Советские бумажные конденсаторы. Емкость конденсатора, их типы, маркировка и применение

Многие интересуются, имеют ли конденсаторы типы? Конденсаторов в электронике существует множество. Такие показатели, как емкость, рабочее напряжение и допуск, являются основными. Не менее важен тип диэлектрика, из которого они состоят. В этой статье будет рассмотрено подробнее, какие типы конденсаторов бывают по виду диэлектрика.

Классификации конденсаторов.

Конденсаторы являются распространенными компонентами в радиоэлектронике. Они классифицируются по множеству показателей. Важно знать, какими моделями, в зависимости от характера изменения величины, представлены разные конденсаторы. Типы конденсаторов:

1. Устройства с постоянной емкостью.
2. Приборы с переменным видом емкости.
3. Построечные модели.

Тип диэлектрика конденсатора может быть разным:

Бумага;
- металлическая бумага;
- слюда; тефлон;
- поликарбонат;
- электролит.

По способу установки данные приборы предназначены для печатного и навесного монтажа. При этом типы корпусов конденсаторов SMD-модификации бывают:

Керамическими;
- пластиковыми;
- металлическими (алюминиевыми).

Следует знать, что приборы из керамики, пленки и неполярные виды не обладают маркировкой. Показатель их емкости колеблется от 1 пф до 10 мкф. А электролитные типы имеют форму бочонков в корпусе из алюминия и маркируются. Танталовый же тип производится в корпусах прямоугольной формы. Такие устройства бывают разного размера и расцветки: черные, желтые и оранжевые. На них также присутствует кодовая маркировка.

Электролитические конденсаторы из алюминия.

Основой электролитических конденсаторов из алюминия являются две тонкие скрученные алюминиевые полоски. Между ними расположена бумага, содержащая электролит. Показатель емкости этого прибора равен 0,1-100 000 uF. Кстати, в этом и заключается его основное преимущество перед другими видами. Максимальное напряжение равно 500 V.

К минусам относятся повышенная утечка тока и уменьшение емкости с возрастанием частоты. Поэтому в платах часто вместе с электролитическим конденсатором используется и керамический.

Также следует отметить, что данный тип отличается полярностью. Это означает, что вывод устройства с минусовым показателем находится под отрицательным напряжением, в отличие от противоположного вывода. Если не придерживаться этого правила, то скорее всего, приспособление выйдет из строя. Поэтому рекомендуется применять его в цепях с наличием постоянного или пульсирующего тока, но ни в коем случае не переменного.

Электролитические конденсаторы: типы и предназначение.

Типы электролитических конденсаторов представлены широким рядом. Они бывают:

Полимерными;
- полимерными радиальными;
- с низким уровнем утечки тока;
- стандартной конфигурации;
- с широким диапазоном температур;
- миниатюрными;
- неполярными;
- с наличием жесткого вывода;
- низкоимпедансными.

Источник:

Где применяются электролитические конденсаторы? Типы конденсаторов из алюминия используются в разных радиотехнических устройствах, деталях компьютера, периферийных приборах типа принтеров, графических устройствах и сканерах. Также они применяются в строительном оборудовании, промышленных приборах для измерения, в сфере вооружения и космоса.

Конденсаторы КМ

Существуют и глиняные конденсаторы типа КМ. Они используются:
- в промышленном оборудовании;
- при создании приборов для измерения, отличающихся высокоточными показателями;
- в радиоэлектронике;
- в сфере военной индустрии.

Устройства подобного типа отличаются высоким уровнем стабильности. Основу их функциональности составляют импульсные режимы в цепях с переменным и неизменным током. Их характеризует высокий уровень сцепления обкладок из керамики и долгая служба. Это обеспечивается низким значением коэффициента емкостного непостоянства температур.

Конденсаторы КМ при маленьких размерах имеют высокий показатель емкости, достигающий 2,2 мкФ. Изменение ее значения в интервале рабочей температуры у данного вида составляет от 10 до 90%.

Типы керамических конденсаторов группы Н, как правило, применяются как переходники или же блокирующие устройства и т. п. Современные приборы из глины изготавливаются при помощи прессовки под давлением в целостный блок тончайших металлизированных керамических пластинок.

Высокий уровень прочности этого материала дает возможность использовать тонкие заготовки. В итоге емкость конденсатора, пропорциональная показателю объема, резко возрастает.

