Аналоговый и дискретный сигнал разница. Аналоговый, дискретный, цифровой сигналы

Лекция № 1

«Аналоговые, дискретные и цифровые сигналы.»

Двумя самыми фундаментальными понятиями в данном курсе являются понятия сигнала и системы.

Под сигналом понимается физический процесс (например, изменяющееся во времени напряжение), отображающий некоторую информацию или сообщение. Математически сигнал описывается функцией определенного типа.

Одномерные сигналы описываются вещественной или комплексной функцией , определенной на интервале вещественной оси (обычно – оси времени) . Примером одномерного сигнала может служить электрический ток в проводе микрофона, несущий информацию о воспринимаемом звуке.

Сигнал x (t ) называется ограниченным если существует положительное число A , такое, что для любого t .

Энергией сигнала x (t ) называется величина

,(1.1)

Если , то говорят, что сигнал x (t ) имеет ограниченную энергию. Сигналы с ограниченной энергией обладают свойством

Если сигнал имеет ограниченную энергию, то он ограничен.

Мощностью сигнала x (t ) называется величина

,(1.2)

Если , то говорят, что сигнал x (t ) имеет ограниченную мощность. Сигналы с ограниченной мощностьюмогут принимать ненулевые значения сколь угодно долго.

В реальной природе сигналов с неограниченной энергией и мощностью не существует. Большинство сигналов, существующих в реальной природе являются аналоговыми.

Аналоговые сигналы описываются непрерывной (или кусочно-непрерывной) функцией , причем сама функция и аргумент t могут принимать любые значения на некоторых интервалах . На рис. 1.1 а представлен пример аналогового сигнала, изменяющегося во времени по закону , где . Другой пример аналогового сигнала, показанный на рис 1.1б, изменяется во времени по закону .



Важным примером аналогового сигнала является сигнал, описываемый т.н. «единичной функцией» , которая описывается выражением

(1.3),

где.

График единичной функции представлен на рис.1.2.


Функцию 1(t ) можно рассматривать как предел семейства непрерывных функций 1(a , t ) при изменении параметра этого семейства a .

(1.4).

Семейство графиков 1(a , t ) при различных значениях a представлено на рис.1.3.


В этом случае функцию 1(t ) можно записать как

(1.5).

Обозначим производную от 1(a , t ) как d (a , t ).

(1.6).

Семейство графиков d (a , t ) представлено на рис.1.4.



Площадь под кривой d (a , t ) не зависит от a и всегда равна 1. Действительно

(1.7).

Функция

(1.8)

называется импульсной функцией Дирака или d - функцией. Значения d - функции равны нулю во всех точках, кроме t =0. При t =0 d -функция равна бесконечности, но так, что площадь под кривой d - функции равна 1. На рис.1.5 представлен график функции d (t ) и d (t - t ).


Отметим некоторые свойства d - функции:

1. (1.9).

Это следует из того, что только при t = t .

2. (1.10) .

В интеграле бесконечные пределы можно заменить конечными, но так, чтобы аргумент функции d (t - t ) обращался в нуль внутри этих пределов.

(1.11).

3. Преобразование Лапласа d -функции

(1.12).

В частности , при t =0

(1.13).

4. Преобразование Фурье d - функции. При p = j v из 1.13 получим

(1.14)

При t =0

(1.15),

т.е. спектр d - функции равен 1.

Аналоговый сигнал f (t ) называется периодическим если существует действительное число T , такое, что f (t + T )= f (t ) для любых t . При этом T называется периодом сигнала. Примером периодического сигнала может служить сигнал, представленный на рис.1.2а, причем T =1/ f . Другим примером периодического сигнала может служить последовательность d - функций, описываемая уравнением

(1.16)

график которой представлен на рис.1.6.


Дискретные сигналы отличаются от аналоговых тем, что их значения известны лишь в дискретные моменты времени.Дискретные сигналы описываются решетчатыми функциями – последовательностями – x д (nT ), где T = const – интервал (период) дискретизации, n =0,1,2,…. Сама функция x д (nT ) может в дискретные моменты принимать произвольные значения на некотором интервале. Эти значения функции называются выборками или отсчетами функции. Другим обозначением решетчатой функции x (nT ) является x (n ) или x n . На рис. 1.7а и 1.7б представлены примеры решетчатых функций и . Последовательность x (n ) может быть конечной или бесконечной, в зависимости от интервала определения функции.



Процесс преобразования аналогового сигнала в дискретный называется временная дискретизация. Математически процесс временной дискретизации можно описать как модуляцию входным аналоговым сигналом последовательности d - функций d T (t )

(1.17)

Процесс восстановления аналогового сигнала из дискретного называется временная экстраполяция.

Для дискретных последовательностей также вводятся понятия энергии и мощности. Энергией последовательности x (n ) называется величина

,(1.18)

Мощностью последовательности x (n ) называется величина

,(1.19)

Для дискретных последовательностей сохраняются те же закономерности, касающиеся ограничения мощности и энергии, что и для непрерывных сигналов.

Периодической называют последовательность x (nT ), удовлетворяющую условию x (nT )= x (nT + mNT ), где m и N – целые числа. При этом N называют периодом последовательности. Периодическую последовательность достаточно задать на интервале периода, например при .

Цифровые сигналы представляют собой дискретные сигналы, которые в дискретные моменты времени могут принимать лишь конечный ряд дискретных значений – уровней квантования. Процесс преобразования дискретного сигнала в цифровой называется квантованием по уровню. Цифровые сигналы описываются квантованными решетчатыми функциями x ц (nT ). Примеры цифровых сигналов представлены на рис. 1.8а и 1.8б.



Связь между решетчатой функцией x д (nT ) и квантованной решетчатой функцией x ц (nT ) определяется нелинейной функцией квантования x ц (nT )= F k (x д (nT )). Каждый из уровней квантования кодируется числом. Обычно для эих целей используется двоичное кодирование, так, что квантованные отсчеты x ц (nT ) кодируются двоичными числами с n разрядами. Число уровней квантования N и наименьшее число двоичных разрядов m , с помощью которых можно закодировать все эти уровни, связаны соотношением

,(1.20)

где int (x ) – наименьшее целое число, не меньшее x .

Т.о., квантование дискретных сигналов состоит в представлении отсчета сигнала x д (nT ) с помощью двоичного числа, содержащего m разрядов. В результате квантования отсчет представляется с ошибкой, которая называется ошибкой квантования

.(1.21)

Шаг квантования Q определяется весом младшего двоичного разряда результирующего числа

.(1.22)

Основными способами квантования являются усечение и округление.

