Системы жидкостного охлаждения. Аппараты с открытой поверхностью испарения Системы открытого испарения компьютера

|
система охлаждения компьютера, система компьютера
- набор средств для отвода тепла от нагревающихся в процессе работы компьютерных компонентов.

Тепло в конечном итоге может утилизироваться:

  1. В атмосферу (радиаторные системы охлаждения):
    1. Пассивное охлаждение (отвод тепла от радиатора осуществляется излучением тепла и естественной конвекцией)
    2. Активное охлаждение (отвод тепла от радиатора осуществляется излучением (радиацией) тепла и принудительной конвекцией (обдув вентиляторами))
  2. Вместе с теплоносителем ()
  3. За счет фазового перехода теплоносителя (системы открытого испарения)

По способу отвода тепла от нагревающихся элементов системы охлаждения делятся на:

  1. Системы воздушного (аэрогенного) охлаждения
  2. Системы жидкостного охлаждения
  3. Фреоновая установка
  4. Системы открытого испарения

Также существуют комбинированные системы охлаждения, сочетающие элементы систем различных типов:

  1. Ватерчиллер
  2. Системы с использованием элементов Пельтье
  • 1 Системы воздушного охлаждения
  • 2 Системы жидкостного охлаждения
  • 3 Фреоновые установки
  • 4 Ватерчиллеры
  • 5 Системы открытого испарения
  • 6 Системы каскадного охлаждения
  • 7 Системы с элементами Пельтье
  • 8 См. также
  • 9 Примечания
  • 10 Литература
  • 11 Ссылки

Системы воздушного охлаждения

Основная статья: Кулер

Принцип работы заключается в непосредственной передаче тепла от нагревающегося компонента на радиатор за счёт теплопроводности материала или с помощью тепловых трубок (или их разновидностей, таких, как термосифон и испарительная камера). Радиатор излучает тепло в окружающее пространство тепловым излучением и передаёт тепло теплопроводностью окружающему воздуху, что вызывает естественную конвекцию окружающего воздуха. Для увеличения излучаемого радиатором тепла применяют чернение поверхности радиатора.

Поверхности нагревающегося компонента и радиатора после шлифовки имеют шероховатость около 10 мкм, а после полировки - около 5 мкм. Эти шероховатости не позволяют поверхностям плотно соприкасаться, в результате чего образуется тонкий воздушный промежуток с очень низкой теплопроводностью. Для увеличения теплопроводности промежуток заполняют теплопроводными пастами.

Наиболее распространенный тип систем охлаждения в настоящее время. Отличается высокой универсальностью - радиаторы устанавливаются на большинство компьютерных компонентов с высоким тепловыделением. Эффективность охлаждения зависит от эффективной площади рассеивания тепла радиатора, температуры и скорости проходящего через него воздушного потока. На компоненты с относительно низким тепловыделением (чипсеты, транзисторы цепей питания, модули оперативной памяти), как правило, устанавливаются простейшие пассивные радиаторы. На некоторые компьютерные компоненты, в частности, жёсткие диски, установить радиатор затруднительно, поэтому они охлаждаются за счёт обдува вентилятором. На центральный и графический процессоры устанавливаются преимущественно активные радиаторы (кулеры). Пассивное воздушное охлаждение центрального и графического процессоров требует применения специальных радиаторов с высокой эффективностью отвода тепла при низкой скорости проходящего воздушного потока и применяется для построения бесшумного персонального компьютера.

Системы жидкостного охлаждения

Принцип работы - передача тепла от нагревающегося компонента радиатору с помощью рабочей жидкости, которая циркулирует в системе. качестве рабочей жидкости чаще всего используется дистиллированная вода, часто с добавками, имеющими бактерицидный и/или антигальванический эффект; иногда - масло, антифриз, жидкий металл, или другие специальные жидкости.