Устройства КМ отличаются высокой стоимостью. Объясняется это тем, что при их изготовлении используются драгоценные металлы и их сплавы: Ag, Pl, Pd. Палладий присутствует во всех моделях.

Конденсаторы на основе керамики.

Дисковая модель обладает высоким уровнем емкости. Ее показатель колеблется от 1 pF до 220 nF, а самое высокое рабочее напряжение не должно быть выше 50 V.

К плюсам данного типа можно отнести:

Малые потери тока;
- небольшой размер;
- низкий показатель индукции;
- способность функционировать при высоких частотах;
- высокий уровень температурной стабильности емкости;
- возможность работы в цепях с постоянным, переменным и пульсирующим током.

Основу многослойного устройства составляют чередующиеся тонкие слои из керамики и металла.

Этот вид похож на однослойный дисковый. Но такие устройства обладают высоким показателем емкости. Максимальное рабочее напряжение на корпусе этих приборов не указывается. Так же как и на однослойной модели, напряжение не должно быть выше 50 V.

Устройства функционируют в цепях с постоянным, переменным и пульсирующим током.

Плюсом высоковольтных керамических конденсаторов является их способность функционировать под высоким уровнем напряжения. Диапазон рабочего напряжения колеблется от 50 до 15000 V, а показатель емкости может составлять от 68 до 150 pF.

Могут функционировать в цепях с постоянным, переменным и пульсирующим током.

Танталовые устройства.

Современные танталовые устройства являются самостоятельным подвидом электролитического вида из алюминия. Основу конденсаторов составляет пентаоксид тантала.

Конденсаторы обладают небольшим показателем напряжения и применяются в случае необходимости использования прибора с большим показателем емкости, но в корпусе малого размера. У данного типа есть свои особенности:

Небольшой размер;
- показатель максимального рабочего напряжения составляет до 100 V;
- повышенный уровень надежности при долгом употреблении;
- низкий показатель утечки тока; широкий спектр рабочих температур;
- показатель емкости может колебаться от 47 nF до 1000 uF;
- устройства обладают более низким уровнем индуктивности и применяются в высокочастотных конфигурациях.

Минус этого вида заключен в высокой чувствительности к повышению рабочего напряжения.

Следует отметить, что, в отличие от электролитического вида, линией на корпусе помечается плюсовой вывод.

Разновидности корпусов.

Какие разновидности имеют танталовые конденсаторы? Типы конденсаторов из тантала выделяются в зависимости от материала корпуса.

1. SMD-корпус. Для изготовления корпусных устройств, которые используются при поверхностном монтаже, катод соединяется с терминалом посредством эпоксидной смолы с содержанием серебряного наполнителя. Анод приваривается к электроду, а стрингер отрезается. После формирования устройства на него наносится печатная маркировка. Она содержит показатель номинальной емкости напряжения.

2. При формировании этого типа корпусного устройства анодный проводник должен быть приварен к самому выводу анода, а затем отрезается от стрингера. В этом случае терминал катода припаивается к основе конденсатора. Далее конденсатор заполняется эпоксидом и высушивается. Как и в первом случае, на него наносится маркировка.

Конденсаторы первого типа отличаются большей степенью надежности. Но все типы танталовых конденсаторов применятся:

В машиностроении;
- компьютерах и вычислительной технике;
- оборудовании для телевизионного вещания;
- электрических приборах бытового назначения;
- разнообразных блоках питания для материнских плат, процессоров и т.д.

Поиск новых решений.

На сегодняшний день танталовые конденсаторы являются самыми востребованными. Современные производители находятся в поисках новых методов повышения уровня прочности изделия, оптимизации его технических характеристик, а также существенного понижения цены и унификации производственного процесса.

С этой целью пытаются снизить стоимость на основе составляющих компонентов. Последующая роботизация всего процесса производства также способствует падению цены на изделие.

Важным вопросом считается и уменьшение корпуса устройства при сохранении высоких технических параметров. Уже проводятся эксперименты на новых типах корпусов в уменьшенном исполнении.

Конденсаторы из полиэстера.

Показатель емкости этого типа устройства может колебаться от 1 nF до 15 uF. Спектром рабочего напряжения является показатель от 50 до 1500 V.

Существуют устройства с разной степенью допуска (допустимое отклонение емкости составляет 5%, 10% и 20%).

Это вид обладает стабильностью температуры, высоким уровнем емкости и низкой стоимостью, что и объясняет их широкое применение.

