Теория электроцепи. Основы теории электрических цепей. Понятие о напряжении

Теория электрических цепей

Предметом теории электрических цепей является изучение наиболее общих закономерностей, описывающих процессы, протекающие во всех электротехнических устройствах. Теория электрических цепей основана на двух постулатах:

  1. Исходное предположение теории электрических цепей. Все процессы в любых электротехнических устройствах можно описать с помощью двух понятий: тока и напряжения .
  2. Исходное допущение теории электрических цепей. Ток в любой точке сечения любого проводника один и тот же, а напряжение между любыми двумя точками пространства изменяется по линейному закону.

Ток - предел отношения количества электричества, переносимого заряженными частицами через некоторую поверхность за некоторый промежуток времени, к этому промежутку времени, когда он стремится к нулю.

Считая, что заряд и время непрерывны, можно перейти от предела к производной. Размерность тока:

= Кл −1 =

Напряжение - предел отношения количества энергии, необходимой для переноса некоторого количества электричества из одной точки пространства в другую, к этому количеству электричества, когда оно стремится к нулю. Последнее равенство написано в предположении, что энергия и заряд - величины непрерывные. Размерность напряжения:

= Дж Кл −1 =

Из основных понятий как следствие вытекают определения:

Энергия - мера способности объекта совершать работу. Её размерность:

1 = Дж =

Мощность - скорость изменения энергии во времени. Размерность мощности:

= Дж −1 = = Вт

Теперь введем понятие элементов электрической цепи . Элементы - идеализированные устройства с двумя или более зажимами, все электромагнитные процессы в которых с достаточной для практики точностью могут быть описаны только в основных понятиях (тока и напряжения). Элементы бывают: линейные и нелинейные, пассивные и активные, стационарные и нестационарные, непрерывные и дискретные, с сосредоточенными и распределенными параметрами. Из дальнейшего рассмотрения исключим нестационарные элементы и элементы с распределенными параметрами. Источники электромагнитной энергии - идеализированные устройства, имеющие два или более зажимов и предназначенные для генерации или преобразования электромагнитной энергии. Источники бывают: независимые, зависимые и управляемые.

Электрическая цепь - совокупность элементов и источников, предназначенных для генерации, приема и преобразования токов и напряжений (электрических сигналов). Те участки цепи, куда поступают или для которых генерируются сигналы, называют входами; те участки, на которых регистрируют токи или напряжения в результате их генерации или преобразования, - выходами.

Литература

  • Добротворский И. Н. Теория электрических цепей. Учебник. - М .: Радио и связь, 1989.

Wikimedia Foundation . 2010 .

  • Кронштадт (значения)
  • Соглашение вызова

Смотреть что такое "Теория электрических цепей" в других словарях:

    теория (электрических) цепей - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN circuit philosophy …

    теория электрических цепей - elektrinių grandinių teorija statusas T sritis fizika atitikmenys: angl. theory of electric circuit vok. Schaltkreistheorie, f; Stromkreistheorie, f rus. теория электрических цепей, f pranc. théorie de circuits électriques, f … Fizikos terminų žodynas

    теория цепей - теория электрических цепей — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы теория электрических цепей EN… … Справочник технического переводчика

    ВЕРОЯТНОСТЕЙ ТЕОРИЯ - занимается изучением событий, наступление которых достоверно неизвестно. Она позволяет судить о разумности ожидания наступления одних событий по сравнению с другими, хотя приписывание численных значений вероятностям событий часто бывает излишним… … Энциклопедия Кольера

    Графов теория - раздел конечной математики (См. Конечная математика), особенностью которого является геометрический подход к изучению объектов. Основное понятие теории граф. Граф задаётся множеством вершин (точек) и множеством рёбер (связей), соединяющих …

    Электротехника Большая советская энциклопедия

    Электротехника - I Электротехника (от Электро... и Техника отрасль науки и техники, связанная с применением электрических и магнитных явлений для преобразования энергии, получения и изменения химического состава веществ, производства и обработки… … Большая советская энциклопедия

    Предмет и аксиоматика ТЭЦ - Предметом теории электрических цепей является изучение наиболее общих закономерностей, описывающих процессы, протекающие во всех электротехнических устройствах. Теория электрических цепей основана на двух постулатах: 1.Исходное предположение… … Википедия

