За счет работает солнечная батарея. Портативная солнечная батарея – специально для туристов. Принцип работы солнечной панели

Получили настолько широкое распространение, что каждый пользователь может заказать комплектующие и самостоятельно своими руками собрать и установить фотоэлектрические панели. Конечно, вопрос цены остаётся актуален, ведь солнечные панели совсем не дешёвый вариант, зато это экологично. А стоимость, с каждым годом становится всё дешевле. Так что каждый, наверняка сталкивался с идеей использования такого источника электричества, но вот принцип работы солнечной батареи знает далеко не каждый.

Видео о том, как работает солнечная батарея

Принцип работы солнечной батареи

Чтобы понять как работает солнечная батарея необходимо разобраться из чего она состоит. Как правило солнечный источник энергии состоит из таких частей:

  • Генератор постоянного тока (она же солнечная панель)
  • Аккумулятор с контролем заряда и инвертором, преобразующим ток в переменный
  • В свою очередь панель состоит из фотоэлектрических преобразователей , которые, говоря простым языком, трансформируют солнечную энергию в электрическую. Чаще всего это поликристаллические или монокристаллические кремниевые батареи. Разница в КПД и технологии производства.

Принцип работы солнечной электростанции заключается в последовательном взаимодействии ряда элементов единой сети. Соединяются элементы в солнечной панели последовательно и параллельно. Делается это для того, чтобы увеличить мощность, напряжение и ток. Плюс, такое соединение обезопасит при выходе из строя одного элемента — остальные детали цепи.

  • Также батареи пронизаны так называемыми диодами. Принцип действия солнечных батарей основывается именно на этих элементах. Такие диоды предохраняют панель во время частичного затемнения. Во время таких затемнений, батарея не прерывает свою работу, но вырабатывает на четверть меньшую мощность. Суть в том, что диоды не дают перегревать солнечные элементы, которые во время затемнения начинают потреблять электричество вместо того, чтобы вырабатывать.
  • Дальше электроэнергия накапливается в аккумуляторах. А после уже отдаётся в систему. Важный момент в том, чтобы количество параллельно и последовательно соединённых элементов в солнечной панели, было расчитано таким образом, чтобы напряжение, которое подведено к аккумуляторам, превышало напряжение самого аккумулятора. Даже с учётом просадки. При этом нагрузочный ток солнечной батареи должен обеспечивать достаточное количество зарядного тока. Этот параметр обязательно учитывается при .
  • Ещё один важный фактор в работе солнечных панелей — полезная мощность. Именно этот показатель отражает экономичность использования для пользователя. Высчитывается такая мощность исходя из напряжения и выходного тока установки. А эти показатели в свою очередь зависят от силы солнечного освещения, которое попадает непосредственно на панель. Кстати, слишком большие температуры для работы солнечных батарей не полезны. Ведь при интенсивном нагревании солнцем, у электровырабатывающих элементов падает так называемая электродвижущая сила. Тем не менее, чем ярче освещения от солнца, тем больший ток вырабатывается.

Теперь немного формул о принципе работы солнечных батарей.

Как работает солнечная панель? К примеру, солнечная батарея замкнута на нагрузку с измерянным сопротивлением (Rн) . В цепи, следовательно, появляется ток (I) . При этом показатель I формируется в прямой зависимости от качества преобразователя в цепи, силой солнечного освещения и сопротивления. Далее разберём . — это напряжение, которое создаётся на зажимах солнечных батарей. В итоге зная эти показатели, мы можем высчитать мощность, которая появляется в нагрузке на установку: Pн = IнUн

Однако оптимальное сопротивление у каждой панели своё и зависит оно от уровня КПД.

  • При пасмурной погоде заряд аккумуляторов из-за меньшей выработки панелями электричества, естественно снижается. Во время такого процесса, электроэнергию принимает приёмник. Другими словами, аккумуляторы работают всегда либо на заряд либо на разряд. Этот механизм взаимодействия управляется контроллером.
  • Чаще всего работа аккумуляторов в цепи устроена таким образом, что они очень быстро заряжаются до 80-90%, а потом долго набирают остаток заряда. На сегодняшний день самые эффективные для использования в системах альтернативного снабжения электроэнергией батареи — гелевые. Такие батареи не требуют обслуживания и неприхотливы в условиях работы. При этом срок службы обычно достигает 10 лет.

Контроллер, резистор и инвертор

  • Контроллер необходим для подключения аккумуляторов в сеть. Он контролирует заряд.
  • Резистор поглощает избыточную мощность выработки электроэнергии.
  • Инвертор необходим для нормального снабжения электросети, кроме тех случаев, когда необходимо запитать приёмники, которые работают от постоянного напряжения, а не от переменного.

Конечно, разобраться во всех тонкостях работы сложно. Но надеемся, Вы найдёте ответы на страничках нашего сайта. Более наглядно работу солнечных элементов можно понять из графических схем.

Ежесекундно огромное количество солнечной энергии поступает на поверхность нашей планеты, давая жизнь всему живому. Достойной задачей для пытливых умов является решение, которое заставило бы ее служить нуждам людей. И это уже пытаются воплотить в жизнь те, кто изобрел конструкцию солнечной батареи, способной преобразовывать солнечный свет в электрическую энергию.

Понять, как работает солнечная батарея, легче на примере конструкции, в основе которой лежит монокристаллический кремний.

Два слоя кремния с разными физическими свойствами образуют тонкую пластину. Внутренний слой – монокристаллический чистый кремний с р-типом проводимости, который покрыт снаружи слоем кремния «загрязненного». Это может быть, к примеру, примесь фосфора. Он обладает проводимостью n-типа. Тыльная сторона пластины покрыта сплошным металлическим слоем.