Конденсаторы с переменной емкостью.

Типы переменных конденсаторов обладают определенным принципом работы, который заключается в накоплении заряда на пластинах-электродах, изолированных посредством диэлектрика. Пластины эти отличаются подвижностью. Они могут перемещаться.

Подвижная пластина называется ротором, а неподвижная - статором. При изменении их положения изменятся и площадь пересечения, и, как следствие, показатель емкости конденсатора.

Конденсаторы бывают с двумя типами диэлектриков: воздушным и твердым.

В первом случае в роли диэлектрика выступает обыкновенный воздух. Во втором случае применяют керамику, слюду и др. материалы. Для увеличения показателя емкости устройства статорные и роторные пластины собираются в блоки, закрепленные на единой оси.

Конденсаторы с воздушным типом диэлектрика применяются в системах с постоянной регулировкой емкости (например, в узлах настройки радиоприемников). Такой тип устройства обладает более высоким уровнем стойкости, чем керамический.

Все виды конденсаторов имеют одинаковое основное устройство, оно состоит из двух токопроводящих пластин (обкладок), на которых концентрируются электрические заряды противоположных полюсов, и слоя изоляционного материала между ними.

Применяемые материалы и величина обкладок с разными параметрами слоя диэлектрика влияют на свойства конденсатора.

Классификация

Конденсаторы делятся на виды по следующим факторам.

Назначению
  • Общего назначения . Это популярный вид конденсаторов, которые используют в электронике. К ним не предъявляются особые требования.
  • Специальные . Такие конденсаторы обладают повышенной надежностью при заданном напряжении и других параметров при запуске электродвигателей и специального оборудования.
Изменению емкости
  • Постоянной емкости . Не имеют возможности изменения емкости.
  • Переменной емкости . Они могут изменять значение емкости при воздействии на них температуры, напряжения, регулировки положения обкладок. К конденсаторам переменной емкости относятся:
    Подстроечные конденсаторы не предназначены для постоянной работы, связанной с быстрой настройкой емкости. Они служат только для одноразовой наладки оборудования и периодической подстройки емкости.
    Нелинейные конденсаторы изменяют свою емкость от воздействия температуры и напряжения по нелинейному графику. Конденсаторы, емкость которых зависит от напряжения, называются варикондами , от температуры – термоконденсаторами .
Способу защиты
  • Незащищенные работают в обычных условиях, не имеют никакой защиты.
  • Защищенные конденсаторы выполнены в защищенном корпусе, поэтому могут работать при высокой влажности.
  • Неизолированные имеют открытый корпус и не имеют изоляции от возможного соприкосновения с различными элементами схемы.
  • Изолированные конденсаторы выполнены в закрытом корпусе.
  • Уплотненные имеют корпус, заполненный специальными материалами.
  • Герметизированные имеют герметичный корпус, полностью изолированы от внешней среды.
Виду монтажа
  • Навесные делятся на несколько видов с;
    — ленточными выводами;
    — опорным винтом;
    — круглыми электродами;
    — радиальными или аксиальными выводами.
  • Конденсаторы с винтовыми выводами оснащены резьбой для соединения со схемой, применяются в силовых цепях. Подобные выводы проще фиксировать на охлаждающих радиаторах для снижения тепловых нагрузок.
  • Конденсаторы с защелкивающимися выводами являются новой разработкой, при монтаже на плату они защелкиваются. Это очень удобно, так как нет необходимости использовать пайку.
  • Конденсаторы, предназначенные для поверхностной установки , имеют особенность конструкции: части корпуса являются выводами.
  • Емкости для печатной установки изготавливают с круглыми выводами для расположения на плате.
По материалу диэлектрика

Сопротивление изоляции между пластинами зависит от параметров изоляционного материала. Также от этого зависят допустимые потери и другие параметры. Рассмотрим виды конденсаторов, которые имеют различные материалы диэлектрика.

