количеством ядер. Например, в данный момент компания Intel выпускает процессоры I7, в которых может быть размещено всего два ядра, при этом он будет обрабатывать данные гораздо быстрее, чем даже восьми ядерными (как правило данная компания и не выпускала моделей с таким количеством ядер, процессоры AMD действительно бывают и десяти ядерными). Разработчики просто делают упор не только на увеличении тактовой частоты, но и на архитектуре процессора в целом. Это может касаться, как увеличения шины данных между тактовыми резонаторами, так и других аспектов.

Сравнение тактовых частот процессоров компании Intel

Тактовый сигнал или синхросигнал - сигнал, использующийся для согласования операций одной или более цифровых схем .

Синхросигнал обычно имеет форму меандра и колеблется между высоким и низким логическими уровнями.

Активным уровнем тактового сигнала принято называть момент переключения из одного состояния в другое. Активным уровнем является высокий уровень, если схема переключается в момент, задаваемый фронтом синхросигнала, то есть когда синхросигнал переключается из нижнего уровня в верхний. Если переключение происходит по срезу синхросигнала, то активный уровень - низкий.

Тактовая частота процессора определяет минимальный квант времени, за который процессор выполняет некоторую условную элементарную операцию. Тактовые частоты измеряются в мегагерцах и определяют количественные характеристики производительности компьютерных систем в целом. Чем больше (выше) тактовая частота, тем быстрее работает центральный процессор.

Каждый микропроцессор имеет определенное число элементов памяти, называемых регистрами, арифметико-логическое устройство (АЛУ) и устройство управления.

Регистры используются для временного хранения выполняемой команды, адресов памяти, обрабатываемых данных и другой внутренней информации микропроцессора. В АЛУ производится арифметическая н логическая обработка данных.

Устройство управления вырабатывает необходимые управляющие сигналы для внутренней работы микропроцессора и связи его с другой аппаратурой через внешние шины микропроцессора.

Частота синхросигнала

Та́ктовая частота́ - частота синхронизирующих импульсов синхронной электронной схемы, то есть количество синхронизирующих тактов, поступающих извне на вход схемы за одну секунду. Обычно термин употребляется применительно к компонентам компьютерных систем. В самом первом приближении тактовая частота характеризует производительность подсистемы (процессора , памяти и пр.), то есть количество выполняемых операций в секунду. Однако системы с одной и той же тактовой частотой могут иметь различную производительность, так как на выполнение одной операции разным системам может требоваться различное количество тактов (обычно от долей такта до десятков тактов), а кроме того, системы, использующие конвейерную и параллельную обработку, могут на одних и тех же тактах выполнять одновременно несколько операций.

Период синхросигнала - отрезок времени между соседними переключениями, совершаемыми в одном и том же направлении.
Частота синхросигнала - величина, обратная периоду.
Скважность синхросигнала - отношение периода синхросигнала к длительности его активного состояния (скважность меандра равна двум).
Коэффициент заполнения - величина, обратная скважности.

В процессорной технике

Такт процессора или такт ядра процессора - промежуток между двумя импульсами тактового генератора, который синхронизирует выполнение всех операций процессора .

Выполнение различных элементарных операций может занимать от долей такта до многих тактов в зависимости от команды и процессора. Общая тенденция заключается в уменьшении количества тактов, затрачиваемых на выполнение элементарных операций.

Конфигурация таковой в частоты в многоядерных процессорах

Процесс подсчета таковой частоты многядерного процессора, как определяющий фактор производительности CPU, иной, в отличии от подсчета производительности одноядерного процессора. На примере 4-х ядерного процессора, можно увидеть каждое ядро работает с тактовой частотой 3ГГц. То есть каждое ядро может выполнить равное количество вычислений в единицу времени при условии, что все ядра будут загружены процессом вычисления. За загрузку ядер «работой» отвечает приложение, которое запущено на компьютере пользователя (будь то игра, или архиватор). Нельзя сказать, что 4-х ядерный процессор с частотой 3ГГц будет иметь производительность на уровне одноядерного с частотой 12ГГц. Это совсем не так. Суть производительности многоядерных процессоров сводится к тому, что вычислительный процесс должен быть разбит на параллельные потоки, которые могут быть выполнены в одно и то же время различными ядрами процессора. У Intel параллельные потоки или многопоточность называется Hyper-Threading.

Максимальная частота процессора

Компания AMD с гордостью объявила, что 31 августа 2011 года команде специалистов под названием «Team AMD FX» удалось установить новый мировой рекорд Гиннеса, достигнув наивысшей тактовой частоты среди компьютерных процессоров. Новый рекорд составляет 8,429 ГГц, что на 121 МГц превышает предыдущее достижение (8,308 ГГц). Для его достижения команда «Team AMD FX» использовала новый восьмиядерный процессор AMD FX-8150, охлаждение которого осуществлялось с помощью жидкого гелия. Это достижение позволило компании AMD продемонстрировать высокий оптимизационный потенциал новых процессоров, официальный релиз которых запланирован на четвертый квартал текущего года.