Система жидкостного охлаждения состоит из:

  • Помпы - насоса для циркуляции рабочей жидкости
  • Теплосъёмника (ватерблока, водоблока, головки охлаждения) - устройства, отбирающего тепло у охлаждаемого элемента и передающего его рабочей жидкости
  • Радиатора для рассеивания тепла рабочей жидкости. Может быть активным или пассивным
  • Резервуара с рабочей жидкостью, служащего для компенсации теплового расширения жидкости, увеличения тепловой инерции системы и повышения удобства заправки и слива рабочей жидкости
  • Шлангов или труб
  • (Опционально) Датчика потока жидкости

Жидкость должна обладать высокой теплопроводностью, чтобы свести к минимуму перепад температур между стенкой трубки и поверхностью испарения, а также высокой удельной теплоёмкостью, чтобы при меньшей скорости циркуляции жидкости в контуре обеспечить большую эффективность охлаждения.

Фреоновые установки

Холодильная установка, испаритель который установлен непосредственно на охлаждаемый компонент. Такие системы позволяют получить отрицательные температуры на охлаждаемом компоненте при непрерывной работе, что необходимо для экстремального разгона процессоров.

Недостатки:

  • Необходимость теплоизоляции холодной части системы и борьбы с конденсатом (это общая проблема систем охлаждения, работающих при температурах ниже температуры окружающей среды)
  • Трудности охлаждения нескольких компонентов
  • Повышенное электропотребление
  • Сложность и дороговизна

Ватерчиллеры

Системы, совмещающие системы жидкостного охлаждения и фреоновые установки. таких системах антифриз, циркулирующий в системе жидкостного охлаждения, охлаждается с помощью фреоновой установки в специальном теплообменнике. Данные системы позволяют использовать отрицательные температуры, достижимые с помощью фреоновых установок для охлаждения нескольких компонентов (в обычных фреонках охлаждение нескольких компонентов затруднено). К недостаткам таких систем относится большая их сложность и стоимость, а также необходимость теплоизоляции всей системы жидкостного охлаждения.

Системы открытого испарения

Установки, в которых в качестве хладагента (рабочего тела) используется сухой лёд, жидкий азот или гелий, испаряющийся в специальной открытой ёмкости (стакане), установленной непосредственно на охлаждаемом элементе. Используются в основном компьютерными энтузиастами для экстремального разгона аппаратуры («оверклокинга»). Позволяют получать наиболее низкие температуры, но имеют ограниченное время работы (требуют постоянного пополнения стакана хладагентом).

Системы каскадного охлаждения

Две и более последовательно включенных фреоновых установок. Для получения более низких температур требуется использовать фреон с более низкой температурой кипения. однокаскадной холодильной машине в этом случае требуется повышать рабочее давление за счет применения более мощных компрессоров. Альтернативный путь - охлаждение радиатора установки другой фреонкой (т. е. их последовательное включение), за счет чего снижается рабочее давление в системе и становится возможным применение обычных компрессоров. Каскадные системы позволяют получать гораздо более низкие температуры, чем однокаскадные и, в отличие от систем открытого испарения, могут работать непрерывно. Однако они являются и наиболее сложными в изготовлении и наладке.

Системы с элементами Пельтье

Элемент Пельтье для охлаждения компьютерных компонентов никогда не применяется самостоятельно из-за необходимости охлаждения его горячей поверхности. Как правило, элемент Пельтье устанавливается на охлаждаемый компонент, а другую его поверхность охлаждают с помощью другой активной системы охлаждения.

См. также

  • Дросселирование тактов (тротлинг)
  • Термоинтерфейс
  • Кулер (система охлаждения)
  • Бесшумный персональный компьютер
  • Оверклокинг (разгон компьютеров)

Примечания

  1. Danamics LM10 - первый коммерческий кулер на жидком металле
  2. Phenom II X4 на частоте 6.5 ГГц: жидкий гелий и никакого мошенничества

Литература

  • Скотт Мюллер. Модернизация и ремонт ПК = Upgrading and Repairing PCs. - 17 изд. - М.: «Вильямс», 2007. - С. 1299-1328 . - ISBN 0-7897-3404-4.