  • Конденсаторы с неорганическим изолятором из стеклокерамики, стеклоэмали, слюды. На диэлектрический материал нанесено металлическое напыление или фольга.
  • Низкочастотные конденсаторы включают в себя изоляционный материал в виде слабополярных органических пленок, у которых диэлектрические потери зависят от частоты тока.
  • Высокочастотные модели содержат пленки из фторопласта и полистирола.
  • Импульсные модели высокого напряжения имеют изолятор из комбинированных материалов.
  • В конденсаторах постоянного напряжени я в качестве диэлектрика используется политетрафторэлитен, бумага, либо комбинированный материал.
  • Низковольтные модели работают при напряжении до 1,6 кВ.
  • Высоковольтные модели функционируют при напряжении свыше 1,6 кВ.
  • Дозиметрические конденсаторы служат для работы с малым током, имеют незначительный саморазряд и большое сопротивление изоляции.
  • Помехоподавляющие емкости уменьшают помехи, возникающие от электромагнитного поля, имеют низкую индуктивность.
  • Емкости с органическим изолятором выполнены с применением конденсаторной бумаги и различных пленок.
  • Вакуумные, воздушные, газонаполненные конденсаторы обладают малыми диэлектрическими потерями, поэтому их применяют в аппаратуре с высокой частотой .
Форме пластин
  • Сферические.
  • Плоские.
  • Цилиндрические.
Полярности
  • Электролитические конденсаторы называют оксидными. При их подключении обязательным является соблюдение полярности выводов. Электролитические конденсаторы содержат диэлектрик, состоящий из оксидного слоя, образованный электрохимическим способом на аноде из тантала или алюминия. Катодом является электролит в жидком или гелеобразном виде.
  • Неполярные конденсаторы могут включаться в схему без соблюдения полярности.

Конструктивные особенности

Рассмотренные выше виды конденсаторов далеко не все имеют большую популярность. Поэтому подробнее рассмотрим конструктивные особенности наиболее применяемых видов конденсаторов.

Воздушные виды конденсаторов

В качестве диэлектрика используется воздух. Такие виды конденсаторов хорошо зарекомендовали себя при работе на высокой частоте, в качестве настроечных конденсаторов с изменяемой емкостью. Подвижная пластина конденсатора является ротором, а неподвижную называют статором. При смещении пластин друг относительно друга, изменяется общая площадь пересечения этих пластин и емкость конденсатора. Раньше такие конденсаторы были очень популярны в радиоприемниках для настраивания радиостанций.

Керамические

Такие конденсаторы изготавливают в виде одной или нескольких пластин, выполненных из специальной керамики. Металлические обкладки изготавливают путем напыления слоя металла на керамическую пластину, затем соединяют с выводами. Материал керамики может применяться с различными свойствами.

Их разнообразие обуславливается широким интервалом диэлектрической проницаемости. Она может достигать нескольких десятков тысяч фарад на метр, и имеется только у такого вида емкостей. Такая особенность керамических емкостей позволяет создавать большие значения емкостей, которые сопоставимы с электролитическими конденсаторами, но для них не важна полярность подключения.

Керамика имеет нелинейную сложную зависимость свойств от напряжения, частоты и температуры. Из-за небольшого размера корпуса эти виды конденсаторов применяются в компактных устройствах.

Пленочные

В таких моделях в качестве диэлектрика выступает пластиковая пленка: поликарбонат, полипропилен или полиэстер.

Обкладки конденсатора напыляют или выполняют в виде фольги. Новым материалом служит полифениленсульфид.

Параметры пленочных конденсаторов

  • Применяются для резонансных цепей.
  • Наименьший ток утечки.
  • Малая емкость.
  • Высокая прочность.
  • Выдерживают большой ток.
  • Устойчивы к электрическому пробою (выдерживают большое напряжение).
  • Наибольшая эксплуатационная температура до 125 градусов.
Полимерные

Эти модели имеют отличие от электролитических емкостей наличием полимерного материала, вместо оксидной пленки между обкладками. Они не подвергаются утечке заряда и раздуванию.

Параметры полимера обеспечивают значительный импульсный ток, постоянный температурный коэффициент, малое сопротивление. Полимерные модели способны заменить электролитические модели в фильтрах импульсных источников и других устройствах.

Электролитические

От бумажных моделей электролитические конденсаторы отличаются материалом диэлектрика, которым является оксид металла, созданный электрохимическим методом на плюсовой обкладке.

Вторая пластина выполнена из сухого или жидкого электролита. Электроды обычно выполнены из тантала или алюминия. Все электролитические емкости считаются поляризованными, и способны нормально работать только на постоянном напряжении при определенной полярности.

Если не соблюдать полярность, то может произойти необратимый химический процесс внутри емкости, которая приведет к выходу его из строя, или даже взрыву, так как будет выделяться газ.