Усечение до m -разрядного двоичного числа состоит в отбрасывании всех младших разрядов числа кроме n старших. При этом ошибка усечения . Для положительных чисел прилюбом способе кодирования . Для отрицательных чисел при использовании прямого кода ошибка усечения неотрицательна , а при использовании дополнительного кода эта ошибка неположительна . Таким образом, во всех случаях абсолютнок значение ошибки усечения не превосходит шага квантования:

.(1.23)

График функции усечения дополнительного кода представлен на рис.1.9, а прямого кода – на рис.1.10.




Округление отличается от усечения тем, что кроме отбрасывания младших разрядов числа модифицируется и m -й (младший неотбрасываемый ) разряд числа. Его модификация заключается в том, что он либо остается неизменным или увеличивается на единицу в зависимости от того, больше или меньше отбрасываемая часть числа величины . Округление можно практически выполнить путем прибавления единицы к (m +1) – муразряду числа с последующим усечением полученного числа до n разрядов. Ошибка округления при всех способах кодирования лежит в пределах и, следовательно,

.(1.24)

График функции округления представлен на рис. 1.11.



Рассмотрение и использование различных сигналов предполагает возможность измерения значения этих сигналов в заданные моменты времени. Естественно возникает вопрос о достоверности (или наоборот, неопределенности) измерения значения сигналов. Этими вопросами занимается теория информации , основоположником которой является К.Шеннон. Основная идея теории информации состоит в том, что с информацией можно обращаться почти также, как с такими физическими величинами как масса и энергия.

Точность измерений мы обычно характеризуем числовыми значениями полученных при измерении или предполагаемых погрешностей. При этом используются понятия абсолютной и относительной погрешностей. Если измерительное устройство имеет диапазон измерения от x 1 до x 2 , с абсолютной погрешностью ± D , не зависящей от текущего значения x измеряемой величины, то получив результат измерения в виде x n мы записываем его как x n ± D и характеризуем относительной погрешностью .

Рассмотрение этих же самых действий с позиции теории информации носит несколько иной характер, отличающийся тем, что всем перечисленным понятиям придается вероятностный, статистический смысл, а итог проведенного измерения истолковывается как сокращение области неопределенности измеряемой величины. В теории информации тот факт, что измерительный прибор имеет диапазон измерения от x 1 до x 2 означает , что при использовании этого прибора могут бытьполучены показания только в пределах от x 1 до x 2 . Другими словами, вероятность получения отсчетов, меньших x 1 или больших x 2 , равна 0. Вероятность же получения отсчетв где-то в пределах от x 1 до x 2 равна 1.

Если предположить, что все результаты измерения в пределах от x 1 до x 2 равновероятны, т.е. плотность распределения вероятности для различных значений измеряемой величины вдоль всей шкалы прибора одинакова, то с точки зрения теории информации наше знание о значении измеряемой величины до измерения может быть представлено графиком распределения плотности вероятности p (x ).

Поскольку полная вероятность получить отсчет где-то в пределах от x 1 до x 2 равна 1, то под кривой должна быть заключена площадь, равная 1, а это значит, что

(1.25).

После проведения измерения получаем показание прибора, равное x n . Однако, вследствие погрешности прибора, равной ± D , мы не можем утверждать, что измеряемая величина точно равна x n . Поэтому мы записывает результат в виде x n ± D . Это означает, что действительное значение измеряемой величины x лежит где-то в пределах от x n - D до x n + D . С точки зрения теории информации результат нашего измерения состоит лишь в том, что область неопределенности сократилась до величины 2 D и характеризуется намного большей плотностью ве5роятности

(1.26).

Получение каой-либо информации об интересующей нас величине заключается, таким образом, в уменьшении неопределенности ее значения.

В качестве характеристики неопределенности значения некоторой случайной величины К.Шеннон ввел понятие энтропии величины x , которая вычисляется как

(1.27).

Единицы измерения энтропии зависят от выбора основания логарифма в приведенных выражениях. При использовании десятичных логарифмов энтропия измеряется в т.н. десятичных единицах или дитах . В случае же использования двоичных логарифмов энтропия выражается в двоичных единицах или битах .

В большинстве случаев неопределенность знания о значении сигнала определяется действием помех или шумов. Дезинформационное действие шума при передаче сигнала определяется энтропией шума как случайной величины. Если шум в вероятностном смысле не зависит от передаваемого сигнала, то независимо от статистики сигнала шуму можно приписывать определенную величину энтропии, которая и характеризует его дезинформационное действие. При этом анализ системы можно проводить раздельно для шума и сигнала, что резко упрощает решение этой задачи.

Теорема Шеннона о количестве информации . Если на вход канала передачи информации подается сигнал с энтропией H ( x ), а шум в канале имеет энтропию H( D ) , то количество информации на выходе канала определяется как

(1.28).

Если кроме основного канала передачи сигнала имеется дополнительный канал, то для исправления ошибок, возникших от шума с энтропией H (D ), по этому каналу необходтмо передать дополнительное количество информации, не меньшее чем

(1.29).

Эти данные можно так закодировать, что будет возможно скорректировать все ошибки, вызванные шумом, за исключением произвольно малой доли этих ошибок.

В нашем случае, для равномерно распределенной случайной величины, энтропия определяется как

(1.30),

а оставшаяся или условная энтропия результата измерения после получения отсчета x n равна

(1.31).

Отсюда полученное количество информации равное разности исходной и оставшейся энтропии равно

(1.32).

При анализе систем с цифровыми сигналами ошибки квантования рассматриваются как стационарный случайный процесс с равномерным распределением вероятности по диапазону распределения ошибки квантования. На рис. 1.12а, б и в приведены плотности вероятности ошибки квантования при округлении дополнительного кода, прямого кода и усечении соответственно.



Очевидно, что квантование является нелинейной операцией. Однако, при анализе используется линейная модель квантования сигналов, представленная на рис. 1.13.

m – разрядный цифровой сигнал, e (nT ) – ошибка квантования.

Вероятностные оценки ошибок квантования делаются с помощью вычисления математического ожидания

(1.33)

и дисперсии

(1.34),

где p e – плотность вероятности ошибки. Для случаев округления и усечения будем иметь

(1.35),

(1.36).

Временная дискретизация и квантование по уровню сигналов являются неотъемлемыми особенностями всех микропроцессорных систем управления, определяемыми ограниченным быстродействием и конечной разрядностью используемых микропроцессоров.

