Свободно распространяемые математические пакеты под gnu. Математические приложения FFTW и GNU Octave в качестве теста процессоров и ПК. Зависимость результатов от частоты памяти

Соответственно, я не мог охватить всё - у меня на доклад было где-то 15 минут.

Вступление

Известные пакеты - это гиганты всё-в-одном

Когда мы говорим о математическом ПО, на ум приходят такие гиганты, как Maple, Mathematica, MatLAB… У них есть одно общее свойство: они пытаются охватить всё. Конечно, Mathematica известна прежде всего как система для символьных вычислений, а Matlab - для численных, но одновременно в Mathematica есть мощные алгоритмы для вычислений с плавающей точкой, а в Matlab - пакет для символьных вычислений. Причём эти второстепенные функции в программах по сравнению с программами, для этого предназначенными, выглядят убого и смешно. А небезызвестный MathCAD пытается включить в себя всё, при этом всё реализовано так себе. Причина проста: нельзя объять необъятное.

Свободные программы - делают одно дело хорошо

В противоположность этому, большинство свободных программ следует философии UNIX, гласящей: программа должна делать одно дело, но делать его хорошо. Свободного математического ПО очень много, при этом бóльшая часть их предназначена для какой-нибудь одной задачи. Например, есть программы, которые только и умеют, что строить сетку для метода конечных разностей. Или программа, которая предназначена для вычисления цифр числа Пи. Или программа, которая умеет только строить графики, но зато очень хорошо.

Однако, есть и программы, в той или иной степени являющиеся аналогами известных пакетов. Я расскажу о трёх.

Символьные вычисления: Maxima

История проекта

Начну я с истории этого проекта.

Сначала я напомню, что компьютеры - это, вообще-то, Электронные Вычислительные Машины, они создавались для вычислений над числами. Однако уже в конце 50-х появилась идея, что можно заставить компьютер работать не только с числами, но и с алгебраическими выражениями. В начале 60-х начали появляться первые системы компьютерной алгебры. И, конечно, такая система нужна была одному мирному американскому ведомству (департаменту энергетики, это практически подразделение Пентагона). Был объявлен тендер, и его выиграл проект под названием Macsyma (пишется через CS). В течение многих лет DOE Macsyma развивалась как коммерческий проект, финансируемый правительством. В 1982-м году Уильям Шелтер создал форк Macsyma, называемый Maxima. В начале 90-х распался СССР, кончилась холодная война, и косвенным следствием этого стало практически полное прекращение финансирования DOE Macsyma. К концу 90-х проект практически загнулся. Исходники Macsyma по кусочкам распродали, и они оказались в Maple и Mathematica. В 1998-м Уильям Шелтер добился от DOE разрешения на публикацию исходных текстов Maxima под лицензией GPL. Maxima стала свободной программой. В 2001-м Шелтер скончался, но к этому моменту над Maxima работало уже довольно много людей, и они подхватили проект.

Интерфейс: командная строка или wxMaxima

Maxima имеет традиционный для UNIX интерфейс командной строки, однако также умеет слушать сетевой порт, работая как сервер. Этот факт используют различные оболочки (фронтенды), предоставляющие графический интерфейс. Наиболее распространены TeXmacs и wxMaxima. TeXmacs - это научный текстовый редактор, в котором можно в документ вставить сессию Maxima. wxMaxima выглядит примерно так:

Последняя версия, 0.8.0, стала больше походить на Mathematica и Maple: раньше командная строка для ввода была отдельно, внизу.

Lisp-подобный язык

Язык Maxima берёт основные идеи из Lisp, так как Maxima написана на Lisp-e. При этом он похож одновременно на языки Mathematica и Maple, так как эти программы позаимствовали многие идеи и часть кода из Macsyma. Чтобы избежать долгого и нудного перечисления возможностей, я приведу пример решения типичных задач с первого курса.

Пусть дана функция

maxima>> f(x) := x*tanh(x) + x + 1/x + 2;

Проверим, не является ли она чётной или нечётной:

Как видим, функция не является ни чётной, ни нечётной. Найдём пределы функции на плюс-минус бесконечности:

maxima>> limit(f(x),x,-inf);

maxima>> limit(f(x),x,inf);

Итак, на плюс бесконечности функция уходит в бесконечность. Нет ли у неё наклонной асимптоты?

maxima>> limit(f(x)/x, x,inf);

Наклонная асимптота есть - y=kx+b , причём k=2. Найдём b :

maxima>> limit(f(x)-2*x, x,inf);

Наконец, построим график:

maxima>> plot2d(f(x), , );

Найдём производную нашей функции:

maxima>> diff(f(x),x);

И заодно - неопределённый интеграл:

maxima>> integrate(f(x), x);

Интеграл до конца "не взялся". Можно показать, что этот интеграл в элементарных функциях и не берётся. Однако Maxima умеет брать некоторые из таких интегралов, используя специальные функции:

maxima>> part: risch(x/(exp(2*x)+1), x);

maxima>> ir: -2*part + log(x) + x^2 + 2*x;

Что-то ужасное. Раскроем скобки:

maxima>> expand(ir);

Дифференциальные уравнения

Или вот пример более сложных вычислений. Пусть надо решить дифференциальное уравнение:

maxima>> eq: "diff(y,x) + x*y = 1-x^2;

maxima>> solution: ode2(eq,y,x);

maxima>> expand(solution);

По Maxima есть некоторое количество русскоязычных руководств, которые можно найти в интернете. На мой взгляд, самое удачное введение с обзором возможностей содержится в цикле статей Тихона Тарнавского в журнале LinuxFormat. Сейчас эти статьи выложены в открытый доступ, в том числе на русском сайте Maxima. Документация по продвинутым возможностям maxima существует, к сожалению, только на английском языке. Официальная документация составляет 712 страниц.