В каркасе фотоэлементы закреплены таким образом, чтобы можно было заменить, вышедший из строя. Вся конструкция покрыта закаленным стеклом или пластиком, которые ее защищают от негативного воздействия внешних факторов.

Принцип работы солнечной батареи

В результате перетечки зарядов на границе p- и n- слоев, в n-слое образуется зона нескомпенсированного положительного заряда, а в p-слое – отрицательного заряда, т.е. известный всем из школьного курса физики p-n-переход. Разность потенциалов, возникающая на переходе контактная разность потенциалов (потенциальный барьер) препятствует прохождению электронов с p-слоя, но беспрепятственно пропускает неосновные носители в направлении противоположном, что позволяет получить фото-ЭДС при попадании на ФЭП солнечного света.

При облучении солнечным светом, поглощенные фотоны начинают генерировать неравновесные электронно-дырочные пары. Генерируемые же вблизи перехода электроны, из p-слоя переходят в n-область.

Аналогичным образом попадают в p-слой избыточные дырки и слоя n (рисунок а). Получается, что в p-слое накапливается положительный заряд, а в n- слое – отрицательный, вызывая напряжение во внешней цепи (рисунок б). У источника тока есть два полюса: положительный — p-слой и отрицательный — n-слой.

Это основной принцип работы солнечный элементов. Электроны, таким образом, будто бегают по кругу, т.е. выходят из p-слоя и возвращаются в n-слой, проходя нагрузку (аккумулятор).

Фотоэлектрический отток в однопереходном элементе обеспечивают лишь те электроны, которые обладают энергией выше, чем ширина некой запрещенной зоны. Те же, которые обладают меньшей энергией, в этом процессе не участвуют. Это ограничение снять позволяют структуры многослойные, состоящие из более чем один СЭ, у которых ширина запрещенной зоны различная. Их называют каскадными, многопереходными или тандемными. Фотоэлектрическое преобразование у них выше за счет того, что работают такие СЭ с более широким солнечным спектром. В них фотоэлементы располагаются по мере уменьшения ширины запрещенной зоны. Солнечные лучи вначале попадают на фотоэлемент с самой широкой зоной, при этом происходит поглощение фотонов с наибольшей энергией.

Затем, фотоны, пропущенные верхним слоем, попадают на следующий элемент и т.д. В области каскадных элементов основным направлением исследования является использование в качестве одного компонента или нескольких арсенида галлия. У таких элементов эффективность преобразования составляет 35%. Элементы соединяют в батарею, поскольку изготовить отдельный элемент большого размера (следовательно, и мощности) не позволяют технические возможности.

Солнечные элементы способны работать длительное время. Они себя зарекомендовали как стабильный и надежный источник энергии, пройдя испытания в космосе, где главной опасностью для них является метеорная пыль и радиация, которые приводят к эрозии кремниевых элементов. Но, поскольку, на Земле эти факторы не оказывают на них столь негативного действия, можно предположить, что срок службы элементов будет еще более продолжительным.

Солнечные батареи уже находятся на службе человека, являясь источником питания для различных устройств, начиная от мобильных телефонов и заканчивая электромобилями.

И это уже вторая попытка человека обуздать безграничную солнечную энергию, заставив работать ее себе во благо. Первой попыткой было создание солнечных коллекторов, электричество в которых вырабатывалось за счет нагрева сконцентрированными лучами солнца воды до температуры кипения.

Преимущество солнечных батарей в том, что они непосредственно производят электричество, теряя энергии намного меньше, чем солнечные многоступенчатые коллекторы, в которых процесс ее получения связан с концентраций лучей Солнца, нагревом воды, выделением пара, вращающего паровую турбину и только после этого выработке генератором электричества. Основные параметры солнечных батарей – в первую очередь, мощность. Затем важно, каким запасом энергии они обладают.

Зависит этот параметр от емкости аккумуляторов и их числа. Третьим параметром является пиковая мощность потребления, означающая количество одновременно возможных подключений приборов. Еще одним важным параметров является номинальное напряжение, от которого зависит выбор дополнительного оборудования: инвертора, солнечной панели, контроллера, аккумулятора.

Виды солнечных батарей

Все солнечные панели кажутся на первый взгляд одинаковыми – покрытые стеклом темные элементы с металлическими полосками, проводящими ток, помещенными в алюминиевую раму.

Но, солнечные батареи классифицируют по мощности вырабатываемого ею электричества, зависит которая от конструкции и площади панели (они могут быть миниатюрными пластинками с мощностью до десяти ватт и широкими «листами» на двести и более ватт).

Кроме этого, различаются они по типу образующих их фотоэлементов: фотохимические, аморфные, органические, а также созданные на основе кремниевых полупроводников, у которых коэффициент фотоэлектрического преобразования в несколько раз больший. Следовательно, больше и мощность (особенно во время солнечной погоды). Конкурентом последних может быть солнечная батарея на основе арсенида галлия. То есть, на рынке сегодня встретить можно пять типов солнечных батарей.

Они отличаются материалами, используемыми для их изготовления:

1. Панели из поликристаллических фотоэлектрических элементов, с характерным синим цветом солнечной панели, кристаллической структурой и КПД, равным 12-14%.

Поликристаллическая панель

2. Панели из монокристаллических элементов – более дорогие, но и более эффективные (КПД – до 16%).

3. Панели солнечные из аморфного кремния, у которых КПД самый низкий – 6-8%, но вырабатывают они наиболее дешевую энергию.

4. Панели из теллурида кадмия, создаваемые по пленочным технологиям (КПД – 11%).

Панель, в основе которой лежит теллурид кадмия

5. Наконец, солнечные панели на основе полупроводника CIGS, состоящего из селена, индия, меди, галлия. Технологии их получения тоже пленочные, но КПД доходит до пятнадцати процентов.