С дискретностью каждый из нас сталкивается ежедневно. Это одно из свойств, присущее материи. В дословном переводе с латинского языка слово discretus означает прерывистость. Например, дискретный сигнал - это способ передачи информации, когда среда-переносчик изменяется во времени, принимая любое из существующего списка допустимых значений.

Конечно, термин «дискретность» применяется в более широком смысле. В частности, сейчас прогресс в микроэлектронике направлен на создание и развитие технологии SOC - «Система на чипе». Предполагается, что все составляющие устройство компоненты между собой тесно интегрированы на единой подложке. Противоположность такого подхода - дискретные схемы, когда элементы сами являются завершенными изделиями, соединяясь линиями связи.

Пожалуй, сейчас невозможно найти человека, который бы не пользовался мобильным телефоном или программой Скайп на компьютере. Одна из их задач - это передача звукового потока (в частности, голоса). Но так как такой звук представляет собой непрерывную волну, для его непосредственной передачи потребовался бы канал с высокой пропускной способностью. Для решения этого вопроса было предложено использовать дискретный сигнал. Формирует он не волну, а ее цифровое представление (помните, речь идет о мобильных телефонах и компьютерах). С волны через определенные промежутки времени выполняются выборки значений данных. То есть, создается дискретный сигнал. Его преимущество очевидно: меньший суммарный и возможность организации пакетной передачи. Целевое приемное устройство объединяет все выборки в единый блок, генерируя исходную волну. Чем больше промежутки между выборками, тем выше вероятность искажения исходной волны. Дискретизация широко используется в вычислительной технике.

Говоря о том, что такое дискретный сигнал, нельзя не воспользоваться замечательной аналогией с обычной печатной книгой. Человек, читая ее, получает непрерывный поток информации. В то же время, содержащиеся в ней данные «закодированы» в виде определенных последовательностей букв - слов - предложений. Получается, что автор из неделимой мысли формирует своеобразный дискретный сигнал, так как выражает ее разбиением на блоки, используя тот или иной способ кодировки (алфавит, язык). Читатель в данном примере получает возможность воспринимать идею автора только после мысленного объединения слов в поток информации.

Наверняка, вы читаете эту статью с экрана компьютера. А ведь даже экран монитора может служить примером, где проявляется дискретность и непрерывность. Вспомним старые модели, основанные на ЭЛТ. В них изображение формировалось последовательностью кадров, которые необходимо было «отрисовывать» несколько десятков раз в секунду. Очевидно, что данное устройство использует дискретный способ построения картинки.

Дискретный сигнал является полной противоположностью непрерывному. Последний представляет собой функцию интенсивности от времени (если представить его на декартовой плоскости). Как уже указывалось, одним из примеров может служить Она характеризуется частотой и амплитудой, однако естественным образом нигде не прерывается. Большинство природных процессов описываются именно таким способом. Несмотря на то, что, все-таки, существует несколько способов обработки непрерывного (или аналогового) сигнала, позволяющих уменьшить поток данных, в современных цифровых системах распространен именно дискретный. Отчасти благодаря тому, что его можно достаточно просто преобразовать в исходный, независимо от конфигурации последнего. Кстати, стоит отметить, что термины «дискретный» и «цифровой» практически равнозначны.

В технических отраслях знаний термин сигнал –

1) техническое средство, для передачи обращения и использования информации.

2) физический процесс отображающих информационное сообщение (изменение какого либо параметра носителя информации)

3) смысловое содержание определённого физического состояния или процесса.

Сигнал – сведенья/ сообщения/ информация, о каких либо процессах / состояниях или физических величинах объектов материального мира, выраженных в форме удобной для передачи, обработки, хранения и использования этих сведений.

С математической точки зрения сигнал представляет собой функцию, то есть зависимость одной величины от другой.

    Цель обработки сигналов

Целью обработки сигналов считают изучение определённых информационных сведений, которые отображены в виде целевой информации и преобразования этих сведений в форму удобную для дальнейшего использования.

    Цель анализа сигналов

Под "анализом" сигналов (analysis) имеется в виду не только их чисто математические преобразования, но и получение на основе этих преобразований выводов о специфических особенностях соответствующих процессов и объектов. Целями анализа сигналов обычно являются: - Определение или оценка числовых параметров сигналов (энергия, средняя мощность, среднее квадратическое значение и пр.). - Разложение сигналов на элементарные составляющие для сравнения свойств различных сигналов. - Сравнение степени близости, "похожести", "родственности" различных сигналов, в том числе с определенными количественными оценками.

    Регистрация сигналов

С понятием сигнала неразрывно связан термин регистрации сигналов, использование которого также широко и неоднозначно, как и самого термина сигнал. В наиболее общем смысле под этим термином можно понимать операцию выделения сигнала и его преобразования в форму, удобную для дальнейшего использования, обработки и восприятия . Так, при получении информации о физических свойствах каких-либо объектов, под регистрацией сигнала понимают процесс измерения физических свойств объекта и перенос результатов измерения на материальный носитель сигнала или непосредственное энергетическое преобразование каких-либо свойств объекта в информационные параметры материального носителя сигнала (как правило - электрического). Но так же широко термин регистрации сигналов используют и для процессов выделения уже сформированных сигналов, несущих определенную информацию, из суммы других сигналов (радиосвязь, телеметрия и пр.), и для процессов фиксирования сигналов на носителях долговременной памяти, и для многих других процессов, связанных с обработкой сигналов.

    Внутренние и внешние источники шумов

Шумы, как правило, имеют стохастический (случайный) характер. К помехам относят искажения полезных сигналов при влиянии различных дестабилизирующих факторов (электрические наводки, вибрация, виды шумов и помех различают по источникам их возникновения, энергетическому спектру). По характеру воздействия на сигнал источники шумов и помех бывают внутренние и внешние.

Внутренние помехи присущи физической природе источников и детекторов сигналов, а также материальных носителей. Внешние источники помех бывают искусственного и естественного происхождения. К искусственным шумам относят индустриальные помехи и помехи от работающего оборудования.

    Что дает математическая модель сигнала

Теория анализа и обработки физических данных базируется на математических моделях соответствующих физических полей и физических процессов на основе которых создаются математические модели сигналов они дают возможность обобщённо абстрагируясь от физической природы судить о свойствах сигналов, предсказывать изменения сигналов в различных условиях, кроме того появляется возможность игнорировать большое число второстепенных признаков. Знания математических моделей даёт возможность классифицировать сигналы по различным признакам (например, сигналы делят на детерминированные и стохастические).

    Классификация сигналов

Классификация сигналов осуществляется на основании существенных признаков соответствующих математических моделей сигналов. Все сигналы разделяют на две крупных группы: детерминированные и случайные.