Численные вычисления: Scilab

Scilab совместим с MatLAB-ом

Наиболее известный пакет для численных расчётов - это MatLAB. Scilab создавался как конкурент matlab-а, более скромный по ценовой политике. Однако коммерчески проект себя не оправдал, и исходные коды были открыты под лицензией, похожей на GNU GPL. Язык scilab сделан по возможности совместимым с матлабом, так что большинство ваших наработок из matlab заработают в scilab. Только вот, как известно, основная мощь matlab-a сосредоточена в его тулбоксах - отдельно поставляемых модулях. Модули для scilab-а тоже есть, однако их сильно меньше.

Octave - это GPL-аналог Matlab

Позже появился проект GNU Octave, нацеленный на создание аналога matlab-a, распространяемого по GNU GPL без всяких заморочек. Язык тоже практически совместим с матлабом, но здесь нет аналога Simulink - средства моделирования и симулирования динамических систем.

Зато Octave имеет чисто консольный интерфейс (конечно, графические фронтенды тоже есть, самый развитый - QtOctave), что позволяет использовать его в скриптах, для автоматизации расчётов, и упрощает встраивание в сложные программные комплексы. Для Octave написаны десятки пакетов расширений.

По Scilab есть статьи на русском языке, кроме того, не так давно в издательстве AltLinux вышла книга `Scilab: Решение инженерных и математических задач". Книгу можно приобрести в интернет-магазине, кроме того, её электронная версия свободно доступна на сайте AltLinux.

Обработка данных: GNU R

Формально, средства обработки данных относятся к программам для численных расчётов, ибо всё что они делают - это вычисления над числами. Однако, как известно, специализированный инструмент всегда лучше универсального. Под словами обработка данных скрывается довольно много различных видов деятельности: статистический анализ, статистическое моделирование, выборка только нужных данных, преобразование данных, построение различных графиков и гистограмм.

Программы для обработки данных можно разделить по типичному размеру выборки, для которого они предназначены. Для небольших выборок подойдёт, например, Statistica. Для средних по размеру выборок хорошо подходит GNU R (она хранит все данные в оперативной памяти, так что на типичном PC получим ограничение в 1-2-4 гигабайта). Для больших и очень больших объёмов данных (от сотен гигабайт до сотен терабайт) предназначены разработанные в CERN свободные системы PAW и ROOT.

GNU R - это интерпретируемый язык программироваммирования, предназначенный для статистического анализа и моделирования. R - это свободная реализация давно существующего языка S. Язык этот весьма эклектичен, он местами похож на C, местами - на Python, местами - на Haskell. Для GNU R существует почти полторы тысячи пакетов расширений (написанных на самом R, на C или Fortran), собранных в репозитории CRAN (Comprehensive R Archive Network).

Типы данных - числа, строки, факторы, векторы, списки и таблицы данных

Основные типы данных в языке - это числа, строки, факторы, векторы, списки и таблицы данных (data frames). Фактор - это данные, которые могут принимать одно из нескольких значений (пол; сорт дерева; логический тип и др). Векторы являются аналогами массивов - это набор из нескольких значений одного типа, размер вектора меняться не может. Тут же надо заметить, что в R нету скаляров ; например, число - это, с точки зрения R, вектор из одного элемента. Списки - это обобщение векторов, они могут содержать объекты разных типов, и длина их может меняться. Кроме того, отдельным элементам списка можно присвоить имена, и обращаться к элементам не по номерам, а по именам. Пример:

(присваивание в R обозначается обычно знаком , хотя можно использовать и более привычное = ; кроме того, есть форма value → variable ). Для обращения к элементам списка по номеру используются двойные квадратные скобки:

Назначим имена элементам списка:

(функция c создаёт векторы). Теперь к элементам списка можно обращаться по именам:

Таблица данных (фрейм данных) в R - это список, состоящий из векторов. Создаются таблицы данных чаще всего загрузкой из внешнего файла.

Эта статья является второй в цикле, посвященном различным реальным приложениям, которые могут использоваться для тестирования процессоров, компьютеров, ноутбуков и рабочих станций и которые в дальнейшем будут положены в основу нового тестового пакета iXBT Application Benchmark 2017. Напомним, что в первой статье данного цикла мы рассматривали два специализированных приложения LAMMPS и NAMD, которые используются для решения задач молекулярной динамики. В этой статье мы уделим внимание специализированным математическим пакетам FFTW и GNU Octave. Данные приложения, как и LAMMPS и NAMD, входят в состав известного специализированного тестового пакета SPECwpc 2.0. Более того, сами расчетные задачи (workload) и команды запуска программ с соответствующими параметрами мы позаимствовали именно из пакета SPECwpc 2.0.

FFTW 3.3.5

Среда GNU Octave поддерживает работу со скрипт-файлами (), а для запуска скрипта используется команда:

octave-cli-4.0.3.exe

(Файл octave-cli-4.0.3.exe расположен в папке C:\Octave\Octave-4.0.3\bin\ при установке пакета по умолчанию.)