Кроме этого, панели солнечные могут быть гибкими и портативными.

Очень удобными являются гибкие панели, которые легко сворачиваются в рулон, словно обычная бумага. Хотя стоимость их выше, чем твердотельных аналогов, они на рынке заняли свою нишу. В основном они пользуются спросом у туристов и путешественников, которым в условиях отсутствия электрификации необходимо заряжать мобильные гаджеты. Главным производителем гибких батарей, работающих от солнечной энергии, является компания Sun Charger, которая, к слову, недавно обновила свой модельный ряд моделями 34 Вт и 9Вт.

Первая модель подходит для питания планшетов, сотовых телефонов, видеокамер, цифровых фотоаппаратов, GPS, гелевых аккумуляторов 6 и 12 вольт, т.е. она может в условиях похода обеспечить потребности нескольких человек.

SunCharger SC-9/14 — батарея в сложенном виде

Она же — в раскрытом виде

Особенности батареи: компактная складывающая конструкция, работающая в диапазоне температур от -50 до +70 градусов, вес которой всего 420 граммов, снабжена антибликовым покрытием, встроенным светодиодом, люверсами для крепления. Выходной разъем круглый (5.5 мм / 2.1 мм.).

Характеристики электрические: рабочее выходное напряжение 13,5 В (стандартное 12В), без нагрузки – 19В; рабочий выходной ток – 0,65 А; габариты в сложенном и развернутом виде — 20.5х15х3 см и 50х41.5х0.4 см; мощность выходная – 8,6 Вт.

Вторая модель SunCharger SC-34/18 на сегодняшний день является в линейке гибких солнечных батарей самой мощной. Разработана она специально для универсальных накопителей (ноутбуков), имеющих на входе зарядки, как правило, 17-19 вольт. Максимальная мощность – 18В. К накопителям она подключается напрямую, что обеспечивает идеальное согласование. Понятно, что для менее «прожорливых» накопителей она также подходит, в том числе для двенадцати вольтовых свинцовых аккумуляторов, используемых в автомобилях.

Солнечная батарея выдает 18 В в точке своей максимальной мощности и напрямую подключается к этим накопителям. Таким образом, она «идеально» с ними согласована.

Естественно, эта батарея подходит и для зарядки менее прожорливых потребителей. Как известно, мощности мало не бывает. А также спокойно заряжает 12 В свинцовые аккумуляторы, в том числе, и автомобильные (через несколько часов зарядки уже можно завести машину). Толщина ее 4 см (т.е. стала чуть больше), но получилась батарея даже немного компактнее, чем обычные батареи на 12 В.

Достигнуто это за счет более тонкой ткани, используемой в ее производстве и ламинированных фотоэлементов большей площади.

Эта же батарея в раскрытом виде

Помимо особенностей, характерных для предыдущей модели, здесь имеются на выходе помимо круглого разъема, еще «мама» и «папа».

Электрические характеристики: мощность выходная, как понятно из маркировки, 34 Вт; рабочий выходной ток – 1.9 А; габариты 40х18х4 см (в сложенном виде) и 40х18х4 см (в раскрытом). Напряжение на выходе – 18 В и 26 В (без нагрузки). Вес, конечно, намного больше – 1,7 кг.

Портативная солнечная батарея – специально для туристов

У каждого в наше время есть электронные гаджеты. Не суть, что у кого-то их меньше, а кого-то больше. Все их необходимо заряжать, а для этого нужны зарядные устройства. Но, особенно остро этот вопрос касается тех, кто попадает в места, где отсутствует электропитание. Единственным выходов являются солнечные батареи. Но, цены на них остаются высокими, а выбор — небольшим. Оптимальным вариантом, как принято считать, является продукция компании Goal Zero (хотя есть и российская продукция, и китайская – как всегда вызывающая сомнении).

Но, оказалось, что не все то плохо, что сделано в Китае или Корее. Особенно порадовала солнечная батарея компания YOLK из Чикаго, которая начала производство компактной солнечной батареи Solar Paper – самой тонкой и легкой. Ее вес всего 120 граммов. Но есть и другие преимущества – модульная конструкция, позволяющая наращивать мощность. Солнечная батарея похожа на пластиковую коробку, по размерам напоминающую Ipad, только тоньше в два раза. На ее лицевой стороне размещена солнечная панель. Есть на корпусе выход для ноутбука и порты USB и для подключения других солнечных панелей, а также фонарик. Внутри этой чудо коробки – аккумуляторы и плата управления. Зарядить девайс можно от розетки, причем, одновременно это могут быть телефон и два ноутбука. Конечно, заряжается устройство и от солнца. Как только на него попадает свет, загорается индикатор. В походных условиях солнечная панель просто незаменима: с успехом заряжает все нужные устройства – телефоны быстрее, ноутбуки.

Портативные солнечные батареи отличаются компактными размерами: они выпускаются даже в виде брелков, прикрепить которые можно к чему угодно. Разрабатывались они для того, чтобы можно было их взять на рыбалку, в поход и пр. Обязательно у них имеется фонарик, чтобы ночью можно было осветить дорогу, палатку и т.д., крепления, позволяющие легко их разместить на рюкзаках, байдарках, палатках. Очень важно, чтобы в таком устройстве был встроенный аккумулятор, позволяющий заряжать девайсы и в ночное время.

Ученые работают над тем, чтобы увеличить коэффициент полезного действия, но пока лидируют по этому показателю солнечные панели из монокристаллических элементов. Состоящие из нескольких слоев — монокристаллические панели, устроены так, что один из слоев поглощает энергию зеленого цвета, другой – красного, третий – синего. Но, стоимость таких панелей очень высокая.