    Гармонические сигналы

Гармонические сигналы (синусоидальные), описываются следующими формулами:

s(t) = A×sin (2f о t+f) = A×sin ( о t+f), s(t) = A×cos( о t+), (1.1.1)

Рис. 5. Гармонический сигнал и спектр его амплитуд

где А, f o ,  o , f - постоянные величины, которые могут исполнять роль информационных параметров сигнала: А - амплитуда сигнала, f о - циклическая частота в герцах,  о = 2f о - угловая частота в радианах,  и f- начальные фазовые углы в радианах. Период одного колебания T = 1/f о = 2/ o . При j = f-p/2 синусные и косинусные функции описывают один и тот же сигнал. Частотный спектр сигнала представлен амплитудным и начальным фазовым значением частоты f о (при t = 0).

    Полигармонические сигналы

Полигармонические сигналы составляют наиболее широко распространенную группу периодических сигналов и описываются суммой гармонических колебаний:

s(t) =A n sin (2f n t+ n) ≡ A n sin (2B n f p t+ n), B n ∈ I, (1.1.2)

или непосредственно функцией s(t) = y(t ± kT p), k = 1,2,3,..., где Т р - период одного полного колебания сигнала y(t), заданного на одном периоде. Значение f p =1/T p называют фундаментальной частотой колебаний.

Рис. 6. Модель сигнала Рис. 7. Спектр сигнала

Полигармонические сигналы представляют собой сумму определенной постоянной составляющей (f о =0) и произвольного (в пределе - бесконечного) числа гармонических составляющих с произвольными значениями амплитуд A n и фаз j n , с частотами, кратными фундаментальной частоте f p . Другими словами, на периоде фундаментальной частоты f p , которая равна или кратно меньше минимальной частоты гармоник, укладывается кратное число периодов всех гармоник, что и создает периодичность повторения сигнала. Частотный спектр полигармонических сигналов дискретен, в связи с чем второе распространенное математическое представление сигналов - в виде спектров (рядов Фурье).

    Почти периодические сигнала

Почти периодические сигналы близки по своей форме к полигармоническим. Они также представляют собой сумму двух и более гармонических сигналов (в пределе – до бесконечности), но не с кратными, а с произвольными частотами, отношения которых (хотя бы двух частот минимум) не относятся к рациональным числам, вследствие чего фундаментальный период суммарных колебаний бесконечно велик рис. 9.

Рис. 9. Почти периодический сигнал и спектр его амплитуд

    Аналоговые сигналы

Аналоговый сигнал (analog signal) является непрерывной или кусочно-непрерывной функцией y=x(t) непрерывного аргумента, т.е. как сама функция, так и ее аргумент могут принимать любые значения в пределах некоторого интервала y 1 £y £ y 2 , t 1 £t £ t 2 . Если интервалы значений сигнала или его независимых переменных не ограничиваются, то по умолчанию они принимаются равными от -¥ до +¥. Множество возможных значений сигнала образует континуум - непрерывное пространство, в котором любая сигнальная точка может быть определена с точностью до бесконечности.

Источниками аналоговых сигналов являются физические процессы и явления в качестве примера аналоговых сигналов чаще всего приводят изменения напряжённости электрического, магнитного и электромагнитного поля во времени.

    Дискретные сигналы

Дискретный сигнал

Рис. 13. Дискретный сигнал

Дискретный сигнал (discrete signal) – рис. 13 по своим значениям также является непрерывной функцией, но определенной только по дискретным значениям аргумента. По множеству своих значений он является конечным (счетным) и описывается дискретной последовательностью отсчетов (samples) y(nt), где y 1 £y £ y 2 , t - интервал между отсчетами (интервал или шаг дискретизации, sample time), n = 0, 1, 2,...,N. Величина, обратная шагу дискретизации: f = 1/t, называется частотой дискретизации (sampling frequency). Если дискретный сигнал получен дискретизацией (sampling) аналогового сигнала, то он представляет собой последовательность отсчетов, значения которых в точности равны значениям исходного сигнала.

    Цифровой сигнал

Цифровой сигнал (digital signal) квантован по своим значениям и дискретен по аргументу. Он описывается квантованной решетчатой функцией y n = Q k , где Q k - функция квантования с числом уровней квантования k, при этом интервалы квантования могут быть как с равномерным распределением, так и с неравномерным, например - логарифмическим. Задается цифровой сигнал, как правило, в виде дискретного ряда (discrete series) числовых данных - числового массива по последовательным значениям аргумента при t = const, но в общем случае сигнал может задаваться и в виде таблицы для произвольных значений аргумента.

Рис. 14. Цифровой сигнал

По существу, цифровой сигнал по своим значениям (отсчетам) является формализованной разновидностью дискретного сигнала при округлении отсчетов последнего до определенного количества цифр, как это показано на рис. 14. Цифровой сигнал конечен по множеству своих значений. Процесс преобразования бесконечных по значениям аналоговых отсчетов в конечное число цифровых значений называется квантованием по уровню, а возникающие при квантовании ошибки округления отсчетов (отбрасываемые значения) – шумами (noise) или ошибками (error) квантования (quantization).

    Теорема Котельникова-Шеннона

Физический смысл теоремы Котельникова-Шеннона : если максимальная частота в сигнале равна f, то достаточно на одном периоде этой гармоники иметь минимум 2 отсчета с известными значениями t 1 и t 2 , как появляется возможность записать систему из двух уравнений (y 1 =a cos 2ft 1 и y 2 =a cos 2ft 2) и решить систему относительно 2-х неизвестных – амплитуды а и частоты f этой гармоники. Следовательно, частота дискретизации должна быть в 2 раза больше максимальной частоты f в сигнале. Для более низких частот это условие будет выполнено автоматически.

На практике эта теорема широко используется например в преобразовании аудиозаписей Диапазон воспринимаемых человеком частот от 20гц – до 20 кгц поэтому для преобразования без потерь необходимо выполнять дискретизацию с частотой более 40 кгц поэтому cd dvd mp3 оцифровывают с частотой 44.1 кгц. Операция квантования (аналогово-цифровое преобразование АЦП ADC) заключается в преобразовании дискретного сигнала в цифровой кодированный в двоичной сист. счисления

    Понятие системы

Система любого назначения всегда имеет вход на который подаётся входной сигнал или входное воздействие (в общем случае многомерное) и выход с которого снимается обработанный выходной сигнал. Если устройство системы и внутренние операции преобразований принципиального значения не имеют, то система в целом может восприниматься как чёрный ящик в формализованном виде.