Ссылки

  • Охлаждение водой для всех компонентов компьютера своими руками
  • Практический опыт построения Систем Жидкостного Охлаждения (СЖО). От самодельных элементов к заводским.
  • Самодельное охлаждение ноутбука

система компьютера, система охлаждения компьютера

Система охлаждения компьютера Информацию О

Компьютерная система состоит из таких электронных компонентов, как центральный процессор, оперативная память, материнская плата и многое другое. Этими электронными компонентами вырабатывается много тепла, особенно центральным процессором, что всегда является поводом для беспокойства, т.к. избыток тепла может негативно сказаться на работе центрального процессора, привести к серьезным неисправностям и даже повреждению. Рассеивая избыточное тепло путем охлаждения и вентиляции, вы поддерживаете работу компонентов в безопасных рабочих температурах (безопасный тепловой диапазон у каждого производителя свой). Перегрев сокращает срок службы компьютерных компонентов и периферийных устройств и может привести к потере данных, нанеся непоправимый ущерб.
Для охлаждения компьютерных компонентов используются различные системы охлаждения.

Системы открытого испарения

Системы открытого испарения применяются редко, хотя при этом достигаются более низкие температуры. В качестве хладагента используются жидкий азот, гелий, сухой лед, установленные в специальном стакане на охлаждаемом компоненте. Системы открытого испарения очень эффективны, но приходится часто закупать хладагент, что является дополнительной статьей расхода. Более распространены системы воздушного и жидкостного охлаждения.

Системы воздушного охлаждения

В системах с воздушным охлаждением тепло от компьютерного компонента передается на радиатор, который излучает его и отдает воздуху посредством теплопроводности. Устанавливаются радиаторы на нагревающийся компонент, место соединения заполняется теплопроводной пастой, чтобы исключить воздушную прослойку, имеющую низкую теплопроводность.
Радиаторные системы охлаждения бывают активные и пассивные. Активные используют вентилятор для обдува и охлаждения системы (устанавливаются на компонентах с большим тепловыделением), а пассивные радиаторы отводят тепло путем естественной конвекции (устанавливаются на компонентах, выделяющих не много тепла). Чтобы получить наилучший эффект от активного охлаждения, нужно выбрать качественный вентилятор с подшипниками, а для эффективной работы системы пассивного охлаждения радиаторы должны быть размещены в местах, где имеется постоянный поток воздуха. Эффект охлаждения зависит от площади рассеивания тепла радиатора и скорости проходящего воздуха. Воздушное охлаждение с вентиляторами является широко практикуемым способом отвода тепла в компьютерах. Наиболее распространенные размеры вентиляторов 60мм, 80мм, 92мм и 120мм.
Увеличить срок службы компонентов и повысить их надежность (во избежание перегрева) можно, поддерживая чистой, без пыли среду для вашего компьютера. Пыль препятствует теплоотдаче, действует как изоляция, приводит к перегреву. Раз в шесть месяцев следует чистить радиатор процессора, фильтр вентилятора, расположенного на верхней части блока питания, и кулер на видеокарте.

Системы водяного охлаждения

В системах жидкостного охлаждения тепло от компьютерного компонента передается радиатору (активному или пассивному) через рабочую жидкость (чаще всего дистиллированную воду), т.е. теплоносителем является вода. Т.к. вода по сравнению с воздухом имеет большую теплопроводность и теплоемкость, эти системы более эффективны, что заключается в лучшем охлаждении компонентов и низком уровне шума. Тепло, выделяемое процессором или другим компонентом, через теплообменник (ватерблок) передается воде. Вода в системе по силиконовым (или из ПВХ) трубкам циркулирует с помощью помпы. Далее она проходит на другой теплообменник (радиатор), где происходит ее охлаждение путем передачи тепла воздуху (пассивно или активно). Системы жидкостного охлаждения актуальны для мощных компьютеров, бывают внешними и внутренними. Обязательный набор их компонентов (ватерблок, радиатор, насос, трубки, фитинги, вода) можно расширить для удобства, например, датчиками, измерителями, фильтром, сливным краном и т.д. Системы жидкостного охлаждения имеют и свои минусы, а это высокая стоимость и сложность сборки.