К электролитическим можно отнести суперконденсаторы, которые называют ионисторами. Они обладают очень большой емкостью, достигающей тысячи Фарад.

Танталовые электролитические

Устройство танталовых электролитов имеет особенность в электроде из тантала. Диэлектрик состоит из пентаоксида тантала.

Параметры

  • Незначительный ток утечки, в отличие от алюминиевых видов.
  • Малые размеры.
  • Невосприимчивость к внешним воздействиям.
  • Малое активное сопротивление.
  • Высокая чувствительность при ошибочном подключении полюсов.
Алюминиевые электролитические

Положительным выводом является электрод из алюминия. В качестве диэлектрика использован триоксид алюминия. Они применяются в импульсных блоках и являются выходным фильтром.

Параметры

  • Большая емкость.
  • Корректная работа только на низких частотах.
  • Повышенное соотношение емкости и размера: конденсаторы других видов при одной емкости имели бы большие размеры.
  • Большая утечка тока.
  • Низкая индуктивность.
Бумажные

Диэлектриком между фольгированными пластинами служит особая конденсаторная бумага. В электронных устройствах бумажные виды конденсаторов обычно работают в цепях высокой и низкой частоты.

Металлобумажные конденсаторы обладают герметичностью, высокой удельной емкостью, качественной электрической изоляцией. В их конструкции применяется вакуумное металлическое напыление на бумажный диэлектрик, вместо фольги.

Бумажные конденсаторы не обладают высокой механической прочностью. В связи с этим его внутренности располагают в металлическом корпусе, который защищает его устройство.

Очень широко применяются в электронных, радиотехнических устройствах и приборах. Они по количеству и ёмкости в электронных схемах может различаться, но они есть практически везде. Столь широкое использование приборов объясняется тем, что в схемах такие устройства могут выполнять различные функции и задачи.

В первую очередь, конденсаторы используются в фильтрах различных стабилизаторов и выпрямителей напряжения , кроме того, с их помощью осуществляется передача сигнала между каскадами, работают высокочастотные и низкочастотные фильтры, подбирается частота колебаний и интервалы выдержки времени на разных генераторах. Чтобы лучше разобраться в особенностях и применении таких устройств, следует подробно разобрать существующие типы и характеристики конденсаторов.

Характеристики и параметры

Исчерпывающую информацию о типе и технических характеристиках конденсатора любой пользователь может получить на корпусе устройства, где также иногда указывается производитель прибора и дата его изготовления.

Важнейшим параметром любого конденсатора является его номинальная ёмкость . Правила обозначения номиналов ёмкости описываются в действующих нормативах ГОСТа. Согласно положениям ГОСТа, номинальная ёмкость конденсаторов до 9999 пФ обозначается на схемах без указания единицы измерения. Ёмкость устройств номиналом более 9999 пФ и до 9999 мкФ обозначается на схемах с указанием единицы измерения. Следующая характеристика, указываемая на корпусе устройства – допустимое отклонение от номинальных значений.

Второй по важности величиной конденсатора является его номинальное напряжение . Они могут быть предназначены для работы в сетях с разным напряжением: от 5 до 1000 В и более. Специалисты рекомендуют выбирать устройства с запасом по номинальному напряжению. Использование устройств низкого номинала может приводить к возникновению пробоев диэлектрика и выходу из строя приборов.

Остальные параметры считаются дополнительными и не всегда важными, потому на корпусах некоторых устройств описание может ограничиваться ёмкостью и номинальным напряжением. Если дополнительные технические характеристики указаны, то на корпусе можно найти также рабочую температуру устройства, рабочий номинальный ток и другие данные.

Следует учитывать также, что представленные сегодня на рынке конденсаторы могут быть трехфазными и однофазными, предназначенными для внешней или внутренней установки.

Какие типы конденсаторов бывают?

Существуют различные варианты классификации конденсаторов, используемых в электронных схемах. Чаще всего такие устройства разделяют на типы по виду используемого в них диэлектрика. По особенностям диэлектрика можно выделить следующие типы:

  • с жидкими диэлектриками.
  • вакуумные, в которых отсутствует диэлектрик.
  • с твердым органическим диэлектриком.
  • с газовым диэлектриком.
  • электролитические или оксид-полупроводниковые с электрлитом или оксидным металлическим слоем.
  • с твердым неорганическим диэлектриком.