Солнечная батарея состоит, как известно, из нескольких обязательных частей. Основой основ у нее, подобно двигателю у машины или сердцу у человека, является солнечная панель – прозрачный прямоугольный короб с темными квадратиками тонко нарезанного кремния внутри. Кремний, используемый в производстве, а точнее его оксид (соединение с кислородом) – основной элемент производства солнечных батарей.

Технологии, лежащие в основе производства солнечных батарей, все время совершенствуются и состоят из нескольких этапов.

  • На первом этапе подготавливают сырье: очищают кварцевый песок, прокаливая его с коксом. В результате он освобождается от кислорода, превращаясь в куски чистого кремния, напоминающие чем-то уголь. Затем, из него выращивают кристаллы – основу солнечных панелей, упорядочив структуру кремния. Для этого чистый кремний опускают в тигель, нагревают до высокой температуры, добавляя в расплавленную лаву затравку. Можно сравнить ее с образцом будущего кристалла, вокруг которого, слой за слоем нарастает кремний упорядоченной структуры. После нескольких часов роста получается кристалл монокремния (или поликристаллический кремний, процесс получения которого более затратный, что сказывается на цене солнечных батарей из него), напоминающий большую сосульку. Затем заготовку цилиндрическую превращают в параллелепипед. После этого заготовку режут на пластины толщиной 100-200 микрон (толщина трех человеческих волос), тестируют их, сортируют и направляют на следующую стадию обработки.
  • На втором этапе пластина паяют в секции, их которых на стекле формируют блоки, чтобы исключить возможность механического воздействия на готовые солнечные элементы. Секции обычно состоят из 9-10 солнечных элементов, блоки – из 4-6 секций.
  • Третий этап з аключается в ламинировании спаянных в блоки пластин этиленвинилацетатной пленкой, а затем защитным покрытием, который осуществляется с помощью компьютера, который следит за давлением, вакуумом и температурой.
  • Четвертый этап заключительный . Во время него монтируется соединительная коробка и алюминиевая рама. Вновь проводят тестирование, во время которого измеряют показатели напряжение холостого хода, ток короткого замыкания, напряжение и ток точки максимальной емкости.

Лидерами среди предприятий, производящих солнечные батареи, являются страны: Китай (компании Trina Solar, Yingli, Suntech), Япония (Sharp Solar) и США (First Solar), которая не только их производит, но также участвует в проектировании солнечных станций и их строительстве. Мощнейшая в мире СЭС Агуа-Калиенте в Аризоне – дело рук этой компании. Строительством крупнейшей СЭС «Перово» в Украине занималась компания Австрии (Activ Solar).

Сколько стоит солнечная батарея

Продажа солнечных батарей – дело выгодное и перспективное. Объем продаж увеличивается ежегодно. На первом месте по продажам – китайские производители, продукция которым отличается низкой стоимостью. Такая ситуация привела к банкротству крупных немецких брендов, стоят которые вдвое дороже китайских солнечных батарей.

Стоимость солнечных батарей зависит от производителя и мощности, и имеет огромный разброс – от 1800 грн. до 9000 грн. (для Украины), от 5 тыс. рублей до 30 тысяч (для России). Стоимость этих батарей SunCharger SC- 9/14 и SunCharger SC-34/18 тоже высокая (надо же платить за отличные характеристики). Она составляет соответственно 6100 и 20700 рублей . Но, в сравнении с гибкой батареей фирмы AcmePower 32 Вт, цена за которую равна 27 тысяч рублей , эта батарея гораздо дешевле.


Кто желает сэкономить, могут приобрести солнечные кристаллические складные батареи по цене в 2,5 раза меньшей.

Выводы

Фантастические идеи постепенно становятся реальностью. Вспомним хотя бы микрокалькулятор на фотоэлементах, казавшийся когда-то диковинкой, позволявшей годами не менять батарейку. Изобретение последних лет – мобильник со встроенной солнечной панелью, автомобили и самолеты, передвигающиеся благодаря, все той же, энергии Солнца. Солнечные батареи в будущем, непременно станут основным источником энергии, «вылечив», наконец, все гаджеты от «розеткозависимости» и подарив человечеству дешевую энергию.

Применение солнечных батарей

Использование солнечной энергии для создания солнечных электростанций является очень выгодным и не таким уж дорогим источником электроэнергии. Широкое применение солнечных батарей нашли не только в промышленности и других отраслях, но и для индивидуальных нужд.

Со временем солнечные батареи становятся дешевле и все большее число людей приобретают их и используют в качестве источника альтернативной энергии. На солнечных панелях работают калькуляторы, радиоприемники, фонари на аккумуляторах с подзарядкой от солнечной панели.

Есть даже корейский мобильный телефон, который может заряжаться от солнечных панелей. Появились небольшие переносные электростанции на солнечных панелях, которыми пользуются туристы, рыбаки, охотники. Сейчас никого не удивишь автомобилем с солнечной панелью на крыше.

Как работают солнечные батареи

Солнечная панель состоит из множества фотоэлементов, которые при освещении солнечными лучами создают разность потенциалов. Теперь, соединяя эти фотоэлементы последовательно, мы увеличим величину постоянного напряжения, а соединяя параллельно, увеличим силу тока.

Устройство солнечных батарей

Т. е., соединяя фотоэлементы последовательно – параллельно мы можем достичь большой мощности солнечной панели. Также батареи можно собирать параллельно и последовательно в модуле и добиться значительного увеличения напряжения, тока и мощности такого модуля.

Принцип работы солнечной панели

Кроме солнечных батарей схема имеет еще такие устройства как , необходимый для контроля заряда аккумулятора, инвертор имеет функцию преобразования постоянного напряжения в стабильное переменное, для потребителей электроэнергии. Аккумуляторы предназначены для накопления электроэнергии.