Системы жидкостного охлаждения

Принцип работы - передача тепла от нагревающегося компонента радиатору с помощью рабочей жидкости, которая циркулирует в системе. В качестве рабочей жидкости чаще всего используется дистиллированная вода, часто с добавками имеющими бактерицидный и/или антигальванический эффект; иногда - масло, антифриз, жидкий металл , или другие специальные жидкости.

Система жидкостного охлаждения состоит из:

Помпы -- насоса для циркуляции рабочей жидкости

Теплосъёмника (ватерблока, водоблока, головки охлаждения) -- устройства, отбирающего тепло у охлаждаемого элемента и передающего его рабочей жидкости

Радиатора для рассеивания тепла рабочей жидкости. Может быть активным или пассивным

Резервуара с рабочей жидкостью, служащего для компенсации теплового расширения жидкости, увеличения тепловой инерции системы и повышения удобства заправки и слива рабочей жидкости

Шлангов или труб

(Опционально) Датчика потока жидкости

Жидкость должна обладать высокой теплопроводностью, чтобы свести к минимуму перепад температур между стенкой трубки и поверхностью испарения, а также высокой удельной теплоёмкостью, чтобы при меньшей скорости циркуляции жидкости в контуре обеспечить большую эффективность охлаждения.

Фреоновые установки

Холодильная установка, испаритель которой установлен непосредственно на охлаждаемый компонент. Такие системы позволяют получить отрицательные температуры на охлаждаемом компоненте при непрерывной работе, что необходимо для экстремального разгона процессоров.

Недостатки:

Необходимость теплоизоляции холодной части системы и борьбы с конденсатом

Трудности охлаждения нескольких компонентов

Повышенное электропотребление

Сложность и дороговизна

Ватерчиллеры

Системы, совмещающие системы жидкостного охлаждения и фреоновые установки. В таких системах антифриз, циркулирующий в системе жидкостного охлаждения, охлаждается с помощью фреоновой установки в теплообменнике. Данные системы позволяют использовать отрицательные температуры, достижимые с помощью фреоновых установок для охлаждения нескольких компонентов (в обычных фреонках охлаждение нескольких компонентов затруднено). К недостаткам таких систем относится большая их сложность и стоимость, а также необходимость теплоизоляции всей системы жидкостного охлаждения.

Системы открытого испарения

Установки, в которых в качестве хладагента используется сухой лёд, жидкий азот или гелий, испаряющийся в специальной открытой ёмкости, установленной непосредственно на охлаждаемом элементе. Используются в основном компьютерными энтузиастами для экстремального разгона аппаратуры («оверклокинга»). Позволяют получать наиболее низкие температуры, но имеют ограниченное время работы (требуют постоянного пополнения стакана хладагентом).

Системы каскадного охлаждения

Две и более последовательно включенных фреоновых установок. Для получения более низких температур требуется использовать фреон с более низкой температурой кипения. В однокаскадной холодильной машине в этом случае требуется повышать рабочее давление за счет применения более мощных компрессоров. Альтернативный путь - охлаждение радиатора установки другой фреонкой (т. е. их последовательное включение), за счет чего снижается рабочее давление в системе и становится возможным применение обычных компрессоров. Каскадные системы позволяют получать гораздо более низкие температуры, чем однокаскадные и, в отличие от систем открытого испарения, могут работать непрерывно. Однако, они являются и наиболее сложными в изготовлении и наладке.

Системы с элементами Пельтье

Элемент Пельтье для охлаждения компьютерных компонентов никогда не применяется самостоятельно из-за необходимости охлаждения его горячей поверхности. Как правило, элемент Пельтье устанавливается на охлаждаемый компонент, а другую его поверхность охлаждают с помощью другой системы охлаждения (обычно воздушной или жидкостной). Так как компонент может охлаждаться до температур ниже температуры окружающего воздуха, необходимо применять меры по борьбе с конденсатом. По сравнению с фреоновыми установками элементы Пельтье компактнее и не создают шум и вибрацию, но заметно менее эффективны.

Система охлаждения компьютера - набор средств для отвода тепла от нагревающихся в процессе работы компьютерных компонентов.