    гипотетико-дедуктивная модель теории - ГИПОТЕТИКО ДЕДУКТИВНАЯ МОДЕЛЬ ТЕОРИИ модель научной теории, репрезентирующая ее концептуальную структуру в виде системы взаимосвязанных гипотез и выводимых из них дедуктивных следствий. Формирование теорий как сложноорганизованных … Энциклопедия эпистемологии и философии науки

    Батура, Михаил Павлович - Михаил Павлович Батура белор. Міхаіл Паўлавіч Батура Дата рождения: 16 мая 1950(1950 05 16) (62 года) Место рождения: д. Клюковичи … Википедия

Книги

  • Теория электрических цепей , И.Н. Добротворский. Рассматриваются физические процессы и методы расчетов пассивных и активных электрических цепей. Воспроизведено в оригинальной авторской орфографии издания 1989 года (издательство`Радио и…

1. Способы представления и параметры

2. Элементы R , L , C в цепи синусоидального тока

3.Алгебра комплексных чисел

4. Символический метод

5. Законы цепей в символической форме

Список литературы

1. Способы представления и параметры

Переменный ток (напряжение) – это ток (напряжение), изменяющийся во времени либо по величине, либо по направлению, либо и по величине и по направлению. Частным случаем переменного тока является периодический ток.

Минимальный промежуток времени, по истечении которого повторяются мгновенные значения в том же порядке, называется периодом T [с] функции.

Синусоидальные токи и напряжения – это частный случай периодических токов и напряжений:

Величину обратную периоду называют частотой:

[Гц].

Периодические токи и напряжения характеризуются:

Амплитудным значением (I m , U m ) – максимальным значением за период;

Средним значением (I 0 , , I СР , U 0 , U СР )

;

Средневыпрямленным значением (I ср. в. , U ср. в. )

;

Действующим значением (I , U , Е, J ).

Действующим значением периодического тока

называется такая величина постоянного тока, которая за период оказывает такое же тепловое действие, что и периодический ток.

тогда мгновенная мощность переменного тока:

.

Энергия, выделяющаяся за период в сопротивлении

.

Пусть по тому же сопротивлению R протекает постоянный ток, тогда мгновенная мощность постоянна:

.

Приравнивая энергии

и , получим величину постоянного тока, оказывающего такое же тепловое действие, что и периодический ток, т.е. действующее значение периодического тока: .

Аналогично записывают формулу для действующего значения напряжения.

Активная мощность Р - этосреднее значение мгновенной мощности за период:

.

Наиболее распространенным периодическим током является синусоидальный ток. Это связано с тем, что периодические сигналы, встречающиеся в электротехнике, можно представить в виде суммы синусоидальных функций кратных частот (ряд Фурье) и синусоидальный режим является наиболее экономичным режимом в цепях (минимальные потери).

В стандартной форме синусоидальные токи и напряжения записывают следующим образом:

и и - амплитудные значения, - называется фазой и показывает состояние, в котором находится изменяющаяся величина. - угловая частота, - начальная фаза, т.е. фаза в момент начала отсчета времени. На графике начальную фазу определяют от момента перехода синусоиды с отрицательных значений к положительным до начала координат.

Два колебания одинаковой частоты совпадают по фазе, если у них одинаковые начальные фазы; сдвинуты по фазе, если у них разные начальные фазы. Синусоида с большей начальной фазой опережает синусоиду с меньшей начальной фазой. Если сдвиг фаз равен

говорят, что синусоиды в противофазе. Если сдвиг фаз , то синусоиды в квадратуре.

Для синусоидальных колебаний имеем:

Интеграл от второго слагаемого =0 (см. вывод среднего значения).

В цепях синусоидального тока и напряжения мощность в каждый момент времени различна. Поэтому из равенства теплового действия выводят понятие активной мощности Р.

2. Элементы R , L , C в цепи синусоидального тока

Пусть через каждый элемент протекает синусоидальный ток

.

Тогда, согласно компонентным уравнениям и с учетом синусоидальности тока получаем:

; ;

Напряжения на элементах в цепи синусоидального тока так же синусоидальны и имеют ту же частоту, но другие амплитуды и начальные фазы. Учитывая стандартную запись напряжения

, получаем
R L C

Напряжение на сопротивлении совпадает с током по фазе, напряжение на емкости отстает от тока на 90 0 , напряжение на индуктивности опережает ток на 90 0 .

Определим мгновенную и активную мощности на каждом элементе.