Для тестирования мы используем скриптовый файл, в котором реализуются операции с циклами, вычисление интегралов, быстрое преобразование Фурье и операции с матрицами. Мы не писали этот скрипт «с нуля», а взяли его из пакета SPECwpc 2.0, в который входит тест на основе GNU Octave. Этот скрипт называется obench.m. Результатом теста является время выполнения скрипта.

Тестовый стенд и методика тестирования

Для тестирования с использованием приложений FFTW и GNU Octave мы собрали стенд следующей конфигурации:

  • Процессор: Intel Core i7-6950X (Broadwell-E);
  • Системная плата: Asus Rampage V Edition 10 (Intel X99);
  • Память: 4×4 ГБ DDR4-2400 (Kingston HyperX Predator HX424C12PBK4/16);
  • Видеокарта: Nvidia Quadro 600;
  • Накопитель: SSD Seagate ST480FN0021 (480 ГБ).

В ходе тестирования замерялось время выполнения тестовых задач.

Рассматривалась зависимость результатов тестирования от количества используемых ядер процессора, от частоты ядер процессора и от частоты памяти.

Зависимость результатов от количества ядер процессора

Количество используемых в ходе тестирования ядер процессора Intel Core i7-6950X регулировалось через настройки UEFI BIOS платы Asus Rampage V Edition 10. Напомним, что процессор Intel Core i7-6950X является 10-ядерным, но поддерживает технологию Hyper-Threading, поэтому операционной системой и приложениями он видится как 20-ядерный (имеет 20 логических ядер).

Мы не отключали технологию Hyper-Threading и меняли лишь количество физических ядер процессор от 1 до 10. В дальнейшем мы будем говорить о логических ядрах процессора, количество которых менялось от 2 до 20 с шагом 2.

Частота работы всех ядер процессора фиксировалась и составляла 4,0 ГГц.

Как видим, результаты получились очень странные. Интерпретация результатов для пакета GNU Octave достаточно проста. В этом пакете скорость выполнения тестовой задачи практически не зависит от числа ядер процессора, то есть в варианте процессора Intel Core i7-6950X даже двух логических ядер вполне достаточно для выполнения тестовой задачи. При увеличении числа доступных ядер процессора задача распараллеливается, однако доля загрузки каждого ядра уменьшается пропорционально их количеству. В результате скорость выполнения тестовой задачи не меняется при увеличении числа ядер процессора.

А вот с приложением FFTW все очень странно и нелогично. При 6, 12 и 14 ядрах (логических) время выполнения тестовой задачи становится аномально большим. В остальных случаях время выполнения тестовой задачи примерно одинаковое. Результат довольно странный, однако он многократно перепроверялся.

Если посмотреть, какова загрузка процессора во время выполнения теста, то ситуация такова. Во-первых, задача распараллеливается на все ядра процессора. Во-вторых, в какие-то промежутки времени загрузка ядер процессора оказывается низкой, а в какие-то промежутки - высокой. Причем такое поведение наблюдается при любом числе ядер. И почему при определенном количестве ядер процессора время выполнения теста становится аномально большим - непонятно.

Мы провели дополнительное исследование данного странного поведения теста. Для этого мы отключили у процессора технологию Hyper-Threading и повторили тестирование в приложении FFTW, меняя количество физических ядер процессора от 1 до 10. Результаты тестирования следующие:

При отключенной технологии Hyper-Threading результат получился еще более нелогичным. При 3, 5, 6, 7 и 9 ядрах время выполнения теста было большим, а при 1, 2, 4, 8 и 10 ядрах оно оказалось небольшим. То есть получается, что эффективность распараллеливания задачи зависит от количества ядер процессора, но вовсе не в том смысле, что большее количество ядер позволяет улучшить результат. При каком-то количестве ядер задача распараллеливается хорошо, а при каком-то - плохо.

Впрочем, у нас еще оставались сомнения в правильности наших выводов, поскольку в данном случае речь шла не о реальном двух-, четырех-, шести- и так далее ядерном процессоре, а об искусственном блокировании ядер через BIOS материнской платы. Мы решили повторить тест с другим процессором - шестиядерным (12 логических ядер с учетом Hyper-Threading) Intel Core i7-5820K. Как мы видели, при 6 физических или 12 логических ядрах процессора время выполнения теста становится аномально высоким. И на процессоре Intel Core i7-5820K этот результат был подтвержден. Процессор работал на частоте 3,6 ГГц. При всех активированных ядрах с технологией Hyper-Threading (12 ядер) время выполнения тестовой задачи получается аномально большим: 1886 с. Если последовательно отключать ядра, то при 10, 8, 4 и 2 ядрах время выполнения теста составляет 200-400 с, а при 6 ядрах - 1235 с.

Как видим, на процессоре Intel Core i7-5820K получается такой же странный результат, как и на процессоре Intel Core i7-6950X.

Несмотря на такую странную зависимость результатов теста FFTW от числа ядер процессора, мы решили оставить его в пакете приложений, которые будут использоваться в бенчмарке iXBT Application Benchmark 2017. Это приложение наглядно демонстрирует, что не всегда много ядер - это хорошо. Иногда бывает и по-другому.

Возможно, в окончательном варианте мы уменьшим размер самого преобразования Фурье, дабы исключить варианты, когда такой тест длится более 30 минут.

Зависимость результатов от частоты процессора

Теперь рассмотрим, как результаты тестирования в приложениях FFTW и GNU Octave зависят от частоты процессора.