Второй вариант классификации – по вероятности колебания величины ёмкости. По этой характеристике можно выделить следующие устройства:

  • Переменные – которые могут менять ёмкость из-за воздействия напряжения или температурных условий.
  • Постоянные – величина ёмкости не изменяется на протяжении срока службы.
  • Подстроечные – с изменяемой ёмкостью, используемые для периодической или разовой подстройки схем.

По сфере эксплуатации все конденсаторы разделяются на следующие типы:

  • Низковольтные, используемые в сетях с малым напряжением.
  • Высоковольтные, применяемые в сетях высокого напряжения.
  • Импульсные – способные выделять краткосрочный импульс.
  • Пусковые – для стартового запуска электрического мотора.
  • Помехоподавляющие.

Существуют и другие классы по сферам применения, но на практике они встречаются крайне редко.

В таблице ниже представлены наиболее распространенные конденсаторы и их обозначения на схемах.

Маркировка конденсаторов обладает большим разнообразием по сравнению с маркировкой резисторов. Довольно сложно увидеть маркировку маленьких конденсаторов, потому что площадь поверхности их корпусов очень незначительная. В этой статье рассказывается, как читать маркировку практически всех типов современных конденсаторов, произведенных за рубежом. Возможно, на вашем конденсаторе маркировка будет нанесена в другом порядке (по сравнению с описываемым в этой статье). Более того, на некоторых конденсаторах отсутствуют значения напряжения и допуска – для создания низковольтной цепи вам понадобится только значение емкости.

Шаги

Маркировка больших конденсаторов

    Ознакомьтесь с единицами измерения. Основной единицей измерения емкости является фарад (Ф). Один фарад – это огромное значение для обычной цепи, поэтому бытовые конденсаторы маркируются дольными единицами измерения.

    • 1 µF , uF , mF = 1 мкФ (микрофарад) = 10 -6 Ф. (Внимание! В случаях, не связанных с маркировкой конденсаторов, 1 mF = 1 мФ (миллифарад) = 10 -3 Ф)
    • 1 nF = 1 нФ (нанофарад) = 10 -9 Ф.
    • 1 pF , mmF , uuF = 1 пФ (пикофарад) = 10 -12 Ф.
  1. Определите значение емкости. В случае больших конденсаторов значение емкости наносится непосредственно на корпус. Конечно, могут быть некоторые различия, но в большинстве случаев ищите число с одной из единиц измерения, описанных выше. Возможно, вам придется учесть следующие моменты:

    Определите значение допуска. На корпус некоторых конденсаторов наносится значение допуска, то есть допустимое отклонение номинальной емкости от указанной; учитывайте эту информацию, если при сборке электроцепи необходимо знать точное значение емкости конденсатора. Например, если на конденсаторе нанесена маркировка «6000uF+50%/-70%», то его максимальная емкость равна 6000+(6000*0,5)=9000 мкФ, а минимальная – 6000-(6000*0,7)=1800 мкФ.

    Определите номинальное напряжение. Если корпус конденсатора довольно большой, на нем проставляется численное значение напряжения, за которым следуют буквы V или VDC, или VDCW, или WV (от английского Working Voltage – рабочее напряжение). Это максимально допустимое напряжение конденсатора, которое измеряется в вольтах (В).

    Поищите символы «+» или «-». Если на корпусе конденсатора присутствует один из этих символов, такой конденсатор поляризован. В этом случае подключите положительный («+») контакт конденсатора к положительной клемме источника питания; в противном случае может произойти короткое замыкание конденсатора или конденсатор может взорваться. Если символов «+» или «-» на корпусе нет, вы можете включать конденсатор в цепь так, как вам угодно.

    Интерпретация маркировки конденсаторов

    1. Запишите первые две цифры значения емкости. Если конденсатор маленький и на его корпусе не помещается значение емкости, оно маркируется в соответствии со стандартом EIA (это справедливо для современных конденсаторов, чего не скажешь про старые конденсаторы). Для начала запишите первые две цифры, а затем сделайте следующее:

      Воспользуйтесь третьей цифрой в качестве множитель нуля. Если емкость конденсатора маркируется тремя цифрами, то такая маркировка интерпретируется следующим образом:

      • Если третей цифрой является цифра от 0 до 6, к двум первым цифрам припишите соответствующее количество нулей. Например, маркировка «453» – это 45 x 10 3 = 45000.
      • Если третьей цифрой является 8, умножьте первые две цифры на 0,01. Например, маркировка «278» – это 27 x 0,01 = 0,27.
      • Если третьей цифрой является 9, умножьте первые две цифры на 0,1. Например, маркировка «309» – это 30 x 0,1 = 3,0.
    2. Определите единицы измерения . В большинстве случаев емкость самых маленьких конденсаторов (керамических, пленочных, танталовых) измеряется в пикофарадах (пФ, pF), которые равны 10 -12 Ф. Емкость больших конденсаторов (алюминиевых электролитических или двухслойных) измеряется в микрофарадах (мкФ, uF или µF), которые равны 10 -6 Ф.