Формализованная система представляет собой определенный системный оператор (алгоритм) преобразования входного сигнала – воздействия s(t), в сигнал на выходе системы y(t) – отклик или выходную реакцию системы. Символическое обозначение операции преобразования (трансформации):

Для детерминированных входных сигналов соотношение между входными и выходными сигналами однозначно задаётся системным оператором.

    Системный опреатор t

Системный оператор T - это правило (набор правил, алгоритм) преобразования сигнала s(t) в сигнал y(t). Для общеизвестных операций преобразования сигналов применяются также расширенные символы операторов трансформации, где вторым символом и специальными индексами обозначается конкретный вид операции (как, например, TF - преобразование Фурье, TF -1 - обратное преобразование Фурье).

    Линейные и не линейные системы

В случае реализации на входе системы случайного входного сигнала также существует однозначное соответствие процессов на входе и выходе, однако при этом происходит изменение статистических характеристик выходного сигнала. Любые преобразования сигналов сопровождаются изменением их спектра и по характеру этих изменений их делят на 2 вида линейные и нелинейные

К нелинейным относят при котором в составе спектра сигналов появляются новые гармонические составляющие, а при линейных изменениях сигналов изменяются амплитуды составляющего спектра. Оба вида изменений могут происходить с сохранением и искажением полезной информации. Линейные системы составляют основной класс систем обработки сигналов.

Термин линейность – означает, что система преобразования сигналов должна иметь произвольную, но обязательно линейную зависимость между входным и выходным сигналами.

Система считается линейной если в пределах установленной области входных и выходных сигналов её реакция на входные сигналы аддитивна(выполняется принцип суперпозиции сигналов) и однородна (выполняется принцип пропорционального подобия).

    Принцип аддитивности

Принцип аддитивности требует, чтобы реакция на сумму двух входных сигналов была равна сумме реакций на каждый сигнал в отдельности:

T = T+T.

    Принцип однородности

Принцип однородности или пропорционального подобия требует сохранения однозначности масштаба преобразования при любой амплитуде входного сигнала:

T= c  T.

    Основные системные операции

К базовым линейным операциям, из которых могут быть сформированы любые линейные операторы преобразования, относятся операции скалярного умножения, сдвига и сложения сигналов:

y(t) = b  x(t), y(t) = x(t-t), y(t) = a(t)+b(t).

Рис. 11.1.1. Графика системных операций

Операции сложения и умножения являются линейными только для дискретных и аналоговых сигналов.

Для систем, с размерностью 2 и более существует также еще одна базовая операция, которая называется операцией пространственного маскирования , которая может рассматриваться как обобщение скалярного умножения. Так, для двумерных систем:

z(x,y) = c(x,y)u(x,y),

где u(x,y) – двумерный входной сигнал, c(x,y) – пространственная маска постоянных (весовых) коэффициентов. Пространственное маскирование представляет собой поэлементное произведение значений сигнала с коэффициентами маски.

    Дифференциальные уравнения как универсальный инструмент изучения сигналов

Дифференциальные уравнения представляют собой универсальный инструмент задания определенной связи между сигналами входа и выхода, как в одномерных, так и в многомерных системах, и могут описывать систему, как в режиме реального времени, так и апостериорно. Так, в аналоговой одномерной линейной системе такая связь обычно выражается линейным дифференциальным уравнением

a m = b n . (11.1.1)

При нормировке к а о = 1, отсюда следует

y(t) =b n –a m . (11.1.1")

По существу, правой частью этого выражения в самой общей математической форме отображается содержание операции преобразования входного сигнала, т.е. задается оператор трансформации входного сигнала в выходной. Для однозначного решения уравнений (11.1.1) кроме входного сигнала s(t) должны задаваться определенные начальные условия, например, значения решения y(0) и его производной y"(0) по времени в начальный момент времени.

Аналогичная связь в цифровой системе описывается разностными уравнениями

a m y((k-m)t) =b n s((k-n)t). (11.1.2)

y(kt) =b n s((k-n)t) –a m y((k-m)t). (11.1.2")

Последнее уравнение можно рассматривать как алгоритм последовательного вычисления значений y(kt), k = 0, 1, 2, …, по значениям входного сигнала s(kt) и предыдущих вычисленных значений y(kt) при известных значениях коэффициентов a m , b n и с учетом задания начальных условий - значений s(kt) и y(kt) при k < 0. Интервал дискретизации в цифровых последовательностях отсчетов обычно принимается равным 1, т.к. выполняет только роль масштабного множителя.

    Рекурсивные системы

На практике стремятся упростить системы взаимозависимых моделей и привести их к так называемому рекурсивному виду. Для этого сначала выбирают эндогенную переменную (внутренний показатель), зависящую только от экзогенных переменных (внешних факторов), обозначают ее у 1 . Затем выбирается внутренний показатель, который зависит только от внешних факторов и от y 1 , и т.д.; таким образом, каждый последующий показатель зависит только от внешних факторов и от внутренних предыдущих. Такие системы называются рекурсивными. Параметры первого уравнения рекурсивных систем находят методом наименьших квадратов, их подставляют во второе уравнение и опять применяется метод наименьших квадратов, и т.д.

    Сети доступа и магистральные сети

Магистральные территориальные сети (backbone wide-area networks) используются для образования одноранговых связей между крупными локальными сетями, принадлежащими большим подразделениям предприятия. Магистральные территориальные сети должны обеспечивать высокую пропускную способность, так как на магистрали объединяются потоки большого количества подсетей. Кроме того, магистральные сети должны быть постоянно доступны, то есть обеспечивать очень высокий коэффициентом готовности, так как по ним передается трафик многих критически важных для успешной работы предприятия приложений (business-critical applications). Ввиду особой важности магистральных средств им может «прощаться» высокая стоимость. Так как у предприятия обычно имеется не так уж много крупных сетей, то к магистральным сетям не предъявляются требования поддержания разветвленной инфраструктуры доступа.

Под сетями доступа понимаются территориальные сети, необходимые для связи небольших локальных сетей и отдельных удаленных компьютеров с центральной локальной сетью предприятия. Если организации магистральных связей при создании корпоративной сети всегда уделялось большое внимание, то организация удаленного доступа сотрудников предприятия перешла в разряд стратегически важных вопросов только в последнее время. Быстрый доступ к корпоративной информации из любой географической точки определяет для многих видов деятельности предприятия качество принятия решений его сотрудниками. Важность этого фактора растет с увеличением числа сотрудников, работающих на дому (telecommuters - телекоммьютеров), часто находящихся в командировках, и с ростом количества небольших филиалов предприятий, находящихся в различных городах и, может быть, разных странах.