Частота ядер процессора Intel Core i7-6950X менялась в настройках UEFI BIOS платы Asus Rampage V Edition 10 путем изменения коэффициента умножения. Частота работы всех ядер фиксировалась (то есть режим Turbo Boost отключался). Использовались все ядра процессора (10 физических/20 логических). Частота менялась от 3,0 ГГц до 4,2 ГГц с шагом 200 МГц. Результаты тестирования следующие:

Как видно по результатам тестирования, и в пакете FFTW, и в пакете GNU Octave время выполнения теста зависит от частоты процессора. В пакете FFTW при увеличении частоты процессора от 3 до 4,2 ГГц (увеличение на 40%) время выполнения теста уменьшается на 21%. В пакете GNU Octave аналогичное увеличение частоты процессора приводит к уменьшению времени выполнения тестовых задач на 24%.

Таким образом, зависимость результатов тестов FFTW и GNU Octave от частоты процессора вполне типичная. Тестовая задача в пакете GNU Octave чуть лучше масштабируется по частоте процессора, а задача в пакете FFTW - чуть хуже.

Зависимость результатов от частоты памяти

Теперь рассмотрим зависимость скорости выполнения тестовых задач от частоты работы памяти. Память DDR4 работала в четырехканальном режиме (по одному модулю на канал), а частота памяти менялась в настройках UEFI BIOS в диапазоне от 1600 МГц до 2800 МГц c шагом в 200 МГц. Тайминги памяти фиксировались и не менялись при изменении частоты. Все ядра процессора работали на частоте 4,0 ГГц.

Результаты тестирования следующие:

Как видим, скорость выполнения тестовых задач в пакетах GNU Octave и FFTW никак не зависит от частоты работы памяти. По крайней мере, в четырехканальном режиме работы пропускной способности памяти DDR4 вполне достаточно даже на частоте 1600 МГц, и дальнейшее увеличение частоты памяти не позволяет ускорить выполнение тестовых задач.

Это типичный для большинства приложений результат. Приложения, скорость работы которых зависит от частоты памяти - это, скорее, исключение из правил.

Заключение

Итак, во второй статье нашего нового цикла мы рассмотрели два теста на основе специализированных математических приложений FFTW и GNU Octave. На примере 10-ядерного процессора Intel Core i7-6950X было показано, что тестовые задачи в этих пакетах распараллеливаются на все ядра процессора, однако не могут загрузить их на 100%. Результат теста в приложении GNU Octave практически не зависит от числа ядер процессора, а результат теста в приложении FFTW, наоборот, сильно зависит от числа ядер процессора, однако зависимость эта очень странная. При некотором числе ядер (14, 12 и 6) время выполнения тестовой задачи становится аномально большим, а во всех остальных случаях время выполнения тестовой задачи от числа ядер зависит слабо.

Кроме того, было показано, что скорость выполнения тестовых задач в пакетах FFTW и GNU Octave линейным образом зависит от частоты ядер процессора (при изменении частоты в диапазоне от 3 до 4,2 ГГц).

Наконец, было показано, что время выполнения тестовых задач в приложениях FFTW и GNU Octave никак не зависит от частоты памяти DDR4 (в четырехканальном режиме и в диапазоне от 1600 до 2400 МГц).

Есть еще одно замечание, которое можно сделать относительно приложений FFTW и GNU Octave при их использовании для тестирования. Пакет GNU Octave имеет плохую повторяемость результатов и для получения результата с низкой погрешностью желательно делать пять прогонов теста. Приложение FFTW дает более стабильные результаты, но и для этого приложения необходимо как минимум три прогона теста.

В следующей статье данного цикла мы рассмотрим три приложения, которые используются для рендеринга 3D-сцен: POV-Ray 3.7, LuxRender 1.6 и Вlender 2.77a.

  • Tutorial

# wget https://dl.fedoraproject.org/pub/epel/7/x86_64/ # yum localinstall epel-release-6-7.noarch.rpm

И только после этого yum install octave сработает.
Наконец, все готово и программа установлена.


# octave GNU Octave, version 3.8.2 Copyright (C) 2014 John W. Eaton and others. This is free software; see the source code for copying conditions. There is ABSOLUTELY NO WARRANTY; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. For details, type "warranty". Octave was configured for "x86_64-redhat-linux-gnu". Additional information about Octave is available at http://www.octave.org. Please contribute if you find this software useful. For more information, visit http://www.octave.org/get-involved.html Read http://www.octave.org/bugs.html to learn how to submit bug reports. For information about changes from previous versions, type "news". octave:1>

Операции с матрицами

Не будем терять время и делать операции, которые можно повторить с помощью bc и awk , о ктоторых речь шла в прошлый раз. Поиграемся немного с матрицами.