Как работают фотоэлементы солнечной батареи

Еще Беккерель доказал, что энергию солнца можно преобразовать в электричество, освещая специальные полупроводники. Позднее эти полупроводники стали называть фотоэлементами. Фотоэлемент представляет собой два слоя полупроводника имеющих разную проводимость. С обеих сторон к этим полупроводникам припаиваются контакты для подключения в цепь. Слой полупроводника с n проводимостью является катодом, а слой с p проводником анодом.

Проводимость n называют электронной проводимостью, а слой p дырочной проводимостью. За счет передвижения «дырок» в p слое во время освещения, создается ток. Состояние атома потерявшего электрон называется «дырка». Таким образом, электрон перемещается по «дыркам» и создается иллюзия движения «дырок».

В действительности «дырки» не передвигаются. Граница соприкосновения проводников с разной проводимостью называется p-n переходом. Создается аналог диода, который выдает разность потенциалов при его освещении. Когда освещается n проводимость, то электроны, получая дополнительную энергию, начинают проникать сквозь барьер p-n перехода.

Число электронов и «дырок» меняется, что приводит к появлению разности потенциала, и при замыкании цепи появляется ток. Величина разности потенциала зависит от размеров фотоэлемента, силы света, температуры. Основной первого фотоэлемента стал кремний. Однако высокую чистоту кремния получить трудно, стоит это недешево.

Когда освещается n проводимость, то электроны, получая дополнительную энергию, начинают проникать сквозь барьер p-n перехода. Число электронов и «дырок» меняется, что приводит к появлению разности потенциала, и при замыкании цепи появляется ток

Поэтому сейчас ищут замену кремнию. В новых разработках кремний заменен на многослойный полимер с высоким КПД до 30%. Но такие солнечные панели дорогие, и пока отсутствуют на рынке. КПД солнечных батарей можно повысить, если устанавливать их на южной стороне и под углом не меньше 30 градусов.

Рекомендуется, на устройство слежения за движением солнца. Это устройство передвигает панели таким образом, чтобы они получали максимально возможное освещение лучами солнца от восхода до заката. При этом КПД солнечных панелей возрастает достаточно сильно.

Солнце – это неисчерпаемый источник энергии. Его можно использовать, сжигая деревья или нагревая воду в солнечных нагревателях, преобразуя полученное тепло в электроэнергию. Но есть устройства, превращающие солнечный свет в электричество напрямую. Это солнечные батареи.

Сфера применения

Есть три направления использования солнечной энергии:

  • Экономия электроэнергии. Солнечные панели позволяют отказаться от централизованного электроснабжения или уменьшить его потребление, а также продавать излишки электричества электроснабжающей компании.
  • Обеспечение электроэнергией объектов, подведение к которым линии электропередач невозможно или невыгодно экономически. Это может быть дача или охотничий домик, находящийся далеко от ЛЭП. Такие устройства используются также для питания светильников в отдаленных участках сада или автобусных остановках.
  • Питание мобильных и переносных устройств. При походах, поездках на рыбалку и других подобных мероприятиях есть необходимость зарядки телефонов, фотоаппаратов и прочих гаджетов. Для этого также используются солнечные элементы.
Солнечные батареи удобно применять там, куда нельзя подвести электричество

Принцип работы

Элементы солнечных батарей представляют собой пластинки из кремния толщиной 0,3 мм. Со стороны, на которую попадает свет, в пластину добавлен бор. Это приводит к появлению избыточного количества свободных электронов. С обратной стороны добавлен фосфор, что приводит к образованию «дырок». Граница между ними называется p-n переход. При попадании света на пластину, он «выбивает» электроны на обратную сторону. Так появляется разность потенциалов. Вне зависимости от размера элемента, одна ячейка развивает напряжение 0,7 В. Для увеличения напряжения, их соединяют последовательно, а для повышения силы тока – параллельно.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

В некоторых конструкциях, для увеличения мощности, над элементами устанавливались линзы или использовалась система зеркал. С уменьшением стоимости батарей такие устройства стали неактуальными.

Максимальный КПД панели, а, следовательно, и мощность, достигается при падении света под углом 90 градусов. В некоторых стационарных устройствах батарея поворачивается вслед за солнцем, но это сильно удорожает и утяжеляет конструкцию.


Принцип работы солнечной батареи

Преимущества и недостатки применения батарей

У солнечных панелей, как и у любых устройств, есть достоинства и недостатки, связанные с принципом действия и особенностями конструкции.

Достоинства солнечных батарей:

  • Автономность. Позволяют обеспечить электроэнергией удаленные здания или светильники и работу мобильных устройств в походных условиях.
  • Экономичность. Для выработки электроэнергии используется свет солнца, за который не нужно платить. Поэтому ФЭС (фотоэлектрические системы) окупаются за 10 лет, что меньше срока службы, составляющего более 30. Причем 25–30 лет – это гарантийный срок, а фотоэлектростанция будет работать и после него, принося прибыль владельцу. Конечно, необходимо учесть периодическую замену инверторов и аккумуляторных батарей, но все равно, использование такой электростанции помогает экономить средства.
  • Экологичность. При работе устройства не загрязняют окружающую среду и не шумят, в отличие от электростанций, работающих на других видах топлива.