Содержание статьи

ЭЛЕКТРИЧЕСКИЕ ЦЕПИ, совокупности соединенных определенным образом элементов и устройств, образующих путь для прохождения электрического тока. Теория цепей – раздел теоретической электротехники, в котором рассматриваются математические методы вычисления электрических величин. Многие из этих электрических величин определяются параметрами компонентов, составляющих цепи, – сопротивлениями резисторов, емкостями конденсаторов, индуктивностями катушек индуктивности, токами и напряжениями источников электрической энергии. Электрические цепи подразделяются на цепи постоянного тока и цепи переменного тока.

ОСНОВНЫЕ ПОНЯТИЯ

Ток.

Сила электрического тока в проводе определяется как электрический заряд, проходящий через поперечное сечение провода за единицу времени. Заряд измеряется в кулонах; один кулон в секунду равен одному амперу.

Направлением тока далее будем считать направление, в котором двигались бы положительные заряды. На самом деле ток в большинстве случаев создается движением электронов, которые, будучи заряжены отрицательно, движутся в направлении, противоположном принятому за направление тока. Ток неизменяющейся силы обозначается через I , а мгновенное значение изменяющегося тока – через i .

Потенциал.

Если для перемещения заряда между двумя точками необходимо затратить энергию или если при перемещении заряда между двумя точками заряд приобретает энергию, то говорят, что в этих точках имеется разность потенциалов. Энергия необходима для перемещения заряда от более низкого потенциала к более высокому. На схемах рядом с точкой более высокого потенциала ставится знак +, а рядом с точкой более низкого – знак -.

Батарея или генератор электрического тока – это устройство, которое сообщает энергию зарядам. Источник тока перемещает положительные заряды от меньшего потенциала к большему за счет химической энергии. Неизменяющаяся разность потенциалов обозначается через V , а мгновенное значение изменяющейся разности потенциалов – через e .

Разность потенциалов на зажимах батареи или генератора называется электродвижущей силой (ЭДС) и обозначается через E g , если она не изменяется, и через e g , если она переменна. Разность потенциалов в двух точках a и b обозначается через V ab . Разность потенциалов и ЭДС измеряются в вольтах.

ТЕОРИЯ ЦЕПЕЙ

Цепь может представлять собой любую комбинацию батарей и генераторов, а также резистивных и реактивных элементов. Батареи и генераторы в теории цепей рассматриваются либо как источники напряжения (ЭДС) с определенным внутренним сопротивлением, либо как источники тока с определенной внутренней проводимостью. Цепь, не содержащая источников тока и напряжения, называется пассивной, а цепь с источниками тока или напряжения – активной. Целью анализа цепи является определение полного сопротивления (импеданса) между любыми двумя точками цепи и нахождение математического выражения для тока через любой элемент цепи или для напряжения на любом элементе цепи при любых заданных ЭДС источников напряжения и любых токах источников тока. Всякий замкнутый путь тока в цепи называется контуром. Узлом цепи называется всякая ее точка, в которой соединяются три или большее число ветвей цепи.

На рис. 1 представлена цепь с двумя контурами. Стрелками I 1 , I 2 и I 3 показано предполагаемое направление токов в импедансах этих контуров. От токов не требуется, чтобы они были в фазе; но в простейшем случае, когда импедансы – сопротивления, решение уравнений относительно любого тока I будет отрицательным, если принято неправильное направление тока. Поэтому предполагаемое направление токов может быть любым. Принятые положительные и отрицательные потенциалы, соответствующие ЭДС источников напряжения, указаны знаками + и -. Следует иметь в виду, что напряжение на импедансе понижается в направлении тока и повышается в противоположном направлении. Это тоже указано знаками + и -.

Законы Кирхгофа.

Зависимости между токами и напряжениями в электрической цепи устанавливаются на основании двух законов, сформулированных Г.Кирхгофом (1847): 1) алгебраическая сумма ЭДС источников напряжения и напряжений на элементах контура равна нулю и 2) алгебраическая сумма токов в каждом узле равна нулю.

В первом законе Кирхгофа находит выражение то очевидное обстоятельство, что при полном обходе контура мы возвращаемся в исходную точку с тем же самым потенциалом. Второй закон Кирхгофа есть констатация того, что в узловой точке ток не может ни исчезать, ни возникать. Ток к узлу считается положительным, а ток от узла – отрицательным.