Сперва простое транспонирование матрицы:


octave:1> A= A = 1 3 5 2 4 6 octave:2> A" ans = 1 2 3 4 5 6

Попробуем решить систему линейных уравнений:


x + y + z = 9 2x + 4y - 3z = 1 3x + 6y - 5z = 0

Вбиваем матрицу A , вектор b и решаем уравнение Ax = b в матричном виде


octave:1> A= A = 1 1 1 2 4 -3 3 6 -5 octave:2> b= b = 9 1 0 octave:3> x=A\b x = 7.00000 -1.00000 3.00000

Находим детерминант и собственные значения матрицы.


octave:4> det (A) ans = -1.00000 octave:5> eig (A) ans = -2.88897 2.76372 0.12525

Комплексные числа тоже поддерживаются в вычислениях.


octave:6> A=[-3 0 2; 1 -1 0; -2 -1 0] A = -3 0 2 1 -1 0 -2 -1 0 octave:7> x=det (A) x = -6 octave:8> y=eig(A) y = -1.00000 + 1.41421i -1.00000 - 1.41421i -2.00000 + 0.00000i

Функции и переменные

В Octave переменные и функции создавать гораздо проще, чем, к примеру, в Java или C. На примере матриц, мы уже видели как объявлять переменные. Создания новой функции имеет следующий синтаксис


function = имя_функции (arg1, arg2, ..., argN) тело функции endfunction
Как правило, новую функцию создают либо в отдельном файле, либо в скрипт-файле Octave
до первого ее вызова. Если предполагается использовать пользовательскую функцию в разных скрипт-файлах, то, конечно, предпочтительно создать ее в отдельном файле. В GNU Octave файлы с функциями имеют расширение.m и загружаются автоматически. Имя файла должно строго совпадать с именем функции.

Напишем функцию для решения квадратичного уравнения ax² + bx + c = 0


octave:9> function = quadr(a, b, c) > D = sqrt(b^2-4*a*c); > x1 = (-b-D)/(2*a); > x2 = (-b+D)/(2*a); > endfunction octave:10> =quadr(a, b, c) y1 = 2 y2 = 3

Графический интерфейс

Вообще-то, мы тут за математику командной строки гутарим, но пока непонятно как вывести на экран график функции. Впрочем, никакого секрета тут нет - для этих целей используется Gnuplot . можно изобразить Аттрактор Лоренца , установив дополнительный пакет odepkg .


function = froessler (vt, vx) vyd = [- (vx(2) + vx(3)); vx(1) + 0.2 * vx(2); 0.2 + vx(1) * vx(3) - 5.7 * vx(3)]; endfunction A = odeset ("MaxStep", 1e-1); = ode78 (@froessler, , , A); subplot (2, 2, 1); grid ("on"); plot (t, y(:,1), "-b;f_x(t);", t, y(:,2), "-g;f_y(t);", \ t, y(:,3), "-r;f_z(t);"); subplot (2, 2, 2); grid ("on"); plot (y(:,1), y(:,2), "-b;f_{xyz}(x, y);"); subplot (2, 2, 3); grid ("on"); plot (y(:,2), y(:,3), "-b;f_{xyz}(y, z);"); subplot (2, 2, 4); grid ("on"); plot3 (y(:,1), y(:,2), y(:,3), "-b;f_{xyz}(x, y, z);");


Наиболее удобной графической оболочкой для работы с Octave является программа QtOctave . Последняя уже стабилизировалась и включена в состав пакета с момента выхода Octave 4.0 .

Что-же дальше?

Может возникнуть вопрос: а зачем вообще нужны открытые математические пакеты? Офисные приложения нужны всем, но ведь далеко не каждому необходимо сидя дома решать уравнения Пуассона, с помощью преобразования Лапласа. Для ВУЗ-ов MATLAB стоит значительно дешевле, нежели для физических лиц и коммерческих организаций. Коммерческие организации, если будет нужно, найдут денежные средства, а обычные люди пусть занимаются математикой в университетах или считают столбиком.


Конечно же, это ошибочное мнение. Научные расчеты, выполненные с использованием открытого ПО имеют дополнительный «уровень защиты», ведь при желании любой может повторить прогнать те же самые расчеты и проверить валидность результатов . Те же самые вычисления, выполненные на дорогущем ПО, частично отсекают возможность проверки результатов . Проблема на самом деле гораздо шире (английский текст) и дело не только в открытых или проприетарных математических программах. Не секрет, что научные журналы как правило не требуют от авторов предоставить данные и методику, достаточные для гарантированного повтора результатов эксперимента, проверки модели. Особенно часто этим грешат экономисты и финансисты, попросту засекречивая свои данные. Проверка расчетов и выводов среди выборки из массива статей с «засекреченными» данными Добавить метки

Cвободная математика

Александр Бикмеев разбирается, насколько свободна компьютерная математика и насколько свободное ПО является математическим.

Любая наука, от физики до филологии, использует достижения математики. В связи с этим специалистам не-математикам необходимы средства, которые позволяли бы ставить задачи в математической форме и получать решения в виде формул или набора значений, то есть нужны системы компьютерной математики, способные взять на себя труд решения математических задач различными методами.

К сожалению, в нашей стране подобные программы распространены в достаточно узкой области научной деятельности, и не в последнюю очередь это обусловлено тем, что школьников и студентов не знакомят с профессиональными математическими пакетами, стоимость только одной лицензии на которые зачастую исчисляется тысячами и десятками тысяч рублей.

Мы предлагаем вам заглянуть в мир свободных математических пакетов, которые можно бесплатно загрузить из сети Интернет, использовать для любого вида изысканий (иногда с оговорками), а также, благодаря наличию исходных текстов, изучать их внутреннее устройство и, при желании, расширять их функциональность собственными силами.

Символьные вычисления

Системы компьютерной математики (СКМ) разрабатываются давно, и Maxima () была одной из первых. Изначально это был коммерческий продукт, но, не выдержав конкуренции, система перешла в разряд свободных.

Оболочка wxMaxima и пункт меню, позволяющий вывести или убрать с экрана панели математических операций.