Кроме достоинств, у ФЭС есть недостатки:

  • Высокая цена. Такая система стоит довольно дорого, особенно с учетом цены на аккумуляторные батареи и инверторы.
  • Большой срок окупаемости. Средства, вложенные в фотоэлектростанцию, окупятся только через 10 лет. Это больше, чем основная масса других вложений.
  • Фотоэлектрические системы занимают много места – всю крышу и стены здания. Это нарушает дизайн сооружения. Кроме того, аккумуляторные батареи большой емкости занимают целую комнату.
  • Неравномерность выработки электроэнергии. Мощность устройства зависит от погоды и времени суток. Это компенсируется установкой аккумуляторных батарей или подключением системы к сети. Это позволяет в хорошую погоду днем продавать излишки электроэнергии электрокомпании, а ночью наоборот подключать оборудование к централизованному электроснабжению.

Технические характеристики: на что обратить внимание

Главным параметром фотоэлементной системы является мощность. Напряжение такой установки достигает максимума при ярком свете и зависит от количества соединенных последовательно элементов, которое почти во всех конструкциях равно 36. Мощность зависит от площади одного элемента и количества цепочек по 36 штук, соединенных параллельно.

Кроме самих батарей, важно подобрать контроллер зарядки аккумуляторов и инвертор, преобразующий заряд аккумуляторных батарей в напряжение сети, а также сами панели.

В аккумуляторных батареях есть допустимый ток зарядки, который нельзя превышать, иначе система выйдет из строя. Зная напряжение аккумуляторов, легко определить мощность, необходимую для зарядки. Она должна быть больше мощности солнечной электростанции, иначе в солнечный день часть энергии окажется неиспользованной.

Контроллер обеспечивает заряд аккумуляторов и также должен иметь мощность, позволяющую полностью использовать энергию солнца.

К инвертору подключается оборудование, получающее энергию от ФЭС, поэтому его мощность должна соответствовать суммарной мощности электроприборов.

Виды солнечных батарей

Кроме размера и мощности, панели отличаются способом, которым изготавливаются из кремния отдельные элементы.


Внешний вид моно- и поликристаллических панелей

Элементы из монокристаллического кремния

Элементы солнечных батарей, изготовленные из монокристаллического кремния, имеют форму квадрата с закругленными углами. Это связано с технологией изготовления:

  • из расплавленного кремния высокой степени очистки выращивается кристалл цилиндрической формы;
  • после остывания у цилиндра обрезаются края, и основание из круга принимает форму квадрата с закругленными углами;
  • получившийся брусок разрезается на пластины толщиной 0,3 мм;
  • в пластины добавляются бор и фосфор и на них наклеиваются контактные полоски;
  • из готовых элементов собирается ячейка батареи.

Готовая ячейка закрепляется на основании и закрывается стеклом, пропускающим ультрафиолетовые лучи или ламинируется.

Такие устройства отличаются самым высоким КПД и надежностью, поэтому устанавливаются в важных местах, например, в космических аппаратах.

Фотоэлементы из мульти-поликристаллического кремния

Кроме элементов из цельного кристалла, есть устройства, в которых фотоэлементы изготавливаются из поликристаллического кремния. Технология производства похожа. Основное отличие в том, что вместо кристалла круглой формы используется прямоугольный брусок, состоящий из большого количества мелких кристаллов различных форм и размеров. Поэтому элементы получаются прямоугольной или квадратной формы.

В качестве сырья берутся отходы производства микросхем и фотоэлементов. Это удешевляет готовое изделие, но ухудшает его качество. Такие устройства имеют меньший КПД – в среднем 18% против 20–22% у монокристаллических батарей. Однако вопрос выбора достаточно сложный. У разных производителей цена одного киловатт мощности монокристаллических и поликристаллических панелей может быть одинаковой или в пользу любого вида устройств.

Фотоэлементы из аморфного кремния

В последние годы распространение получили гибкие батареи, которые легче жестких. Технология их изготовления отличается от технологии изготовления моно- и поликристаллических панелей – на гибкую основу, обычно стальной лист, напыляются тонкие слои кремния с добавками до достижения необходимой толщины. После этого листы разрезаются, к ним приклеиваются токопроводящие полоски и вся конструкция ламинируется.


Солнечные батареи из аморфного кремния

КПД таких батарей примерно в 2 раза меньше, чем у жестких конструкций, однако, они легче и более прочные за счет того, что их можно сгибать.

Такие приборы дороже обычных, но им нет альтернативы в походных условиях, когда основное значение имеет легкость и надежность. Панели можно нашить на палатку или рюкзак, и заряжать аккумуляторы во время движения. В сложенном виде такие устройства похожи на книгу или свернутый в рулон чертеж, который можно поместить в футляр, напоминающий тубус.

Кроме зарядки мобильных устройств в походе, гибкие панели устанавливаются в электромобилях и электросамолетах. На крыше такие приборы повторяют изгибы черепицы, а если в качестве основы использовать стекло, то оно приобретает вид тонированного и его можно вставить в окно дома или теплицу.

Контроллер заряда для солнечных батарей

У прямого подключения панели к аккумулятору есть недостатки:

  • Аккумулятор с номинальным напряжением 12 В будет заряжаться только при достижении напряжения на выходе фотоэлементов 14,4 В, что близко к максимальному. Это значит, что часть времени батареи заряжаться не будут.
  • Максимальное напряжение фотоэлементов – 18 В. При таком напряжении ток заряда аккумуляторов будет слишком большим, и они быстро выйдут из строя.

Для того чтобы избежать этих проблем необходима установка контроллера заряда. Самыми распространенными конструкциями являются ШИМ и МРРТ.

ШИМ-контроллер заряда

Работа ШИМ-контроллера (широтно-импульсная модуляция – англ. pulse-width modulation — PWM) поддерживает постоянное напряжение на выходе. Это обеспечивает максимальную степень заряда аккумулятора и его защиту от перегрева при зарядке.