Тепло в конечном итоге может утилизироваться:

  1. В атмосферу (радиаторные системы охлаждения):
    1. Пассивное охлаждение (отвод тепла от радиатора осуществляется излучением тепла и естественной конвекцией)
    2. Активное охлаждение (отвод тепла от радиатора осуществляется излучением (радиацией) тепла и принудительной конвекцией (обдув вентиляторами))
  2. Вместе с теплоносителем (проточные системы водяного охлаждения)
  3. За счет фазового перехода теплоносителя (системы открытого испарения)

По способу отвода тепла от нагревающихся элементов, системы охлаждения делятся на:

  1. Системы воздушного (аэрогенного) охлаждения
  2. Системы жидкостного охлаждения
  3. Фреоновая установка
  4. Системы открытого испарения

Также существуют комбинированные системы охлаждения сочетающие элементы систем различных типов:

  1. Ватерчиллер
  2. Системы с использованием элементов Пельтье

Системы воздушного охлаждения

Принцип работы заключается в непосредственной передаче тепла от нагревающегося компонента на радиатор за счёт теплопроводности материала или с помощью тепловых трубок (или их разновидностей, таких как термосифон и испарительная камера). Радиатор излучает тепло в окружающее пространство тепловым излучением и передаёт тепло теплопроводностью окружающему воздуху, что вызывает естественную конвекцию окружающего воздуха. Для увеличения излучаемого радиатором тепла применяют чернение поверхности радиатора.

Поверхности нагревающегося компонента и радиатора после шлифовки имеют шероховатость около 10 мкм, а после полировки - около 5 мкм. Эти шероховатости не позволяют поверхностям плотно соприкасаться, в результате чего образуется тонкий воздушный промежуток с очень низкой теплопроводностью . Для увеличения теплопроводности промежуток заполняют теплопроводными пастами .

Наиболее распространенный тип систем охлаждения в настоящее время. Отличается высокой универсальностью - радиаторы устанавливаются на большинство компьютерных компонентов с высоким тепловыделением. Эффективность охлаждения зависит от эффективной площади рассеивания тепла радиатора, температуры и скорости проходящего через него воздушного потока. На компоненты с относительно низким тепловыделением (чипсеты , транзисторы цепей питания, модули оперативной памяти), как правило устанавливаются простейшие пассивные радиаторы. На некоторые компьютерные компоненты, в частности жёсткие диски , установить радиатор затруднительно, поэтому они охлаждаются за счёт обдува вентилятором. На центральный и графический процессоры устанавливаются преимущественно активные радиаторы (кулеры). Пассивное воздушное охлаждение центрального и графического процессоров требует применения специальных радиаторов с высокой эффективностью отвода тепла при низкой скорости проходящего воздушного потока и применяется для построения бесшумного персонального компьютера .

Системы жидкостного охлаждения

Принцип работы - передача тепла от нагревающегося компонента радиатору с помощью рабочей жидкости, которая циркулирует в системе. В качестве рабочей жидкости чаще всего используется дистиллированная вода , часто с добавками имеющими бактерицидный и/или антигальванический эффект; иногда - масло, антифриз , жидкий металл , или другие специальные жидкости.

Система жидкостного охлаждения состоит из:

  • Помпы - насоса для циркуляции рабочей жидкости
  • Теплосъёмника (ватерблока , водоблока, головки охлаждения) - устройства, отбирающего тепло у охлаждаемого элемента и передающего его рабочей жидкости
  • Радиатора для рассеивания тепла рабочей жидкости. Может быть активным или пассивным
  • Резервуара с рабочей жидкостью, служащего для компенсации теплового расширения жидкости, увеличения тепловой инерции системы и повышения удобства заправки и слива рабочей жидкости
  • Шлангов или труб
  • (Опционально) Датчика потока жидкости

Жидкость должна обладать высокой теплопроводностью, чтобы свести к минимуму перепад температур между стенкой трубки и поверхностью испарения, а также высокой удельной теплоёмкостью, чтобы при меньшей скорости циркуляции жидкости в контуре обеспечить большую эффективность охлаждения.

Фреоновые установки

Холодильная установка, испаритель которой установлен непосредственно на охлаждаемый компонент. Такие системы позволяют получить отрицательные температуры на охлаждаемом компоненте при непрерывной работе, что необходимо для экстремального разгона процессоров.