Основное преимущество Maxima перед другими свободными системами – это поддержка символьных вычислений. То есть, введя аналитическое выражение или уравнение, вы можете получить результат также в аналитическом виде.

Maxima позволяет решать алгебраические уравнения, системы уравнений, выполнять операции интегрирования, дифференцирования, разложения в ряд и так далее. Кроме того, она умеет решать дифференциальные уравнения, граничные задачи, задачи Коши, выполнять алгебраические вычисления с матрицами, строить графики и поверхности, заданные различными функциями в декартовой и полярной системах координат. Все возможности перечислить трудно.

Для СКМ Maxima разработано несколько оболочек, наиболее удобной из которых (для начинающего пользователя) является wxMaxima (см. рис. 1). Начиная с версии 0.8.0, она стремительно меняется в лучшую сторону. Последняя версия (0.8.3) содержит черты таких известных коммерческих пакетов, как Maple и MathCAD . Работа в данной оболочке достаточно проста и позволяет получать приемлемые результаты уже через несколько минут использования. Многие операции, названия которых присутствуют в меню и на панелях инструментов, снабжены удобными мастерами, позволяющими решать задачи, даже не зная встроенного языка и команд Maxima . Ну и еще один немаловажный факт – все оболочки для данной СКМ русифицированы. Кроме того, изучив свободный пакет Maxima , обучающиеся смогут легче освоиться в коммерческих пакетах, что обусловлено как относительной схожестью интерфейса, так и используемым синтаксисом (особенно это касается Maxima и Maple ).

Система прекрасно документирована, но справочный материал представлен только на английском языке. Наш журнал публиковал учебные материалы о работе в СКМ Maxima (LXF81–86). Будучи консольным приложением, Maxima может работать в пакетном режиме, то есть ей можно передавать на обработку текстовый файл со списком команд и получать опять же текстовый файл с результатами, а если учесть, что вывод может быть оформлен средствами системы разметки TeX , то это позволяет использовать ее в качестве базы для построения собственных приложений. Одним из примеров такой разработки является расширение TeXmacs .

На основании имеющегося опыта обучения можно сказать, что студенты младших курсов осваивают работу в Maxima достаточно быстро и начинают использовать ее при выполнении заданий по другим предметам. Но с каждым курсом у них возникает все больше проблем.

Дело в том, что наряду с большим количеством положительных моментов у Maxima присутствуют и отрицательные. Во-первых, конечный результат, особенно при решении сложных задач, во многом зависит от уровня знания математики и опыта использования данной СКМ, потому как иногда требуется выполнить предварительные преобразования самостоятельно. Во-вторых, Maxima очень хорошо работает с алгебраическими выражениями, но трансцендентные, логарифмические и подобные им вызывают у нее значительные трудности. Впрочем, если нельзя получить аналитическое решение, то всегда можно воспользоваться численным расчетом. В-третьих, возможности Maxima по построению сложных графиков или визуализации, например, векторного поля, не идут ни в какое сравнение с возможностями Maple . И, наконец, в-четвертых, для полноценной работы необходимо изучить многочисленные команды и константы Maxima , а это требует времени и терпения.

СКМ Maxima входит во многие дистрибутивы Linux или, по крайней мере, обязательно присутствует в репозиториях. Она включена в состав таких образовательных продуктов, как AltLinux Школьный, Edubuntu и EduMandriva.

Окно SMath Studio , в котором определена функция, вычислена ее производная и построен график.

Следует отметить, что инженеры все-таки привыкли работать с таким мощным приложением-калькулятором, как MathCAD . Это система инженерных расчетов, доступная для любых платформ (см. Коммерческие пакеты), но за серьезные деньги. Однако работодатели требуют, чтобы выпускники умели работать в этой системе. Как же быть образовательным учреждениям?

В нашей стране родился спасительный проект: SMath Studio (http://ru.smath.info/forum/). Это бесплатный, но, к сожалению, пока не свободный продукт, разработчик которого, Андрей Ивашов, пытается создать альтернативу монстру MathCAD , и у него это получается (см. рис. 2). Приложение разработано для среды .NET , а затем адаптировано для Mono .

SMath Studio позволяет выполнять аналитические вычисления, операции с матрицами, строить графики и вычислять производные, и даже поддерживает функции программирования. К сожалению, аналитическое интегрирование пока не поддерживается, но продукт успешно развивается, и осенью 2009 г. автор заканчивает разработку инфраструктуры, которая позволит использовать сторонние подключаемые модули. Возможно, тогда развитие приложения выйдет на новый уровень, и мы получим полноценную альтернативу MathCAD .

Следует также отметить, что весной 2009 года, по соглашению с автором, продукт был включен в состав образовательного дистрибутива EduMandriva. Несмотря на ограниченную функциональность, данное приложение позволяет выполнять повседневные вычисления на уровне школьников и студентов младших курсов, а также простые инженерные расчеты. А если учесть, что SMath Studio прекрасно чувствует себя на карманных компьютерах и смартфонах, управляемых Windows Mobile, то знакомство с ним для школьников и студентов просто обязательно.

На официальном сайте всегда присутствует документация в форматах DOC и ODT, а на официальном форуме можно задать вопросы разработчику или сообществу и обсудить использованные при разработке приложения алгоритмы.