Применив закон Кирхгофа для напряжений к двум контурам цепи, представленной на рис. 1 (и воспользовавшись законом Ома – выражением V Z = IZ для напряжения на импедансе Z , создаваемого током I ), мы получим для контура 1 уравнение

а для контура 2 – уравнение

Применив закон Кирхгофа для токов к любому из узлов, получаем

Если ЭДС (E g ) 1 и (E g ) 2 , а также импедансы известны, то из уравнений (1)–(3) можно вычислить все три тока.

Контурные токи.

В случае цепей с большим числом контуров метод контурных токов позволяет не записывать уравнения для токов, следующие из второго закона Кирхгофа. Для этого в той же цепи, что и раньше, представленной на рис. 2, принимают один ток для каждого контура. Как и прежде, направление токов выбирается произвольно. Закон Кирхгофа для напряжений дает для контура 1

В напряжение на импедансе Z 3 , рассматриваемом как элемент одного контура, входит напряжение, обусловленное током другого контура: в уравнении (4) имеется слагаемое (–Z 3 I 2), а в уравнении (5) – слагаемое (–Z 3 I 1). Уравнения (4) и (5) можно было бы получить из уравнений (1)–(3), подставив в первые два ток I 2 из третьего, но метод контурных токов приводит к тому же результату всего за два шага.

Принцип суперпозиции.

Предположим, что в активной цепи в разных ее точках имеется несколько источников напряжения или тока. Согласно принципу суперпозиции, ток, создаваемый любым источником в любом элементе цепи, не зависит от других источников. Следовательно, полный ток в любом элементе равен сумме токов, создаваемых всеми источниками по отдельности. При вычислении тока, создаваемого каждым из источников напряжения или тока, другие источники напряжения заменяются их внутренними импедансами, а другие источники тока – их внутренними проводимостями.

Теорема Тевенена.

Эта теорема, называемая также теоремой об эквивалентном источнике, утверждает, что любую активную цепь с двумя полюсами (зажимами) в установившемся режиме можно заменить источником напряжения с некоторым внутренним импедансом. ЭДС эквивалентного источника напряжения равна напряжению на полюсах ненагруженного заменяемого двухполюсника, а внутренний импеданс источника равен импедансу этого двухполюсника при ЭДС источников напряжения в нем, равных нулю.

Рассмотрим, например, цепь, представленную на рис. 3. Эта активная цепь заменяется источником напряжения, ЭДС E g ў и внутренний импеданс Z g ў которого таковы:

ЭДС E g ў есть напряжение на разомкнутых полюсах a и b , равное напряжению на Z 1 . Внутренний импеданс Z g ў равен импедансу между точками a и b исходного двухполюсника, т.е. импедансу последовательного соединения Z 2 с параллельно соединенными Z 1 и Z g . Для любого элемента, присоединенного к полюсам a и b обоих двухполюсников, токи и напряжения будут одинаковы.

Теорема Нортона.

Эта теорема, аналогичная теореме Тевенена, утверждает, что любой активный двухполюсник можно заменить эквивалентным источником тока с некоторой внутренней проводимостью. Ток эквивалентного источника равен току короткого замыкания между полюсами a и b исходного двухполюсника. Внутренняя проводимость эквивалентного источника тока определяется тем же, что и в теореме Тевенена, импедансом между полюсами двухполюсника, присоединенным параллельно источнику. На рис. 4

а импеданс Z g ў дается выражением (7). Если полюса a и b исходного двухполюсника замкнуть накоротко, то источник напряжения с ЭДС E g будет нагружен импедансом Z g и параллельным соединением импедансов Z 1 и Z 2 , откуда и следует выражение (8).

Преобразование Т-П.

Часто требуется заменить Т-образный четырехполюсник П-образным или наоборот. Чтобы два таких четырехполюсника (рис. 5) были эквивалентны, должны быть одинаковы токи и напряжения между их полюсами при прочих равных условиях за пределами полюсов. Параметры цепи для преобразования Т ® П таковы:

Формулы для преобразования П Т имеют вид

Переходные процессы.

Переходным называется процесс изменения электрических величин в цепи при ее переходе из одного установившегося режима в другой. При анализе переходных процессов ток, напряжение или заряд в некоторой точке цепи обычно представляют в виде функции времени.

Рассмотрим цепь с источником напряжения (батареей с ЭДС E g ), представленную на рис. 6. После замыкания ключа сумма мгновенных значений напряжения на резисторе и конденсаторе должна быть равна E g :

Поскольку i = dq /dt , уравнение (10) можно переписать в виде дифференциального уравнения

решение которого таково:

Соответствующий ток равен:

где e – основание натуральных логарифмов.