    Мультеплексирование

Мультиплексирование – использование одного канала связи для передачи данных нескольких абонентов. Линии (канал) связи состоят из физической среды, по которой передаются информационные сигналы аппаратуры передачи данных.

    Разновидности каналов связи

    симплексный - при связи приемника с передатчиком по одному каналу, с однонаправленной передачей информации (например, в телевизионной и радиовещательной сетях);

    полудуплексный - когда два узла связи соединены одним каналом, по которому информация передается попеременно то в одном направлении, то в противоположном (в информационно-справочных и запросно-ответных системах);

    дуплексный - позволяет передавать данные одновременно в двух направлениях за счет использования четырехпроводной линии связи (два провода для передачи, два других – для приема данных), или двух полос частот.

    Характеристики линий связи

Основные характеристики канала связи – пропускная способность и достоверность передачи данных

Пропускная способность канала (количество информации, передаваемое в ед. времени) оценивается числом бит данных, передаваемых по каналу в секунду БИТ/ сек

Достоверность передачи данных оценивается по интенсивности битовых ошибок (BER) определяется вероятностью искажения передаваемого бита данных. Величина интенсивности битовых ошибок для каналов связи без дополнительной защиты от ошибок составляет 10 -4 до 10 -6

    Основные характеристики кабелей

В компьютерных сетях применяются кабели соответствующие международным стандартам ISO 11801. В этих стандартах регламентированы след основные характеристики кабелей:

– затухание (ДБ/м);

­­­­­– устойчивость кабеля к внутренним источникам помех (если в кабеле более одной пары проводов);

Импеданс (волновое сопротивление) - эффективное входное сопротивление кабеля для переменного тока;

Уровень внешнего ЭМ излучения в проводнике характеризует помехозащищённость кабеля.

Степень ослабления внешних помех от различных источников. Наиболее широкое применение находят след виды кабелей – неэкранированная витая пара / экранированная витая пара / коаксиальный кабель / оптоволокно.

Неэкранированная-

Экранированная – лучше неэкранированной

Кабель (RG8 и RG11 - толстый коаксиальный кабель имеет волновое сопротивление 8 Ом и внешний диаметр 2.5 см)

Кабели RG58 & RG59 – тонкие коаксиальные кабели с волновым сопротивлением 75 Ом

    Среды передачи данных (проводные и беспроводные)

В зависимости от физической среды передачи данных линии связи можно разделить:

    проводные линии связи без изолирующих и экранирующих оплеток;

    кабельные, где для передачи сигналов используются такие линии связи как кабели "витая пара", коаксиальные кабели или оптоволоконные кабели;

    беспроводные (радиоканалы наземной и спутниковой связи), использующие для передачи сигналов электромагнитные волны, которые распространяются по эфиру.

Дискретные сигналы естественно возникают в тех случаях, когда источник сообщений выдает информацию в фиксированные моменты времени. Примером могут служить сведения о температуре воздуха, передаваемые радиовещательными станциями несколько раз в сутки. Свойство дискретного сигнала проявляется здесь предельно ярко: в паузах между сообщениями никаких сведений о температуре нет. Фактически же температура воздуха изменяется во времени плавно, так что результаты измерения возникают за счет дискретизации непрерывного сигнала - операции, которая фиксирует отсчетные значения.

Дискретные сигналы приобрели особое значение в последние десятилетия под влиянием совершенствования техники связи и развития способов обработки информации быстродействующими вычислительными устройствами. Большие успехи достигнуты в разработке и использовании специализированных устройств для обработки дискретных сигналов, так называемых цифровых фильтров.

Настоящая глава посвящена рассмотрению принципов математического описания дискретных сигналов, а также теоретических основ построения линейных устройств для их обработки.

15.1. Модели дискретных сигналов

Различие между дискретными и аналоговыми (непрерывными) сигналами подчеркивалось в гл. 1 при классификации радиотехнических сигналов. Напомним основное свойство дискретного сигнала: его значения определены не во все моменты времени, а лишь в счетном множестве точек. Если аналоговый сигнал имеет математическую модель вида непрерывной или кусочно-непрерывной функции, то отвечающий ему дискретный сигнал представляет собой последовательность отсчетных значений сигнала в точках соответственно.

Дискретизирующая последовательность.

На практике, как правило, отсчеты дискретных сигналов берут во времени через равный промежуток А, называемый интервалом (шагом) дискретизации:

Операцию дискретизации, т. е. переход от аналогового сигнала к дискретному сигналу , можно описать, введя в рассмотрение обобщенную функцию

называемую дискретизирующей последовательностью.

Очевидно, дискретный сигнал представляет собой функционал (см. гл. 1), определенный на множестве всевозможных аналоговых сигналов и равный скалярному произведению функции

Формула (15.3) указывает путь практической реализации устройства для дискретизации аналогового сигнала. Работа дискретизатора основана на операции стробирования (см. гл. 12) - перемножения обрабатываемого сигнала и «гребенчатой» функции Поскольку длительность отдельных импульсов, из которых складывается дискретизирующая последовательность, равна нулю, на выходе идеального дискретизатора в равноотстоящие моменты времени возникают отсчетные значения обрабатываемого аналогового сигнала.

Рис. 15.1. Структурная схема импульсного модулятора

Модулированные импульсные последовательности.

Дискретные сигналы начали использовать еще в 40-х годах при создании радиотехнических систем с импульсной модуляцией. Этот вид модуляции отличается тем, что в качестве «несущего колебания» вместо гармонического сигнала служит периодическая последовательность коротких импульсов.

Импульсный модулятор (рис. 15.1) представляет собой устройство с двумя входами, на один из которых подается исходный аналоговый сигнал На другой вход поступают короткие синхронизирующие импульсы с интервалом повторения . Модулятор построен таким образом, что в момент подачн каждого синхронизирующего импульса происходит измерение мгновенного значения сигнала х(t). На выходе модулятора возникает последовательность импульсов, каждый из которых имеет площадь, пропорциональную соответствующему отсчетному значению аналогового сигнала.

Сигнал на выходе импульсного модулятора будем называть модулированной импульсной последовательностью (МИП). Естественно, что дискретный сигнал является математической моделью МИП.

Отметим, что с принципиальной точки зрения характер импульсов, из которых складывается МИП, безразличен. В частности, эти импульсы могут иметь одинаковую длительность, в то время как их амплитуда пропорциональна отсчетным значениям дискретизируемого сигнала. Такой вид преобразования непрерывного сигнала получил название амплитудно-импульсной модуляции (АИМ). Возможен другой способ - широтно-импульсная модуляция (ШИМ). Здесь амплитуды импульсов на выходе модулятора постоянны, а их длительность (ширина) пропорциональна мгновенным значениям аналогового колебания.