Окно wxMaxima с результатами символьных вычислений и графиком функции

В завершение данного раздела хочется заострить внимание на том, что пакеты символьной математики в качестве результата выдают выражение, а не число. Рассмотрим пример, показанный на рис. 3, в котором определена пользовательская функция и для нее найдена вторая производная; затем функция проинтегрирована. Заодно построен график. Таким образом, школьники и студенты могут наглядно выполнить полный анализ функции. И это далеко не все: Maxima умеет упрощать выражения путем раскрытия скобок, приведения подобных слагаемых, выполнения подстановок и задания некоторых условий и допущений, накладываемых на выражение. Добавьте сюда возможность символьного решения уравнений и систем уравнений, а также дифференциальных уравнений, и поймете, что современному студенту без этих инструментов не обойтись, а преподаватели естественных дисциплин могут оживить уроки и практические занятия за счет ввода интерактивных заданий или демонстрационного материала.

Численные расчеты

Как известно, не каждую задачу можно решить аналитически, то есть получить решение в виде некой формулы. Тогда на помощь приходят различные численные методы, для получения решения с некоторой точностью. Наиболее известным представителем приложений для численных расчетов является система компьютерной алгебры (СКА) Matlab .

Matlab широко распространен по всему миру (см. Сравнение в LXF109), но стоимость даже образовательных лицензий не по карману не только школам, но и многим российским вузам. За рубежом также предпочитают считать деньги – и вкладывают человеческие ресурсы в разработку свободных аналогов Matlab . Рассмотрим некоторые из них.

Прежде всего, на мой взгляд, стоит остановится на проекте GNU Oсtave (http://www.gnu.org/software/octave/). Разработчики позиционируют эту систему как «высокоуровневый язык программирования для численных расчетов». Как и многие свободные *nix-проекты с давней традицией, она предоставляет интерфейс командной строки. Введите в терминале octave – и (если, конечно GNU Octave установлена на компьютере) перед вами появится приглашение данной системы. Начните вводить команды, и в терминале будут выводится результаты вычислений.

Интерфейс командной строки имеет свои преимущества, так как он практически не отнимает вычислительных ресурсов компьютера, оставляя всю мощь процессора на сами вычисления, а не на красивое отображение текста команд и результата расчетов. И все же современный пользователь редко готов мириться с этим.

. Оболочка qtOctave с выполненными вычислениями.

Долгое время GNU Octave не имела графического интерфейса, пока, наконец, не появился qtOctave (см. рис. 4). Эта оболочка весьма напоминает интерфейс Matlab и позволяет автоматизировать выполнение некоторых рутинных операций (например, построения графиков) при помощи мастеров.

Язык системы сделан максимально схожим с языком Matlab ; следовательно, человек, освоивший GNU Octave , сможет практически без переобучения работать и в Matlab , а именно это и необходимо работодателям. Кроме того, энтузиастами движения свободного ПО для системы создано достаточное количество пакетов расширений. За счет этого функционал самой СКА постоянно растет. Ну, а наличие исчерпывающей документации (пусть и на английском языке) как для системы, так и для пакетов расширений делает данный продукт не только выгодным, но и доступным для изучения.

К минусам относится не совсем удобный интерфейс оболочки qtOctave , тем более, что версия не обновлялась с осени 2008 года (создается впечатление, что проект заброшен). Пакеты расширений не богаты функциями и не блещут графическими возможностями; кроме того, они не равнозначны, поскольку ситуация такова, что один проект разработан студентом-первокурсником, а второй, например, командой преподавателей вуза. Зато это полностью свободный проект, с которым можно не беспокоиться о лицензионной чистоте получаемых решений.

Следующий пакет, который хотелось бы рассмотреть, называется Scilab (http://www.scilab.org), само имя которого указывает на схожесть с Matlab . Изначально это был также коммерческий продукт, и назывался он Blaise , а затем Basile . Его создателей вдохновили первые версии Matlab , и некоторое время они конкурировали. Однако в начале 90‑х фирма Simulog прекратила его продажу, и тогда шесть разработчиков французского национального исследовательского института (INRIA) основали проект Scilab .

Scilab выгодно отличается от своих собратьев по цеху проработанным интерфейсом, наличием достаточно большого числа специализированных пакетов расширений, а также тем, что он поддерживается Консорциумом Scilab , в состав которого входят крупные образовательные и научные учреждения со всего мира.

Интерфейс Scilab 5

Scilab – единственная свободная система, аналогичная Matlab , имеющая свой собственный инструмент для блочного моделирования под названием Scicos . В дистрибутиве продукта имеется встроенный редактор скриптов и функций с возможностью отладки. Scilab обладает развитыми графическими возможностями для создания высокотехнологичных приложений. С функциональностью системы можно ознакомиться, рассмотрев демонстрационные примеры – некоторые из них весьма впечатляют (выберите пункты меню ? > Демонстрация возможностей ).

Scilab имеет в своем составе функции не только для выполнения всевозможных операций над матрицами, но и для построения графиков и трехмерных поверхностей в различных системах координат, функции для работы с генетическими алгоритмами, решения задач на графах, статистические функции, средства имитационного моделирования и многое другое. Ежегодно проходит несколько конференций, посвященных использованию СКА Scilab в науке, образовании и на производстве.

Во всем мире вышло несколько книг, посвященных описанию работы в Scilab , а также решению ряда специализированных задач. К сожалению, ни одна из них не была переведена на русский язык. В России вышло всего две книги, одна – в рамках национального проекта, а во второй Scilab описывается наряду с несвободными пакетами. Наш журнал также неоднократно печатал учебники о работе в Scilab (LXF106–109 и ), и все же документации пока не хватает, а справочные материалы не всегда позволяют понять, как работает та или иная функция.