На рис. 7 представлены графики изменения заряда конденсатора q и тока i во времени. В начальный момент (t = 0), когда ключ только замкнут, заряд конденсатора равен нулю, а ток равен E g /R , как если бы конденсатора в цепи не было. Затем заряд конденсатора нарастает по экспоненте. Обусловленное зарядом напряжение на конденсаторе направлено навстречу ЭДС источника, и ток по экспоненте убывает до нуля. В момент замыкания ключа конденсатор эквивалентен короткому замыканию, а по истечении достаточно длительного времени (при t = Ґ) – разрыву цепи.

Постоянная времени RC -цепи определяется как время, за которое заряд достигает значения, на 1/e (36,8%) отличающегося от конечного значения. Она дается выражением

Аналогичные рассуждения можно провести для RL -цепи, представленной на рис. 8. Сумма мгновенных напряжений e R и e L должна быть равна E g . Это условие записывается в виде дифференциального уравнения

решение которого таково:

На рис. 9 решение (11) представлено в графической форме. Сразу же после замыкания ключа (при t = 0) ток начинает быстро увеличиваться, наводя большое напряжение на катушке индуктивности. Наведенное напряжение противодействует изменению тока. По мере того как нарастание тока замедляется, наведенное напряжение уменьшается. При t = Ґ ток не меняется, и наведенное напряжение равно нулю. Таким образом, в конце концов ток принимает значение, которое он имел бы, если бы в цепи не было катушки индуктивности. (При t = 0 катушка индуктивности эквивалентна разрыву цепи, а по истечении достаточно длительного времени – короткому замыканию.)

Постоянная времени RL -цепи определяется как время, за которое ток достигает значения, на 1/e отличающегося от конечного значения. Она дается выражением

ПРИМЕНЕНИЕ ТЕОРИИ ЦЕПЕЙ

Мост Уитстона.

Мост Уитстона – это схема электрической цепи для точного измерения сопротивлений на постоянном токе. Соответствующая принципиальная схема представлена на рис. 10, где измеряемое сопротивление обозначено через R x . Остальные сопротивления известны, и их можно изменять. Если известные сопротивления подобрать так, чтобы высокочувствительный амперметр A показывал отсутствие тока, это означало бы, что потенциал точек b и c одинаков. В таком случае, обозначив ток через резисторы R 1 и R 3 символом I 1 , а ток через R 2 и R x – символом I 2 , можно записать

Фильтры.

Фильтры – это электрические цепи, пропускающие лишь определенные частоты и задерживающие все остальные. Идеальный фильтр верхних частот имеет полосу пропускания выше заданной «частоты среза» и полосу задерживания для более низких частот. Полосовой фильтр имеет полосу пропускания, расположенную между двумя заданными частотами среза. Общая схема включения фильтра показана на рис. 11. В качестве примера на рис. 12,a представлен фильтр нижних частот, включенный между генератором и нагрузкой R . На низких частотах импеданс катушек индуктивности мал, а конденсатора – велик, и почти весь ток проходит через нагрузку R . На высоких частотах импеданс катушек индуктивности велик, из-за чего снижается ток, а импеданс конденсатора мал, так что он как бы замыкает накоротко цепь малого тока, проходящего через первую катушку индуктивности. Справа на рис. 12,a

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Красноярский государственный технический университет

В.И.Вепринцев

ОСНОВЫ ТЕОРИИ ЦЕПЕЙ

Конспект лекций для студентов радиотехнических специальностей дистанционной формы обучения

Красноярск 2003

В.И.Вепринцев. Основы теории цепей.

Конспект лекций для студентов радиотехнических специальностей.Ч. 1. КГТУ,- Красноярск. 2003

Введение

Среди дисциплин, составляющих основу базовой подготовки специалистов, связанных с разработкой и эксплуатацией современной радиоэлектронной аппаратуры, важное место отводится курсу «Основы теории цепей» (ОТЦ). Содержание этой дисциплины составляют задачи анализа и синтеза электрических цепей, изучение, как с качественной, так и с количественной стороны установившихся и переходных процессов в различных радиоэлектронных устройствах. Курс ОТЦ базируется на курсах физики и высшей математики и содержит инженерные методы расчета и анализа, применимые к широкому классу современных электротехнических и радиоэлектронных цепей.