МРРТ-контроллер заряда

МРРТ-контроллер (Maximum power point tracker – слежение за точкой максимальной мощности) обеспечивает такое значение выходного напряжения и тока, которое позволяет максимально использовать потенциал солнечной батареи вне зависимости от яркости солнечного света. При пониженной яркости света он поднимает выходное напряжение до уровня, необходимого для зарядки аккумуляторов.

Такая система есть во всех современных инверторах и контроллерах зарядки

Виды аккумуляторов, используемых в батареях


Различные виды аккумуляторов, которые можно использовать для солнечной батареи

Аккумуляторы – важный элемент системы круглосуточного электроснабжения дома солнечной энергией.

В таких устройствах используются следующие виды аккумуляторов:

  • стартерные;
  • гелевые;
  • AGM батареи;
  • заливные (OPZS) и герметичные (OPZV) аккумуляторы.

Аккумуляторы других типов, например, щелочные или литиевые дорогие и используются очень редко.

Все эти виды устройств должны работать при температуре от +15 до +30 градусов.

Стартерные аккумуляторы

Самый распространенный тип аккумуляторов. Они дешевы, но обладают большим током саморазряда. Поэтому через несколько пасмурных дней батареи разрядятся даже при отсутствии нагрузки.

Недостатком таких устройств является то, что при работе происходит газовыделение. Поэтому их необходимо устанавливать в нежилом, хорошо проветриваемом помещении.

Кроме того, срок службы таких аккумуляторов до 1,5 лет, особенно при многократных циклах заряд-разряд. Поэтому в долгосрочной перспективе эти устройства окажутся самыми дорогими.

Гелевые аккумуляторы

Гелевые аккумуляторы –изделия, не требующие обслуживания. При работе отсутствует газовыделение, поэтому их можно устанавливать в жилой комнате и помещении без вентиляции.

Такие устройства обеспечивают большой выходной ток, имеют высокую емкость и низкий ток саморазряда.

Недостаток таких приборов в высокой цене и небольшом сроке службы.

AGM батареи

Эти батареи имеют небольшой срок службы, однако, у них есть много преимуществ:

  • отсутствие газовыделения при работе;
  • небольшими размерами;
  • большим количеством (около 600) циклов заряда-разряда;
  • быстрым (до 8 часов) зарядом;
  • хорошей работой при неполном заряде.

AGM батарея изнутри

Заливные (OPZS) и герметичные (OPZV) аккумуляторы

Такие устройства являются самыми надежными и имеют наибольший срок службы. Они обладают низким током саморазряда и высокой энергоемкостью.

Эти качества делают такие приборы наиболее популярными для установки в фотоэлементных системах.

Как определить размер и количество фотоэлементов?

Необходимые размер и количество фотоэлементов зависит от напряжения, силы тока и мощности, которые нужно получить от батареи. Напряжение одного элемента в солнечный день равно 0,5 В. При облачности оно намного ниже. Поэтому для зарядки аккумуляторов 12 В, соединяются последовательно 36 фотоэлементов. Соответственно, для аккумуляторов 24 В необходимо 72 элемента и так далее. Общее их количество зависит от площади одного элемента и необходимой мощности.

Один квадратный метр площади батареи, с учетом КПД, может выдать приблизительно 150 Вт. Точнее можно определить по метеорологическим справочникам, показывающим количество солнечной радиации в месте установки гелиооэлектростанции или в интернете. КПД устройства указан в паспорте.

При изготовлении фотоэлектростации своими руками необходимое количество элементов определяется по мощности одного элемента в данном климате с учетом КПД.


Расчет количества солнечных батарей исходит из необходимого электричества

Эффективность солнечных батарей зимой

Несмотря на то что зимой солнце поднимается ниже, поток света уменьшается незначительно, особенно после выпадения снега.

Основных причин, по которым солнечные элементы зимой менее эффективны три:

  • Меняется угол падения лучей. Для того чтобы сохранять мощность, угол наклона батареи необходимо менять хотя бы раз в сезон, а лучше каждый месяц.
  • Снег, особенно влажный, налипает на поверхность устройства. Его необходимо убирать сразу после выпадения.
  • Зимой меньше продолжительность светлого времени суток, а также больше пасмурных дней. Изменить это невозможно, поэтому приходится рассчитывать мощность батареи по зимнему минимуму.

Правила установки

Максимальная мощность панели достигается в положении, при котором солнечные лучи падают перпендикулярно. Это необходимо учитывать при установке. Важно также учесть, в какое время суток минимальная облачность. Если угол наклона крыши и ее положение не соответствуют требованиям, то оно исправляется регулировкой основания.

Между батареей и крышей должен быть воздушный зазор 15–20 сантиметров. Это необходимо для протекания дождя и предохранения от перегрева.

Фотоэлементы плохо работают в тени, поэтому следует избегать располагать их в тени от зданий и деревьев.

Электростанции из солнечных фотоэлементов – это перспективный экологически чистый источник энергии. Их широкое применение позволит решить проблемы с нехваткой энергии, загрязнением окружающей среды и парниковым эффектом.

В наше время практически каждый может собрать и получить в свое распоряжение свой независимый источник электроэнергии на солнечных батареях (в научной литературе они называются фотоэлектрическими панелями ).

Дорогостоящее оборудование со временем компенсируется возможностью получать бесплатную электроэнергию. Важно, что солнечные батареи - это экологически чистый источник энергии. За последние годы цены на фотоэлектрические панели упали в десятки раз и они продолжают снижаться, что говорит о больших перспективах при их использовании.

В классическом виде такой источник электроэнергии будет состоять из следующих частей: непосредственно, солнечной батареи (генератора постоянного тока), аккумулятора с устройством контроля заряда и инвертора, который преобразует постоянный ток в переменный.

Солнечные батареи состоят из набора солнечных элементов (фотоэлектрических преобразователей) , которые непосредственно преобразуют солнечную энергию в электрическую.