Freemat - впечатляющий результат того, на что способна команда из трех единомышленников.

Выход пятой версии Scilab ознаменовал собой начало нового этапа в развитии системы. Изменился интерфейс приложения (разработчики отказались от GTK -интерфейса), начал меняться инструмент блочного моделирования Scicos , который в октябре 2009 года должен поменять свое имя на Xcos .

Еще одной вариацией на тему Matlab является Freemat (); этот пакет имеет другую немаловажную общую черту с Matlab , а именно поддержку объектно-ориентированного программирования. Интерфейс программы достаточно приятен. В основном окне реализовано автодополнение команд. На официальном сайте присутствует полное руководство по работе с системой (на английском языке). Дистрибутив программы имеет небольшой, по нынешним меркам, объем – 18 МБ.

Система позволяет выполнять численное решение уравнений и систем уравнений, как линейных, так и нелинейных, и числовую обработку сигналов (см. рис. 6); способна работать с многомерными матрицами. Основными положительными моментами Freemat , по сравнению со Scilab и Octave , являются большая совместимость внутреннего языка системы с языком Matlab и использование OpenGL для построения графиков и поверхностей, в результате чего они выглядят более качественно.

Минусами же Freemat являются низкое быстродействие (некоторые задачи решаются в разы медленнее, чем в других пакетах) и отсутствие пакетов расширений. Данная система развивается только усилиями команды из трех человек. Большого сообщества у проекта не наблюдается.

Дистанционная математика

Упомянутые выше системы представляют собой локальные проекты, то есть работа с ними ведется на одной машине. Но это бывает неудобно – например, при дистанционном обучении; кроме того, не все студенты согласятся (а иногда и смогут) поставить данные приложения на своих домашних компьютерах. В этом случае необходимы средства для удаленной работы с математическими пакетами.

SMath Studio Live : считайте, не выходя из браузера (пусть и не очень быстро).

Среди рассмотренного нами такую возможность предоставляет SMath Studio . В разделе Live официального сайта (http://smath.info/live) располагается виртуальный рабочий лист, на котором любой желающий может выполнить свои вычисления. Система очень удобна, хотя и не блещет быстродействием.

И все же более профессиональна в этом плане система SAGE (http://www.sagemath.org/). Данная система состоит из web-сервера, обеспечивающего графический интерфейс для взаимодействия с кодом Python , на котором написано ее ядро. Любой пользователь при помощи своего любимого web-браузера может подключиться к серверу, зарегистрироваться и получить в свое владение личное пространство. Оно может быть и открытым, и закрытым, то есть доступным только администратору сервера и самому владельцу. В личном пространстве могут создаваться рабочие листы, на них и выполняются все вычисления.

В рамках рабочего листа можно использовать любой доступный язык, а таких немало. По умолчанию система SAGE объединяет следующие продукты: GAP, Maxima, Python, R, LaTeX . Кроме этого, могут быть подключены Octave, Axiom, Magma, Mathematica, Matlab, Maple, Mupad и другие. В результате мы получаем единый сервер удаленной работы, позволяющий обучать любым математическим пакетам и выполнять вычисления с помощью как свободных, так и коммерческих систем компьютерной математики.

. По непонятным причинам, Sage отказывается работать в Firefox , но в остальном это удачное решение для удаленной работы.

Система прав доступа к личным пространствам и возможность совместной работы с рабочим листом сразу нескольких пользователей позволяет организовать дистанционное обучение с листом объяснения учебного материала, содержащим примеры решения задач, и листами личных заданий для каждого студента.

В настоящее время в сети существует несколько публичных SAGE -серверов – к ним можно подключиться, посмотреть листы, выложенные в общий доступ, завести свое личное пространство и, в случае трудностей, попросить помощь у сообщества. Для этого просто сделайте рабочий лист публичным. Уверяю вас: желающих помочь достаточно много, единственная проблема в том, что рабочий язык – английский.

На официальном сайте присутствуют ссылки на тестовый публичный сервер (http://www.sagenb.org), а также на учебные материалы и книги, созданные с помощью данной системы. Зарегистрируйтесь и опробуйте SAGE – может быть, это то, что вы ищете? Стоит также отметить, что у нас не получилось войти на сервер в Firefox , но в других браузерах проблем не возникло.

Итак, мы рассмотрели наиболее популярные свободные системы компьютерной математики. Можно ли их использовать в обучении и для работы – решать вам. Мы свой выбор уже сделали, и не жалеем об этом.

Коммерческие системы

Среди коммерческих систем наиболее популярны три: Matlab (численные вычисления), Maple (основной упор сделан на символьные вычисления) и Mathematica (удачно сочетает устремления первых двух). Особняком стоит мощный инженерный пакет MathCAD , поскольку это скорее большой инженерный калькулятор, и он не предназначен для решения сложных задач математической физики или теории шифрования, обработки сигналов и так далее.

Все эти пакеты имеют версии под наиболее распространенные платформы: Windows, Linux и Mac OS X. Приведем стоимость одной лицензии данных пакетов для академических учреждений, согласно прайс-листу Softline:

  • Matlab – 30 765 руб;
  • Mathematica – 9002 руб;
  • Maple – 36 286 руб;
  • MathCAD – 5290 руб.

Выводы вы можете сделать сами.