      Интерпретируйте маркировку, включающую буквы . Если одним из первых двух символов маркировки является буква, интерпретируйте это следующим образом:

      Определите значение допуска керамических конденсаторов. Керамические конденсаторы имеют плоскую круглую форму и два контакта. Значение допуска таких конденсаторов приводится в виде одной буквы непосредственно после трехзначного маркера емкости. Допуск – это допустимое отклонение номинальной емкости от указанной. Если необходимо знать точное значение емкости, интерпретируйте маркировку следующим образом:

Конденсатор - это двухполюсник с определённым или переменным значением ёмкости и малой проводимостью; устройство для накопления заряда и энергии электрического поля.

Конденсатор является пассивным электронным компонентом. В простейшем варианте конструкция состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок. Практически применяемые конденсаторы имеют много слоёв диэлектрика и многослойные электроды, или ленты чередующихся диэлектрика и электродов, свёрнутые в цилиндр или параллелепипед со скруглёнными четырьмя рёбрами (из-за намотки).

Изобрел первую конструкцию-прототип электрического конденсатора «лейденскую банку» в 1745 году, в Лейдене, немецкий каноник Эвальд Юрген фон Клейст и независимо от него голландский физик Питер ван Мушенбрук.

Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора), по окончании переходного процесса ток через конденсатор не течёт, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора, замыкаясь так называемым током смещения.

Резонансная частота конденсатора равна: f р = 1/ (2∏ ∙ √ L с ∙ C ) .

При f > fp конденсатор в цепи переменного тока ведёт себя как катушка индуктивности. Следовательно, конденсатор целесообразно использовать лишь на частотах f < fp , на которых его сопротивление носит ёмкостный характер. Обычно максимальная рабочая частота конденсатора примерно в 2-3 раза ниже резонансной.

Отечественные неполярные конденсаторы:

На электрических принципиальных схемах номинальная ёмкость конденсаторов обычно указывается в микрофарадах (1 мкФ = 1·10 6 пФ = 1·10 −6 Ф) и пикофарадах, но нередко и в нанофарадах (1 нФ = 1·10 −9 Ф). При ёмкости не более 0,01 мкФ, ёмкость конденсатора указывают в пикофарадах, при этом допустимо не указывать единицу измерения, то есть постфикс «пФ» опускают. При обозначении номинала ёмкости в других единицах указывают единицу измерения. Для электролитических конденсаторов, а также для высоковольтных конденсаторов на схемах, после обозначения номинала ёмкости, указывают их максимальное рабочее напряжение в вольтах (В) или киловольтах (кВ). Например так: «10 мкФ x 10 В». Для переменных конденсаторов указывают диапазон изменения ёмкости, например так: «10 - 180».

Основные параметры конденсаторов:

  1. Основной характеристикой конденсатора является его ёмкость , характеризующая способность конденсатора накапливать электрический заряд. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками. Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до тысяч микрофарад. Однако существуют конденсаторы (ионисторы) с ёмкостью до десятков фарад.
  2. Конденсаторы также характеризуются удельной ёмкостью - отношением ёмкости к объёму (или массе) диэлектрика. Максимальное значение удельной ёмкости достигается при минимальной толщине диэлектрика, однако при этом уменьшается его напряжение пробоя.
  3. Плотность энергии электролитического конденсатора зависит от конструктивного исполнения. Максимальная плотность достигается у больших конденсаторов, где масса корпуса невелика по сравнению с массой обкладок и электролита.
  4. Другой, не менее важной характеристикой конденсаторов является номинальное напряжение - значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах. Номинальное напряжение зависит от конструкции конденсатора и свойств применяемых материалов. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Для многих типов конденсаторов с увеличением температуры допустимое напряжение снижается, что связано с увеличением тепловой скорости движения носителей заряда и, соответственно, снижению требований для образования электрического пробоя.
  5. Полярность . Многие конденсаторы с оксидным диэлектриком (электролитические) функционируют только при корректной полярности напряжения из-за химических особенностей взаимодействия электролита с диэлектриком. При обратной полярности напряжения электролитические конденсаторы обычно выходят из строя из-за химического разрушения диэлектрика с последующим увеличением тока, вскипанием электролита внутри и, как следствие, с вероятностью взрыва корпуса.