Большинство солнечных элементов производят из кремния, который имеет довольно высокую стоимость. Этот факт определят высокую стоимость электрической энергии, которая получается при использовании солнечных батарей.

Распространены два вида фотоэлектрических преобразователей: сделанные из монокристаллического и поликристаллического кремния. Они отличаются технологией производства. Первые имеют кпд до 17,5%, а вторые - 15%.

Наиболее важным техническим параметром солнечной батареи, которая оказывает основное влияние на экономичность всей установки, является ее полезная мощность . Она определяется напряжением и выходным током. Эти параметры зависят от интенсивности солнечного света, попадающего на батарею.

Э.д.с. (электродвижущая сила) отдельных солнечных элементов не зависит от их площади и снижается при нагревании батареи солнцем, примерно на 0,4% на 1 гр. С. Выходной ток зависит от интенсивности солнечного излучения и размера солнечных элементов. Чем ярче солнечный свет, тем больший ток генерируется солнечными элементами. Зарядный ток и отдаваемая мощность в пасмурную погоду резко снижается. Это происходит за счет уменьшения отдаваемой батареей тока.

Если освещенная солнцем батарея замкнута на какую либо нагрузку с сопротивлением Rн, то в цепи появляется электрический ток I, величина которого определяется качеством фотоэлектрического преобразователя, интенсивностью освещения и сопротивлением нагрузки. Мощность Pн, которая выделяется в нагрузке определяется произведением Pн = IнUн, где Uн напряжение на зажимах батареи.

Наибольшая мощность выделяется в нагрузке при некотором оптимальном ее сопротивлении Rопт, которое соответствует наибольшему коэффициенту полезного действия (кпд) преобразования световой энергии в электрическую. Для каждого преобразователя имеется свое значение Rопт, которая зависит от качества, размера рабочей поверхности и степени освещенности.

Солнечная батарея состоит из отдельных солнечных элементов, которые соединяются последовательно и параллельно для того, чтобы увеличить выходные параметры (ток, напряжение и мощность). При последовательном соединении элементов увеличивается выходное напряжение, при параллельном - выходной ток. Для того, чтобы увеличить и ток и напряжение комбинируют два этих способа соединения. Кроме того, при таком способе соединения выход из строя одного из солнечных элементов не приводит в выходу из строя всей цепочки, т.е. повышает надежность работы всей батареи.

Таким образом, солнечная батарея состоит из параллельно-последовательно соединенных солнечных элементов . Величина максимально возможного тока отдаваемого батареей прямо пропорциональна числу параллельно включенных, а э.д.с. - последовательно включенных солнечных элементов. Так комбинируя типы соединения собирают батарею с требуемыми параметрами.

Солнечные элементы батареи шунтируются диодами. Обычно их 4 - по одному, на каждую ¼ часть батареи. Диоды предохраняют от выхода из строя части батареи, которые по какой-то причине оказались затемненными, т. е. если в какой-то момент времени свет на них не попадает. Батарея при этом временно генерирует на 25% меньшую выходную мощность, чем при нормальном освещении солнцем всей поверхности батареи.

При отсутствии диодов эти солнечные элементы будут перегреваться и выходить из строя, так как они на время затемнения превращаются в потребителей тока (аккумуляторы разряжаются через солнечные элементы), а при использовании диодов, они шунтируются и ток через них не идет. Диоды должны быть низкоомными, чтобы уменьшить на них падение напряжения. Для этих целей в последнее время используют диоды Шоттки.

Получаемая электрическая энергия накапливается в аккумуляторах, а затем отдается в нагрузку. - химические источники тока. Заряд аккумулятора происходит тогда, когда к нему приложен потенциал, который больше напряжения аккумулятора.

Число последовательно и параллельно соединенных солнечных элементов должно быть таким, чтобы рабочее напряжение подводимое к аккумуляторам с учетом падения напряжения в зарядной цепи немного превышало напряжение аккумуляторов, а нагрузочный ток батареи обеспечивал требуемую величину зарядного тока.

Например, для зарядки свинцовой аккумуляторной батареи 12 В необходимо иметь солнечную батарею состоящую из 36 элементов.

При слабом солнечном свете заряд аккумуляторной батареи уменьшается и батарея отдает электрическую энергию электроприемнику, т.е. аккумуляторные батареи постоянно работают в режиме разряда и подзаряда.

Это процесс контролируется . При циклическом заряде требуется постоянное напряжение или постоянный ток заряда.

При хорошей освещенности аккумуляторная батарея быстро заряжается до 90% своей номинальной емкости, а затем с меньшей скоростью заряда до полной емкости. Переключение на меньшую скорость заряда производится контроллером зарядного устройства.

Наиболее эффективно использование специальных аккумуляторов - (в батарее в качестве электролита применяется серная кислота) и свинцовыех батарей, которые сделанны по AGM-технологии. Этим батареям не нужны специальные условия для установки и не требуется обслуживание. Паспортный срок службы таких батарей - 10 - 12 лет при глубине разряда не более 20%. Аккумуляторные батареи никогда не должны разряжаться ниже этого значения, иначе их срок службы резко сокращается!

Аккумулятор подсоединяется к солнечной батарее через контроллер, который контролирует ее заряд. При заряде батареи на полную мощность к солнечной батареи подключается резистор, который поглощает избыточную мощность.

Для того чтобы преобразовать постоянное напряжение от аккумуляторной батареи в переменное напряжение, которой можно использовать для питания большинства электроприемников совместно с солнечной батарей можно использовать специальные устройства - .

Без использования инвертора от солнечной батареи можно питать электроприемники, работающие на постоянном напряжении, в т.ч. различную портативную технику, энергосберегающие источники света, например, те же светодиодные лампы.