Электрическая цепь

Электрической цепью называется совокупность устройств, предназначенных для прохождения электрического тока и описываемых с помощью понятий напряжения и тока. Электрическая цепь состоит изисточников (генераторов) и потребителей электромагнитной энергии -приемников илинагруз-

ки.

Источником называют устройство, создающее (генерирующее) токи и напряжения. В качестве источников могут выступать устройства (аккумуляторы, гальванические элементы, термоэлементы, пьезодатчики, различные генераторы и т. д.), преобразующие различные виды энергии (химической, тепловой, механической, световой, молекулярно-кинетической и др.) в электрическую. К источникам относятся и приемные антенны, в которых не происходит изменение вида энергии.

Приемником называют устройство, потребляющее (запасающее) или преобразующее электрическую энергию в другие виды энергии (тепловую, механическую, световую и т. д.). К нагрузкам относятся и передающие антенны, излучающие электромагнитную энергию в пространство.

В основе теории электрических цепей лежит принцип моделирования . При этом, реальные электрических цепи заменяются некоторой идеализированной моделью, состоящей из взаимосвязанныхидеализированных элементов. Подэлементами подразумеваются идеализированные модели различных устройств, которым приписываются определенные электрические и магнитные свойства так, что они с заданной точностью отображают явления, происходящие в реальных устройствах. Таким образом, каждому элементу цепи соответствуют определенные соотношения между множеством токов и напряжений.

В теории цепей различают активные ипассивные элементы.Активными элементами считаются источники электрической энергии: источники напряжения и источники тока. Кпассивным элементам относятся сопротивления, индуктивности и ёмкости. Цепи, содержащие активные элементы, называются активными, состоящие только из пассивных элементов− пассивными.

Электрическому току приписывается направление, совпадающее с направлением перемещения положительных зарядов. Количественная характеристика − мгновенное значение тока (значение его в данный момент времени)

i = lim

∆q

∆t

∆t →0

где dq − заряд, прошедший за времяdt через поперечное сечение проводника. В системе СИ ток измеряется в амперах (А).

Для переноса элементарного заряда dq через какой-либо пассивный участок цепи, необходимо затратить энергию

dw = u dq.

Здесь u − мгновенное значение напряжения (разности потенциалов) на зажимах пассивного участка цепи. Разность потенциалов− скалярная величина, которая определяется работой сил электрического поля при переносе единичного положительного заряда через заданный пассивный участок. В системе СИ напряжение измеряется в вольтах (В).

В общем случае ток и напряжение являются функциями времени и могут иметь разные величины и знак в различные моменты времени.

В теории цепей направление тока характеризуется знаком. Положительный или отрицательный ток имеют смысл только при сравнении направления то-

ка по отношению к произвольно выбранному положительному направлению,

которое обычно указывается стрелкой (рис.1).

Положительное направление напряжения не связано с положительным направлением тока. Но, выбрав положительное направление напряжения от точки а к точкеб , условно считаем, что потенциал точкиа выше потенциала точкиб. Обычно в задачах по расчету электрических цепей считают положительное направление тока в ветви совпадающим с положительным направлением напряжения между узлами этой ветви.

Если под воздействием приложенного напряжения U через участок цепи проходит электрический зарядq , то совершаемая при этом элементарная работа или поступающая в приемник энергия равна:

dw = u dq= ui dt.

Энергия, определяемая данной формулой, доставляется источником и расходуется в приемнике, т. е. превращается в другой вид энергии, например в тепло некоторая часть её запасается в электрическом и магнитном полях элементов цепи.

Мгновенное значение скорости изменения энергии, поступающей в цепь,

p = dw dt = udq dt = ui,

называется мгновенной мощностью.

Энергия, поступившая в приемник за промежуток времени от t 1 доt 2 , вы-

ражается интегралом

W = ∫ p dt.

В системе СИ работа и энергия измеряются в джоулях (дж ), мощность в ваттах (вт).

Элементы электрической цепи

1. Пассивные элементы.

а . Сопротивление

Сопротивлением называется идеализированный элемент цепи, характеризующий преобразование электромагнитной энергии в любой другой вид энергии (тепловую− нагрев, механическую, излучение электромагнитной энергии и др.), т. е. обладающий только свойством необратимого рассеяния энергии. Условное обозначение сопротивления показано на рис.2.

Математическая модель, описывающая свойства сопротивления, определя-

ется законом Ома:

u = Riили i= Gu.

Здесь R иG − параметры участка цепи называются соответственносо-

противлением ипроводимостью, G =1/R . Сопротивление измеряется в омах (Ом), а проводимость− в сименсах (Сим).

Мгновенная мощность, поступающая в сопротивление

PR = ui= Ri2 = Gu2 .

Электрическая энергия, поступившая в сопротивление и превращенная в тепло за промежуток времени от t 1 доt 2 , равна:

WR = ∫ p dt= ∫ Ri2 dt

= ∫ Gu2 dt.

Уравнение, выражающее закон Ома, определяет зависимость напряжения от тока и называется вольт − амперной характеристикой (ВАХ) сопротивления. ЕслиR постоянно, то ВАХ линейна (рис.3,а ). Если жеR зависит от протекающего через него тока или приложенного к нему напряжения, то ВАХ становится нелинейной (рис.3,б ) и соответствует нелинейному сопротивлению.

Реальный элемент, приближающийся по своим свойствам к сопротивлению, называется резистором.

б . Индуктивность

Индуктивностью называется идеализированный элемент электрической цепи, характеризующий запасаемую в цепи энергию магнитного поля. Условное обозначение индуктивности показано на рис.4.

Если рассмотреть участок цепи (рис.5, а ), представляющий собой виток, охватывающий площадьS, через который проходит токi , то виток пронизывает магнитный поток

Ф ′ = ∫ B ds.

Ф ′ − поток вектора магнитной индукцииB через площадьS . Магнитный поток измеряется в веберах (Вб), а магнитная индукция− в тесла.

Индуктивностью витка называется отношение магнитного потока к току:

∫ B ds

т. е. индуктивность представляет собой магнитный поток, отнесенный к единице связанного с ним тока. В системе СИ индуктивность измеряется в генри

Если катушка содержит n одинаковых витков (рис.5,б ), то полный магнитный поток (потокосцепление)

Ф = n Ф′ ,

где Ф ′ − поток, пронизывающий каждый из витков. Индуктивность катушки в этом случае

L = n Ф i ′ .

В общем случае зависимость потокосцепления от тока нелинейная (рис.6, а), следовательно, индуктивность также является нелинейной.

Связь между током и напряжением на индуктивности определяется на основании закона электромагнитной индукции, согласно которому изменение потокосцепления вызывает э.д.с. самоиндукции

е L = −d dt Ф

численно равную и противоположную по знаку скорости изменения полного магнитного потока.

Если индуктивность не зависит от тока, то величина

u L = −е L =L dt di

называется напряжением (или падением напряжения) на индуктивности. Из последнего выражения следует, что ток в индуктивности

iL (t) = L − ∫ ∞ uL dt,

т.е. определяется площадью, ограниченной кривой напряжения u L (рис.7).

Мгновенная мощность имеет смысл скорости изменения запасенной в магнитном поле энергии:

pL = uL i= Lidt di .

Энергия, запасенная в магнитном поле индуктивности в произвольный момент времени t определяется по формуле

W L= ∫ t

pL dt= ∫ t

Lidi =

Здесь учтено, что при − ∞ ≤ t ≤ 0 ток в индуктивности был равен нулю. Если часть магнитного потока, связанного с катушкойL 1 , связана одно-

временно и с катушкой L 2 , то эти катушки обладают параметромМ , назы-

ваемым взаимной индуктивностью . Взаимная индуктивность определяется как отношение потокосцепления взаимной индукции одной катушки к току в другой

M = Ф 12= Ф 21.

i 2i 1

В первой и второй катушках наводятся э. д. с. взаимной индукции равные

e 1 M = −dФ dt 12 = −M di dt 2 ; e 2 M = −dФ dt 21 = −M di dt 1 .

Последние выражения справедливы при условии, что М не зависит от токов, протекающих в обеих катушках.

Взаимная индуктивность измеряется также в генри (Гн).

в. Емкость

Емкостью называется идеализированный элемент электрической цепи, характеризующий запасаемую в цепи энергию электрического поля. Условное обозначение индуктивности показано на рис.8.

При подведении к двум электродам (рис.9, а ) напряжения, на них накапливаются равные по величине и разные по знаку заряды+ q и в окружающем пространстве создается электрическое поле.

Согласно теореме Гаусса− Остроградского потокФ Е вектора электрического смещенияD

ФЕ = ∫ Dds= q.