Обозначение на схемах:

Основная классификация конденсаторов проводится по типу диэлектрика в конденсаторе. Тип диэлектрика определяет основные электрические параметры конденсаторов: сопротивление изоляции, стабильность ёмкости, величину потерь и др.

По виду диэлектрика различают:

  1. Конденсаторы вакуумные (между обкладками находится вакуум).
  2. Конденсаторы с газообразным диэлектриком.
  3. Конденсаторы с жидким диэлектриком.
  4. Конденсаторы с твёрдым неорганическим диэлектриком: стеклянные (стеклоэмалевые, стеклокерамические, стеклоплёночные), слюдяные, керамические, тонкослойные из неорганических плёнок.
  5. Конденсаторы с твёрдым органическим диэлектриком: бумажные, металлобумажные, плёночные, комбинированные - бумажноплёночные, тонкослойные из органических синтетических плёнок.
  6. Электролитические и оксидно-полупроводниковые конденсаторы. Такие конденсаторы отличаются от всех прочих типов прежде всего большой удельной ёмкостью. В качестве диэлектрика используется оксидный слой на металлическом аноде. Вторая обкладка (катод) - это или электролит (в электролитических конденсаторах), или слой полупроводника (в оксидно-полупроводниковых), нанесённый непосредственно на оксидный слой. Анод изготовляется, в зависимости от типа конденсатора, из алюминиевой, ниобиевой или танталовой фольги или спечённого порошка. Время наработки на отказ типичнного электролитического конденсатора 3000-5000 часов при максимально допустимой температуре, качественные конденсаторы имеют время наработки на отказ не менее 8000 часов при температуре 105°С. Рабочая температура - основной фактор, влияющий на продолжительность срока службы конденсатора. Если нагрев конденсатора незначителен из-за потерь в диэлектрике, обкладках и выводах, (например, при использовании его во времязадающих цепях при небольших токах или в качестве разделительных), можно принять, что интенсивность отказов снижается вдвое при снижении рабочей температуры на каждые 10 °C вплоть до +25 °C. Твердотельные конденсаторы - вместо традиционного жидкого электролита используется специальный токопроводящий органический полимер или полимеризованный органический полупроводник. Время наработки на отказ ~50000 часов при температуре 85°С. ЭПС меньше чем у жидко-электролитических и слабо зависит от температуры. Не взрываются.

Вакуумный конденсатор:

Кроме того, конденсаторы различаются по возможности изменения своей ёмкости:

  1. Постоянные конденсаторы - основной класс конденсаторов, не меняющие своей ёмкости (кроме как в течение срока службы).
  2. Переменные конденсаторы - конденсаторы, которые допускают изменение ёмкости в процессе функционирования аппаратуры. Управление ёмкостью может осуществляться механически, электрическим напряжением (вариконды, варикапы) и температурой (термоконденсаторы). Применяются, например, в радиоприёмниках для перестройки частоты резонансного контура.
  3. Подстроечные конденсаторы - конденсаторы, ёмкость которых изменяется при разовой или периодической регулировке и не изменяется в процессе функционирования аппаратуры. Их используют для подстройки и выравнивания начальных ёмкостей сопрягаемых контуров, для периодической подстройки и регулировки цепей схем, где требуется незначительное изменение ёмкости.

Два бумажных электролитических конденсатора 1930 года:

В зависимости от назначения можно условно разделить конденсаторы на конденсаторы общего и специального назначения. Конденсаторы общего назначения используются практически в большинстве видов и классов аппаратуры. Традиционно к ним относят наиболее распространённые низковольтные конденсаторы, к которым не предъявляются особые требования. Все остальные конденсаторы являются специальными. К ним относятся высоковольтные, импульсные, помехоподавляющие, дозиметрические, пусковые и другие конденсаторы.

Серебрянный конденсатор для аудио.

Также различают конденсаторы по форме обкладок: