Сравнение новых технологий энергонезависимой памяти. Энергонезависимая память RAM

Классификация оперативной памяти

Типы реальной памяти и их основные характеристики

Одним из важнейших устройств компьютера является память, или запоминающее устройство (ЗУ). По определœению, данном в книге "Информатика в понятиях и терминах", ЗУ - "функциональная часть цифровой вычислительной машины, предназначенной для записи, хранения и выдачи информации, представленных в цифровом виде." При этом под это определœение попадает как собственно память, так и внешние запоминающие устройства (типа накопителœей на жестких и гибких дисках, магнитной ленты, CD-ROM), которые лучше отнести к устройствам ввода/вывода информации. Таким образом под компьютерной памятью в дальнейшем будет пониматься только "внутренняя память компьютера: ОЗУ, ПЗУ, кэш память и флэш-память". Итак, рассмотрим классификацию внутренней памяти компьютера.

Оперативное запоминающее устройство является, пожалуй, одним из самых первых устройств вычислительной машины. Она присутствовала уже в первом поколении ЭВМ по архитектуре, созданных в в начале сороковых -пятидесятых годов двадцатого века. За эти пятьдесят лет сменилось не одно поколение элементной базы, на которых была построена память. По этой причине приведем классификацию ОЗУ по элементной базе и конструктивным особенностям. С некоторой натяжкой к ОЗУ можно отнести и ПЗУ, в случае если рассматривать его как быстрое ЗУ только для чтения.

Схема данной классификации приведена на рисунке.

Рис. Классификация ОЗУ.

Как видно из схемы исходя из сохранности данных при отключении питания ОЗУ делится на энергозависимое и энергонезависимое.

К энергонезависимым ЗУ, в первую очередь, относится класс всœевозможных ферритовых ЗУ. Далее, условно энергонезависимыми можно назвать ППЗУ стираемые УФ и электрически стираемые (перепрограммируемые – флэш-память). Условность состоит в достаточно долгом (десятки тысяч часов) но не бесконечном сроке хранения записанной информации в данных ЗУ. Следующий класс энергонезависимых ЗУ составляют однократно программируемые ПЗУ. Данные ПЗУ могут поставляться чистыми (вся память записана нулями или единицами) с последующим электрическим однократным программированием, либо программироваться в процессе изготовления (заказные ПЗУ).

Энергозависимая память - ϶ᴛᴏ всœевозможные виды ОЗУ для быстрого чтения/записи. При отключении питания такая память полностью теряет информацию, но обладает высоким быстродействием. Данный класс реальных ЗУ делится на динамические (с крайне важно стью регенерации информации) и статические (не требующие регенерации информации). Теперь рассмотрим более подробно каждый класс ЗУ.

ЭВМ первого поколения по элементной базе были крайне ненадежными. Так, среднее время работы до отказа для ЭВМ “ENIAC” составляла 30 минут. Скорость счета при этом была не сравнима со скоростью счета современных компьютеров. По этой причине требования к сохранению данных в памяти компьютера при отказе ЭВМ были строже, чем требования к быстродействию оперативной памяти. Вследствие этого в этих ЭВМ использовалась энергонезависимая память.

Энергонезависимая память позволяла хранить введенные в нее данные продолжительное время (до одного месяца) при отключении питания. Чаще всœего в качестве энергонезависимой памяти использовались ферритовые сердечники. Οʜᴎ представляют из себятор, изготовленных из специальных материалов - ферритов. Ферриты характеризуются тем, что петля гистерезиса зависимости их намагниченности от внешнего магнитного поля носит практически прямоугольный характер.

Рис. B.1. Диаграмма намагниченности ферритов.

Вследствие этого намагниченность этого сердечника меняется скачками (положение двоичного 0 или 1, смотри рисунок B.1.) По этой причине, собрав схему, показанную на рисунке B.2, практически собран простейший элемент памяти емкостью в 1 бит. Память на ферритовых сердечниках работала медленно и неэффективно: ведь на перемагничивание сердечника требовалось время и затрачивалось много электрической энергии. По этой причине с улучшением надежности элементной базы ЭВМ энергонезависимая память стала вытесняться энергозависимой - более быстрой, экономной и дешевой. Тем не менее, ученые разных стран по-прежнему ведут работы по поиску быстрой энергозависимой памяти, которая могла бы работать в ЭВМ для критически важных приложений, прежде всœего военных.