Выбор того или иного способа импульсной модуляции диктуется рядом технических соображений, удобством схемной реализации, а также характерными особенностями передаваемых сигналов. Например, нецелесообразно использовать АИМ в случае, если полезный сигнал изменяется в очень широких пределах, т. е., как часто говорят, имеет широкий динамический диапазон. Для неискаженной передачи такого сигнала требуется передатчик со строго линейной амплитудной характеристикой. Создание такого передатчика - самостоятельная, технически сложная проблема. Системы ШИМ не предъявляют требований к линейности амплитудных характеристик передающего устройства. Однако их схемная реализация может оказаться несколько сложнее по сравнению с системами АИМ.

Математическую модель идеальной МИП можно получить следующим образом. Рассмотрим формулу динамического представления сигнала (см. гл. 1):

Поскольку МИП определена лишь в точках интегрирование в формуле (15.4) следует заменить суммированием по индексу к. Роль дифференциала будет играть интервал (шаг) дискретизации . Тогда математическая модель модулированной импульсной последовательности, образованной бесконечно короткими импульсами, окажется заданной выражением

где - выборочные значения аналогового сигнала.

Спектральная плотность модулированной импульсной последовательности.

Исследуем спектр сигнала, возникающего на выходе идеального импульсного модулятора и описываемого выражением (15.5).

Заметим, что сигнал вида МИП с точностью до коэффициента пропорциональности А равен произведению функции и дискретизирующей последовательности

Известно, что спектр произведения двух сигналов пропорционален свертке их спектральных плотностей (см. гл. 2). Поэтому бели известны законы соответствия сигналов и спектров:

то спектральная плотность МИП-сигнала

Чтобы найти спектральную плотность дискретизирующей последовательности, разложим периодическую функцию в комплексный ряд Фурье:

Коэффициенты этого ряда

Обратившись к формуле (2.44), получаем

т. е. спектр дискретизирующей последовательности состоит из бесконечной совокупности дельта-импульсов в частотной области. Данная спектральная плотность является периодической функцией с периодом

Наконец, подставив формулу (15.8) в (15.7) и изменив порядок следования операций интегрирования и суммирования, находим

Итак, спектр сигнала, полученного в результате идеальной дискретизации бесконечно короткими стробирующими импульсами, представляет собой сумму бесконечного числа «копий» спектра исходного аналогового сигнала. Копии располагаются на оси частот через одинаковые интервалы равные значению угловой частоты первой гармоники дискретизирующей импульсной последовательности (рис. 15.2, а, б).

Рис. 15.2. Спектральная плотность модулированной импульсной последовательности при различных значениях верхней граничной частоты: а - верхняя граничная частота велика; б - верхняя граничная частота мала (цветом обозначена спектральная плотность исходного сигнала, подвергнутого дискретизации)

Восстановление непрерывного сигнала по модулированной импульсной последовательности.

В дальнейшем будем полагать, что вещественный сигнал имеет низкочастотный спектр, симметричный относительно точки и ограниченный верхней граничной частотой Из рис. 15.2, б следует, что если , то отдельные копии спектра не накладываются друг на друга.

Поэтому аналоговый сигнал с таким спектром, подвергнутый импульсной дискретизации, может быть совершенно точно восстановлен с помощью идеального ФНЧ, на вход которого подана импульсная последовательность вида (15.5). При этом наибольший допустимый интервал дискретизации , что согласуется с теоремой Котельникова.

Действительно, пусть фильтр, восстанавливающий непрерывный сигнал, имеет частотный коэффициент передачи

Импульсная характеристика этого фильтра описывается выражением

Принимая во внимание, что МИП-сигнал вида (15.5) есть взвешенная сумма дельта-импульсов, находим отклик на выходе восстанавливающего фильтра

Данный сигнал с точностью до масштабного коэффициента повторяет исходное колебание с ограниченным спектром.

Идеальный ФНЧ физически нереализуем и может служить лишь теоретической моделью для объяснения принципа восстановления сообщения по его дискретным импульсным отсчетам. Реальный фильтр нижних частот имеет АЧХ, которая либо охватывает несколько лепестков спектральной диаграммы МИП, либо, концентрируясь вблизи нулевой частоты, оказывается значительно уже центрального лепестка спектра. Для примера на рис. 15.3, б-е приведены кривые, характеризующие сигнал на выходе RC-цепи, используемой в качестве восстанавливающего фильтра (рис. 15.3, а).

Рис. 15.3. Восстановление непрерывного сигнала по его импульсным отсчетам с помощью RC-цепи: а - схема фильтра; б - дискретный входной сигнал; в, г - АЧХ фильтра и сигнал на его выходе в случае ; д, е - то же, для случая

Из приведенных графиков видно, что реальный восстанавливающий фильтр неизбежно искажает входное колебание.

Заметим, что для восстановления сигнала можно использовать как центральный, так и любой боковой лепесток спектральной диаграммы.

Определение спектра аналогового сигнала по совокупности отсчетов.

Располагая МИП-представлением, можно не только восстановить аналоговый сигнал, но и найти его спектральную плотность. Для этого следует прежде всего непосредственно связать спектральную плотность МИП с отсчетными значениями:

(15.13)

Данная формула исчерпывающе решает поставленную задачу при указанном выше ограничении.

Аналоговые, дискретные и цифровые сигналы

ВВЕДЕНИЕ В ЦИФРОВУЮ ОБРАБОТКУ СИГНАЛОВ

Цифровая обработка сигналов (ЦОС или DSP - digital signal processing) является одной из новейших и самых мощных технологий, которая активно внедряется в широкий круг областей науки и техники, таких как коммуникации, метеорология, радиолокация и гидролокация, медицинская визуализация изображений, цифровое аудио- и телевизионное вещание, разведка нефтяных и газовых месторождений и др. Можно сказать, что происходит повсеместное и глубокое проникновение технологий цифровой обработки сигналов во все сферы деятельности человечества. Сегодня технология ЦОС относится к числу базовых знаний, которые необходимы ученым и инженерам всех отраслей без исключения.

Сигналы

Что такое сигнал? В наиболее общей формулировке это зависимость одной величины от другой. Т.е., с математической точки зрения сигнал является функцией. Чаще всего рассматриваются зависимости от времени. Физическая природа сигнала может быть различной. Очень часто это электрическое напряжение, реже – ток.

Формы представления сигнала :

1. временная;

2. спектральная (в частотной области).

Стоимость цифровой обработки данных меньше аналоговой и продолжает снижаться, а производительность вычислительных операций непрерывно возрастает. Немаловажным является и то, что системы ЦОС отличаются высокой гибкостью. Их можно дополнять новыми программами и перепрограммировать на выполнение различных операций без изменения оборудования. Поэтому интерес к научным и к прикладным вопросам цифровой обработки сигналов возрастает во всех отраслях науки и техники.

ПРЕДИСЛОВИЕ К ЦИФРОВОЙ ОБРАБОТКЕ СИГНАЛОВ

Дискретные сигналы

Сущность цифровой обработки состоит в том, что физический сигнал (напряжение, ток и др.) преобразуется в последовательность чисел , которая затем подвергается математическим преобразованиям в ВУ.

Аналоговые, дискретные и цифровые сигналы

Исходный физический сигнал является непрерывной функцией времени. Такие сигналы, определенные во все моменты t, называются аналоговыми .

Какой сигнал называется цифровым? Рассмотрим некоторый аналоговый сигнал (рис. 1.1 а). Он задан непрерывно на всем рассматриваемом временном интервале. Считается, что аналоговый сигнал абсолютно точен, если не учитывать погрешности при измерении.

Рис. 1.1 а) Аналоговый сигнал

Рис. 1.1 б) Дискретизированный сигнал


Рис. 1.1 в) Квантованный сигнал

Для того, чтобы получить цифровой сигнал, нужно провести две операции – дискретизацию и квантование . Процесс преобразования аналогового сигнала в последовательность отсчетов называется дискретизацией, а результат такого преобразования - дискретным сигналом .Т. обр., дискретизация заключается в составлении выборки из аналогового сигнала (рис. 1.1 б), каждый элемент которой, называемый отсчетом , будет отстоять по времени от соседних отсчетов на некотором интервале Т , называемом интервалом дискретизации или (поскольку интервал дискретизации чаще неизменен) – периодом дискретизации . Величина, обратная периоду дискретизации называется частотой дискретизации и определяется как:

(1.1)

При обработке сигнала в вычислительном устройстве его отсчеты представляются в виде двоичных чисел, имеющих ограниченное число разрядов. Вследствие этого отсчеты могут принимать лишь конечное множество значений и, следовательно, при представлении сигнала неизбежно происходит его округление. Процесс преобразования отсчетов сигнала в числа называется квантованием . Возникающие при этом ошибки округления называются ошибками или шумами квантования . Т. обр., квантование – это приведение уровней дискретизированного сигнала к некоторой сетке (рис. 1.1 в), чаще обычным округлением в сторону большего. Дискретный во времени и квантованный по уровню сигнал и будет являться цифровым.

Условия, при которых возможно полное восстановление аналогового сигнала по его цифровому эквиваленту с сохранением всей исходно содержавшейся в сигнале информации, выражаются теоремами Найквиста, Котельникова, Шеннона, сущность которых практически одинакова. Для дискретизации аналогового сигнала с полным сохранением информации в его цифровом эквиваленте максимальные частоты в аналоговом сигнале должны быть не менее, чем вдвое меньше, чем частота дискретизации, то есть f max £ (1/2)f d , т.е. на одном периоде максимальной частоты должно быть минимум два отсчета. Если это условие нарушается, в цифровом сигнале возникает эффект маскирования (подмены) действительных частот более низкими частотами. При этом в цифровом сигнале вместо фактической регистрируется "кажущаяся" частота, а, следовательно, восстановление фактической частоты в аналоговом сигнале становится невозможным. Восстановленный сигнал будет выглядеть так, как если бы частоты, лежащие выше половины частоты дискретизации, отразились от частоты (1/2)f d в нижнюю часть спектра и наложились на частоты, уже присутствующие в этой части спектра. Этот эффект называется наложением спектров или алиасингом (aliasing). Наглядным примером алиасинга может служить иллюзия, довольно часто встречающаяся в кино – колесо автомобиля начинает вращаться против его движения, если между последовательными кадрами (аналог частоты дискретизации) колесо совершает более чем пол-оборота.

Преобразование сигнала в цифровую форму выполняется аналого-цифровыми преобразователями (АЦП). Как правило, они используют двоичную систему счисления с определенным числом разрядов в равномерной шкале. Увеличение числа разрядов повышает точность измерений и расширяет динамический диапазон измеряемых сигналов. Потерянная из-за недостатка разрядов АЦП информация невосстановима, и существуют лишь оценки возникающей погрешности «округления» отсчетов, например, через мощность шума, порождаемого ошибкой в последнем разряде АЦП. Для этого используется понятие отношения «сигнал/шум» - отношение мощности сигнала к мощности шума (в децибелах). Наиболее часто применяются 8-, 10-, 12-, 16-, 20- и 24-х разрядные АЦП. Каждый дополнительный разряд улучшает отношение сигнал/шум на 6 децибел. Однако увеличение количества разрядов снижает скорость дискретизации и увеличивает стоимость аппаратуры. Важным аспектом является также динамический диапазон, определяемый максимальным и минимальным значением сигнала.

Обработка цифровых сигналов выполняется либо специальными процессорами, либо на универсальных ЭВМ и компьютерах по специальным программам. Наиболее просты для рассмотрения линейные системы. Линейными называются системы, для которых имеет место принцип суперпозиции (отклик на сумму входных сигналов равен сумме откликов на каждый сигнал в отдельности) и однородность (изменение амплитуды входного сигнала вызывает пропорциональное изменение выходного сигнала).



Если входной сигнал x(t-t 0) порождает однозначный выходной сигнал y(t-t 0) при любом сдвиге t 0 , то систему называют инвариантной во времени . Ее свойства можно исследовать в любые произвольные моменты времени. Для описания линейной системы вводится специальный входной сигнал - единичный импульс (импульсная функция).

Единичный импульс (единичный отсчет) u 0 (n ) (рис. 1.2):

Рис. 1.2. Единичный импульс

В силу свойства суперпозиции и однородности любой входной сигнал можно представить в виде суммы таких импульсов, подаваемых в разные моменты времени и умноженных на соответствующие коэффициенты. Выходной сигнал системы в этом случае представляет собой сумму откликов на эти импульсы. Отклик на единичный импульс (импульс с единичной амплитудой) называют импульсной характеристикой системы h(n). Знание импульсной характеристики позволяет проанализировать прохождение через дискретную систему любого сигнала. Действительно, произвольный сигнал {x(n)} можно представить в виде линейной комбинации единичных отсчетов.