Рис. B.2. Схема элемента памяти на ферритовых сердечниках.

Добрый день, друзья!

А вы видели таинственную аббревиатуру «NVRAM», которая мелькает на мониторе при включении компьютера? NVRAM – это одна из необходимых компьютеру «железок», и мы сейчас разберемся — что это за зверь такой и зачем он нужен.

Мы увидим также, как эта штука развивалась и «умнела», а вместе с ней «умнел» и весь компьютер. Для начала рассмотрим

Что такое энергонезависимая память?

NVRAM (Non Volatile Random Access Memory) – общее название энергонезависимой памяти. Энергонезависимая память – это такая, данные в которой не стираются при выключении питания. В противоположность ей есть энергозависимая память, данные в которой исчезают при отключении питания. Т.е. когда питание на микросхему (или модуль) памяти подается, она «помнит» данные, когда перестает подаваться – она их «забывает».

Под понятие «энергонезависимая» подпадает несколько видов памяти. Кстати сказать, память (и энергозависимая, и энергонезависимая) имеется не только в компьютере, но и во всех околокомпьютерных и периферийных устройствах:

  • в принтерах — лазерных, и ,
  • в мониторах,
  • в модемах,
  • графических картах и т.д.

Даже в компьютерных имеются оба вида памяти.

Оба они упакованы в бескорпусную микросхему («капельку»), покрытую компаундом.

Такая конструкция — все «в одном флаконе» — именуется контроллером (от английского «control» — управление) и очень широко применяется в электронике.

Виды энергонезависимой памяти

Один из видов энергонезависимой памяти именуется ROM (Read Only Memory, память только для чтения). В русскоязычной литературе такая память называется ПЗУ (постоянное запоминающее устройство). Данные в микросхему, которая именуется еще англоязычным термином «chip» (чип, кристалл), записываются при изготовлении. Изменить их потом нельзя.

Еще одна разновидность энергонезависимой памяти – PROM (Programmable ROM). Эквивалентный русскоязычный термин – ППЗУ (Программируемое ПЗУ). В такой микросхеме в исходном состоянии во всех ячейках памяти записана одинаковая информация (нули или единицы). С помощью специальной процедуры программирования в ячейки записывается нужная информация.

Происходило это путем пережигания плавких перемычек.

После записи изменить данные в ячейках было нельзя.

Возможность программирования предоставляет гибкость в производстве и использовании. Чтобы записать модифицированную информацию в микросхему, не надо перестраивать технологический процесс производства. Пользователь (точнее, производитель электронной техники) сам записывает нужную ему информацию.

Но однократно программируемая память тоже не всегда хороша. Модифицировать «прошитую» в микросхему информацию нельзя, нужно менять микросхему. Это не всегда удобно и возможно. Поэтому появились многократно программируемые микросхемы. В первых изделиях информация стиралась ультрафиолетовым излучением, для чего использовалась специальная лампа.

В таких микросхемах имелось окошечко, закрытое кварцевым стеклом, которое пропускало УФ излучение. Но все равно это было неудобно, и после научились стирать, и записывать информацию электрическим сигналом. Такую память стали называть EEPROM (Electric Erasable PROM, ЭСППЗУ, электрически стираемое программируемое ПЗУ).

Затем появилась ее разновидность — Flash (флеш) память, которая получила в последние годы очень широкое распространение.

Это и микросхема в компьютере.

Это и всем известные ныне «флэшки» (портативные накопители данных), твердотельные накопители SSD (Solid State Drive), альтернатива электромеханическим винчестерам, карты памяти, применяемые в фотоаппаратах и т.п.

Отметим, что перезаписать информацию в таких накопителях можно ограниченное (хотя и большое) количество раз.

Проблема времени в компьютере

В первых компьютерах не было микросхемы RTS (Real Time Clock, часы реального времени).

Это было неудобно, и потом ее начали устанавливать.

Проблема, которая возникла с RTC в самом начале, заключалась в том, что компьютер работает не 24 часа в сутки. Он включается пользователем в начале рабочего дня и выключается в его конце. Пока компьютер был включен, он «помнил» время, как только его выключали, он время «забывал».

Каждый раз устанавливать время заново было бы очень неудобно. Неудобно было бы и каждый раз возобновлять и другие системные настройки (тип винчестера, источник загрузки и другие). Поэтому придумали встроить в общий корпус микросхему RTC, которая помнила не только время, но и все настройки BIOS Setup, и источник питания – батарею гальванических элементов.

Ячейки памяти RTC представляли собой, по сути, (RAM). Такую память также отнесли к энергонезависимой, так как она не зависела от источника внешнего напряжения. Она была энергонезависимой до тех пор, пока встроенная батарея не «садилась». Такая память была сделана на основе КМОП структур, поэтому потребляла в статическом режиме (режиме хранения) очень небольшой ток, порядка единиц микроампер.

Поэтому встроенной батареи хватало на несколько лет. После чего весь модуль подлежал замене. Существовали конструкции материнских плат с разъемом под такой модуль. И можно было легко выполнить его замену. Но затем технический прогресс продолжил свой неумолимый бег. Число микросхем на материнской плате уменьшалось, а степень их интеграции увеличивалась.

В конце концов пришли к чипсету (набору микросхем), состоящему из 1-2 корпусов, который включал в себя почти все подсистемы материнской платы.

Встраивать в тот же корпус (куда напихано уже много всего) еще и источник напряжения посчитали нецелесообразным.

Такой корпус имеет много выводов. Установка его в разъем усложнила бы конструкцию, увеличила бы ее стоимость и снизила бы надежность.

Поэтому источник питания (3 V литиевый элемент) стали устанавливать отдельно. Это упростило и удешевило плату, так как теперь надо менять только элемент, а не все сразу. Следует отметить, что вначале в качестве источника резервного питания использовались никель-кадмиевые аккумуляторы.

После длительной эксплуатации они могли потечь. И вытекший электролит мог повредить проводники материнской платы. Современные литиевые элементы не текут даже при очень глубоком разряде.

Технология изменилась, но название структуры, хранящей настройки BIOS Setup, осталось прежним – NVRAM. Но теперь, в строгом смысле, она не является энергонезависимой. Ведь ее «энергонезависимость» обеспечивается внешним источником напряжения.

Напомним, что первым признаком того, что элемент 2032 исчерпал свой ресурс, является сброс времени и даты при включении компьютера. Напряжение свежего элемента составляет величину около 3,3 В. По мере истощения его ЭДС падает. И, как только оно снизится (ориентировочно) менее 2,8 В, структура, хранящая настройки, «забудет» их. Заряду литиевые элементы не подлежат.

Что обозначают цифры в маркировке литиевого элемента?

В заключение отметим, что первые две цифры маркировки элемента (20) определяют его диаметр в миллиметрах.

Вторые две – его емкость (способность отдать определенное количество энергии).

Чем больше цифра, тем больше емкость и тем толще элемент. Типовое значение емкости элемента 2032 – 225 мА/ч (миллиампер-часов), элемента 2025 – 160 мА/ч.

Следует отметить, что это максимальные значения. Реальные цифры зависят от сопротивления нагрузки и окружающей температуры. Чем больше сопротивление нагрузки и выше температура (разумеется, до известных пределов), тем больше эквивалентная емкость. Т.е. тем дольше элемент будет питать энергией нагрузку. При пониженной окружающей температуре элемент «садится» быстрее.

Литиевые элементы – очень хорошие источники энергии.

У них высокие показатели удельной энергии, т.е. большое соотношение «энергия/вес» и очень небольшой саморазряд (менее одного процента в год). У свинцовых , например, эти показатели гораздо хуже.

С вами был Виктор Геронда.

До встречи на блоге!

Введение

Компьютерная память (устройство хранения информации, запоминающее устройство) -- часть вычислительной машины, физическое устройство или среда для хранения данных, используемых в вычислениях, в течение определённого времени. Память, как и центральный процессор, является неизменной частью компьютера с 1940-х. Память в вычислительных устройствах имеет иерархическую структуру и обычно предполагает использование нескольких запоминающих устройств, имеющих различные характеристики.

Любая информация может быть измерена в битах и потому, независимо от того, на каких физических принципах и в какой системе счисления функционирует цифровой компьютер (двоичной, троичной, десятичной и т. п.), числа, текстовая информация, изображения, звук, видео и другие виды данных можно представить последовательностями битовых строк или двоичными числами. Это позволяет компьютеру манипулировать данными при условии достаточной ёмкости системы хранения (например, для хранения текста романа среднего размера необходимо около одного мегабайта).

Следует различать классификацию памяти и классификацию запоминающих устройств (ЗУ). Первая классифицирует память по функциональности, вторая же -- по технической реализации. Здесь рассматривается первая -- таким образом, в неё попадают как аппаратные виды памяти (реализуемые на ЗУ), так и структуры данных, реализуемые в большинстве случаев программно.

По устойчивости записи и возможности перезаписи ЗУ делятся на:

· Постоянные ЗУ (ПЗУ), содержание которых не может быть изменено конечным пользователем (например, BIOS). ПЗУ в рабочем режиме допускает только считывание информации.

· Записываемые ЗУ (ППЗУ), в которые конечный пользователь может записать информацию только один раз (например, CD-R).

· Многократно перезаписываемые ЗУ (ПППЗУ) (например, CD-RW).

· Оперативные ЗУ (ОЗУ) обеспечивает режим записи, хранения и считывания информации в процессе её обработки. Быстрые, но дорогие ОЗУ (SRAM) строят на триггерах, более медленные, но дешёвые разновидности ОЗУ -- динамические ЗУ (DRAM) строят на конденсаторах. В обоих видах ЗУ информация исчезает после отключения от источника тока.

По типу доступа ЗУ делятся на:

· Устройства с последовательным доступом (например, магнитные ленты).

· Устройства с произвольным доступом (RAM) (например, оперативная память).

· Устройства с прямым доступом (например, жесткие магнитные диски).

· Устройства с ассоциативным доступом (специальные устройства, для повышения производительности.)

Теоретическая часть

Энергонезависимая память

Энергонезависимая память (англ. NVRAM, от Non Volatile Random Access Memory) -- перезаписываемая или оперативная память в электронном устройстве, сохраняющая своё содержимое вне зависимости от подачи основного питания на устройство.

В более общем смысле, энергонезависимая память -- любое устройство или его часть, сохраняющее данные вне зависимости от подачи питающего напряжения. Однако попадающие под это определение носители информации, ПЗУ, ППЗУ, устройства с подвижным носителем информации (диски, ленты) и другие носят свои, более точные названия.

Поэтому термин «энергонезависимая память» чаще всего употребляется более узко, по отношению к такой электронной памяти, которая обычно выполняется энергозависимой, и содержимое которой при выключении обычно пропадает.

Энергонезависимое устройство -- любое устройство в составе комплекса, прибора, компьютерной системы, которое не требует подключения к общему в данном комплексе источнику питания для своей работы. Например:

· автономные лампы аварийного освещения;

· Часы (CMOS Clock) на системной плате персонального компьютера;

Классификация по устройству

Постоянное запоминающее устройство (ПЗУ , англ. ROM - Read-Only Memory) -- энергонезависимая память, используется для хранения массива неизменяемых данных.

Оперативная память (также оперативное запоминающее устройство , ОЗУ ) -- часть системы памяти ЭВМ, в которую процессор может обратиться за одну операцию (jump, move и т. п.). Предназначена для временного хранения данных и команд, необходимых процессору для выполнения им операций. Оперативная память передаёт процессору данные непосредственно, либо через кеш-память. Каждая ячейка оперативной памяти имеет свой индивидуальный адрес.

ОЗУ может изготавливаться как отдельный блок, или входить в конструкцию однокристальной ЭВМ или микроконтроллера.

Сегнетоэлектрическая (FRAM)

Сегнетоэлектрическая память FRAM (англ. Ferroelectric RAM) -- статическая оперативная память с произвольным доступом, ячейки которой сохраняют информацию, используя сегнетоэлектрический эффект («ferroelectric» переводится «сегнетоэлектрик, сегнетоэлектрический», а не «ферроэлектрик», как можно подумать). Ячейка памяти представляет собой две токопроводящие обкладки, и плёнку из сегнетоэлектрического материала. В центре сегнетоэлектрического кристалла имеется подвижный атом.

Приложение электрического поля заставляет его перемещаться. В случае, если поле «пытается» переместить атом в положение, например, соответствующее логическому нулю, а он в нём уже находится, через сегнетоэлектрический конденсатор проходит меньший заряд, чем в случае переключения ячейки. На измерении проходящего через ячейку заряда и основано считывание.

При этом процессе ячейки перезаписываются, и информация теряется (требуется регенерация). Исследованиями в этом направлении занимаются фирмы Hitachi совместно с Ramtron, Matsushita с фирмой Symetrix. По сравнению с флеш-памятью, ячейки FRAM практически не деградируют -- гарантируется до 10 10 циклов перезаписи.

Память, реализованная ЗУ, записи в которых стираются при снятии электропитания. К этому типу памяти относятся память, реализованная на ОЗУ, кэш-память.

Классификация оперативной памяти

Типы реальной памяти и их основные характеристики

Одним из важнейших устройств компьютера является память, или запоминающее устройство (ЗУ). По определению, данном в книге "Информатика в понятиях и терминах", ЗУ - "функциональная часть цифровой вычислительной машины, предназначенной для записи, хранения и выдачи информации, представленных в цифровом виде." Однако под это определение попадает как собственно память, так и внешние запоминающие устройства (типа накопителей на жестких и гибких дисках, магнитной ленты, CD-ROM), которые лучше отнести к устройствам ввода/вывода информации. Таким образом под компьютерной памятью в дальнейшем будет пониматься только "внутренняя память компьютера: ОЗУ, ПЗУ, кэш память и флэш-память". Итак, рассмотрим классификацию внутренней памяти компьютера.

Оперативное запоминающее устройство является, пожалуй, одним из самых первых устройств вычислительной машины. Она присутствовала уже в первом поколении ЭВМ по архитектуре, созданных в в начале сороковых -пятидесятых годов двадцатого века. За эти пятьдесят лет сменилось не одно поколение элементной базы, на которых была построена память. Поэтому приведем классификацию ОЗУ по элементной базе и конструктивным особенностям. С некоторой натяжкой к ОЗУ можно отнести и ПЗУ, если рассматривать его как быстрое ЗУ только для чтения.

Схема данной классификации приведена на рисунке.

Рис. Классификация ОЗУ.

Как видно из схемы в зависимости от сохранности данных при отключении питания ОЗУ делится на энергозависимое и энергонезависимое.

К энергонезависимым ЗУ, в первую очередь, относится класс всевозможных ферритовых ЗУ. Далее, условно энергонезависимыми можно назвать ППЗУ стираемые УФ и электрически стираемые (перепрограммируемые – флэш-память). Условность заключается в достаточно долгом (десятки тысяч часов) но не бесконечном сроке хранения записанной информации в данных ЗУ. Следующий класс энергонезависимых ЗУ составляют однократно программируемые ПЗУ. Данные ПЗУ могут поставляться чистыми (вся память записана нулями или единицами) с последующим электрическим однократным программированием, либо программироваться в процессе изготовления (заказные ПЗУ).

Энергозависимая память – это всевозможные виды ОЗУ для быстрого чтения/записи. При отключении питания такая память полностью теряет информацию, но обладает высоким быстродействием. Данный класс реальных ЗУ делится на динамические (с необходимостью регенерации информации) и статические (не требующие регенерации информации). Теперь рассмотрим более подробно каждый класс ЗУ.


ЭВМ первого поколения по элементной базе были крайне ненадежными. Так, среднее время работы до отказа для ЭВМ “ENIAC” составляла 30 минут. Скорость счета при этом была не сравнима со скоростью счета современных компьютеров. Поэтому требования к сохранению данных в памяти компьютера при отказе ЭВМ были строже, чем требования к быстродействию оперативной памяти. Вследствие этого в этих ЭВМ использовалась энергонезависимая память.

Энергонезависимая память позволяла хранить введенные в нее данные продолжительное время (до одного месяца) при отключении питания. Чаще всего в качестве энергонезависимой памяти использовались ферритовые сердечники. Они представляют собой тор, изготовленных из специальных материалов - ферритов. Ферриты характеризуются тем, что петля гистерезиса зависимости их намагниченности от внешнего магнитного поля носит практически прямоугольный характер.

Рис. B.1. Диаграмма намагниченности ферритов.

Вследствие этого намагниченность этого сердечника меняется скачками (положение двоичного 0 или 1, смотри рисунок B.1.) Поэтому, собрав схему, показанную на рисунке B.2, практически собран простейший элемент памяти емкостью в 1 бит. Память на ферритовых сердечниках работала медленно и неэффективно: ведь на перемагничивание сердечника требовалось время и затрачивалось много электрической энергии. Поэтому с улучшением надежности элементной базы ЭВМ энергонезависимая память стала вытесняться энергозависимой - более быстрой, экономной и дешевой. Тем не менее, ученые разных стран по-прежнему ведут работы по поиску быстрой энергозависимой памяти, которая могла бы работать в ЭВМ для критически важных приложений, прежде всего военных.

Рис. B.2. Схема элемента памяти на ферритовых сердечниках.

Флэш-память - особый вид энергонезависимой перезаписываемой полупроводниковой памяти.

Энергонезависимая - не требующая дополнительной энергии для хранения данных (энергия требуется только для записи).

Перезаписываемая - допускающая изменение (перезапись) хранимых в ней данных.

Полупроводниковая (твердотельная) - не содержащая механически движущихся частей (как обычные жёсткие диски или CD), построенная на основе интегральных микросхем (IC-Chip).

В отличие от многих других типов полупроводниковой памяти, ячейка флэш-памяти не содержит конденсаторов – типичная ячейка флэш-памяти состоит всего-навсего из одного транзистора особой архитектуры. Ячейка флэш-памяти прекрасно масштабируется, что достигается не только благодаря успехам в миниатюризации размеров транзисторов, но и благодаря конструктивным находкам, позволяющим в одной ячейке флэш-памяти хранить несколько бит информации.

Флэш-память исторически происходит от ROM (Read Only Memory) памяти, и функционирует подобно RAM (Random Access Memory). Данные флэш хранит в ячейках памяти, похожих на ячейки в DRAM. В отличие от DRAM, при отключении питания данные из флэш-памяти не пропадают.

Замены памяти SRAM и DRAM флэш-памятью не происходит из-за двух особенностей флэш-памяти: флэш работает существенно медленнее и имеет ограничение по количеству циклов перезаписи (от 10.000 до 1.000.000 для разных типов).

ROM (Read Only Memory) - память только для чтения. Русский эквивалент - ПЗУ (Постоянно Запоминающее Устройство). Если быть совсем точным, данный вид памяти называется Mask-ROM (Масочные ПЗУ). Данные на ROM записывались во время производства путём нанесения по маске (отсюда и название) алюминиевых соединительных дорожек литографическим способом. Наличие или отсутствие в соответствующем месте такой дорожки кодировало "0" или "1". Mask-ROM отличается сложностью модификации содержимого (только путем изготовления новых микросхем), а также длительностью производственного цикла (4-8 недель). Поэтому, а также в связи с тем, что современное программное обеспечение зачастую имеет много недоработок и часто требует обновления, данный тип памяти не получил широкого распространения.

Преимущества:

1. Низкая стоимость готовой запрограммированной микросхемы (при больших объёмах производства).

2. Высокая скорость доступа к ячейке памяти.

3. Высокая надёжность готовой микросхемы и устойчивость к электромагнитным полям.

Недостатки:

1. Невозможность записывать и модифицировать данные после изготовления.

2. Сложный производственный цикл.

PROM

PROM - (Programmable ROM), или однократно Программируемые ПЗУ. В качестве ячеек памяти в данном типе памяти использовались плавкие перемычки. В отличие от Mask-ROM, в PROM появилась возможность кодировать ("пережигать") ячейки при наличии специального устройства для записи (программатора). Программирование ячейки в PROM осуществляется разрушением ("прожигом") плавкой перемычки путём подачи тока высокого напряжения. Возможность самостоятельной записи информации в них сделало их пригодными для штучного и мелкосерийного производства. PROM практически полностью вышел из употребления в конце 80-х годов.

Преимущества:

1. Высокая надёжность готовой микросхемы и устойчивость к электромагнитным полям.

2. Возможность программировать готовую микросхему, что удобно для штучного и мелкосерийного производства.

3. Высокая скорость доступа к ячейке памяти.

Недостатки:

1. Невозможность перезаписи

2. Большой процент брака

3. Необходимость специальной длительной термической тренировки, без которой надежность хранения данных была невысокой

EPROM

Различные источники по-разному расшифровывают аббревиатуру EPROM - как Erasable Programmable ROM или как Electrically Programmable ROM (стираемые программируемые ПЗУ или электрически программируемые ПЗУ). В EPROM перед записью необходимо произвести стирание (соответственно появилась возможность перезаписывать содержимое памяти). Стирание ячеек EPROM выполняется сразу для всей микросхемы посредством облучения чипа ультрафиолетовыми или рентгеновскими лучами в течение нескольких минут. Микросхемы, стирание которых производится путем засвечивания ультрафиолетом, были разработаны Intel в 1971 году, и носят название UV-EPROM (приставка UV (Ultraviolet) - ультрафиолет). Они содержат окошки из кварцевого стекла, которые по окончании процесса стирания заклеивают.

В EPROM стирание приводит все биты стираемой области в одно состояние (обычно во все единицы, реже - во все нули). Запись на EPROM, как и в PROM, также осуществляется на программаторах (однако отличающихся от программаторов для PROM). В настоящее время EPROM практически полностью вытеснена с рынка EEPROM и Flash.

Достоинство: Возможность перезаписывать содержимое микросхемы

Недостатки:

1. Небольшое количество циклов перезаписи.

2. Невозможность модификации части хранимых данных.

3. Высокая вероятность "недотереть" (что в конечном итоге приведет к сбоям) или передержать микросхему под УФ-светом (т.н. overerase - эффект избыточного удаления, "пережигание"), что может уменьшить срок службы микросхемы и даже привести к её полной негодности.

EEPROM (E?PROM или Electronically EPROM) - электрически стираемые ППЗУ. Главной отличительной особенностью EEPROM (в т.ч. Flash) от ранее рассмотренных нами типов энергонезависимой памяти является возможность перепрограммирования при подключении к стандартной системной шине микропроцессорного устройства. В EEPROM появилась возможность производить стирание отдельной ячейки при помощи электрического тока. Для EEPROM стирание каждой ячейки выполняется автоматически при записи в нее новой информации, т.е. можно изменить данные в любой ячейке, не затрагивая остальные. Процедура стирания обычно существенно длительнее процедуры записи.

Преимущества EEPROM по сравнению с EPROM:

1. Увеличенный ресурс работы.

2. Проще в обращении.

Недостаток: Высокая стоимость

Flash (полное историческое название Flash Erase EEPROM)

Flash (полное историческое название Flash Erase EEPROM):

Изобретение флэш-памяти зачастую незаслуженно приписывают Intel, называя при этом 1988 год. На самом деле память впервые была разработана компанией Toshiba в 1984 году, и уже на следующий год было начато производство 256Кбит микросхем flash-памяти в промышленных масштабах. В 1988 году Intel разработала собственный вариант флэш-памяти.

Во флэш-памяти используется несколько отличный от EEPROM тип ячейки-транзистора. Технологически флэш-память родственна как EPROM, так и EEPROM. Основное отличие флэш-памяти от EEPROM заключается в том, что стирание содержимого ячеек выполняется либо для всей микросхемы, либо для определённого блока (кластера, кадра или страницы). Обычный размер такого блока составляет 256 или 512 байт, однако в некоторых видах флэш-памяти объём блока может достигать 256КБ. Следует заметить, что существуют микросхемы, позволяющие работать с блоками разных размеров (для оптимизации быстродействия). Стирать можно как блок, так и содержимое всей микросхемы сразу. Таким образом, в общем случае, для того, чтобы изменить один байт, сначала в буфер считывается весь блок, где содержится подлежащий изменению байт, стирается содержимое блока, изменяется значение байта в буфере, после чего производится запись измененного в буфере блока. Такая схема существенно снижает скорость записи небольших объёмов данных в произвольные области памяти, однако значительно увеличивает быстродействие при последовательной записи данных большими порциями.