Недостатки:

  • Необходимость теплоизоляции холодной части системы и борьбы с конденсатом (это общая проблема систем охлаждения работающих при температурах ниже температуры окружающей среды)
  • Трудности охлаждения нескольких компонентов
  • Повышенное электропотребление
  • Сложность и дороговизна

Ватерчиллеры

Системы совмещающие системы жидкостного охлаждения и фреоновые установки. В таких системах антифриз, циркулирующий в системе жидкостного охлаждения, охлаждается с помощью фреоновой установки в специальном теплообменнике. Данные системы позволяют использовать отрицательные температуры, достижимые с помощью фреоновых установок для охлаждения нескольких компонентов (в обычных фреонках охлаждение нескольких компонентов затруднено). К недостаткам таких систем относится большая их сложность и стоимость, а также необходимость теплоизоляции всей системы жидкостного охлаждения.

Системы открытого испарения

Установки, в которых в качестве хладагента (рабочего тела) используется сухой лёд, жидкий азот или гелий , испаряющийся в специальной открытой ёмкости (стакане), установленной непосредственно на охлаждаемом элементе. Используются в основном компьютерными энтузиастами для экстремального разгона аппаратуры («оверклокинга »). Позволяют получать наиболее низкие температуры, но имеют ограниченное время работы (требуют постоянного пополнения стакана хладагентом).

Системы каскадного охлаждения

Две и более последовательно включенных фреоновых установок. Для получения более низких температур требуется использовать фреон с более низкой температурой кипения. В однокаскадной холодильной машине в этом случае требуется повышать рабочее давление за счет применения более мощных компрессоров. Альтернативный путь - охлаждение радиатора установки другой фреонкой (т. е. их последовательное включение), за счет чего снижается рабочее давление в системе и становится возможным применение обычных компрессоров. Каскадные системы позволяют получать гораздо более низкие температуры чем однокаскадные и, в отличие от систем открытого испарения, могут работать непрерывно. Однако, они являются и наиболее сложными в изготовлении и наладке.

Системы с элементами Пельтье

Элемент Пельтье для охлаждения компьютерных компонентов никогда не применяется самостоятельно из-за необходимости охлаждения его горячей поверхности. Как правило, элемент Пельтье устанавливается на охлаждаемый компонент, а другую его поверхность охлаждают с помощью другой системы охлаждения (обычно воздушной или жидкостной). Так как компонент может охлаждаться до температур ниже температуры окружающего воздуха, необходимо применять меры по борьбе с конденсатом. По сравнению с фреоновыми установками элементы Пельтье компактнее и не создают шум и вибрацию, но заметно менее эффективны.

См. также

Примечания

Литература

  • Скотт Мюллер Модернизация и ремонт ПК = Upgrading and Repairing PCs. - 17 изд. - М .: «Вильямс», 2007. - С. 1299-1328 . - ISBN 0-7897-3404-4

Ссылки

  • Охлаждение водой для всех компонентов компьютера своими руками

Wikimedia Foundation . 2010 .

Любой компьютер не обходится без установки в него системы охлаждения. В этой статье мы поговорим о них, ведь этих систем существует довольно много.


Системы воздушного охлаждения

Самый распространенная на данный момент система охлаждения. Принцип работы этой системы заключается в том, что с помощью тепловых трубок, тепло передается от элемента, который требуется охладить, до радиатора. После, радиатор излучает полученное тепло в окружающее его пространство, вызывая циркуляцию воздуха.Для увеличения излучаемого тепла, радиатор придают в черный цвет. После шлифовки, поверхности нагревающегося элемента и радиатора имеют небольшие шероховатости, которые при стыковке образуют воздушную прослойку, имеющую низкую теплопроводность. Для ее увеличения используют теплопроводные пасты.

Системы жидкостного охлаждения


Принцип работы этой системы в передаче тепла от элемента компьютера к радиатору с жидкостью. Чаще всего в качестве этой жидкости используют дистиллированную воду с антигальваническими добавками. Также используют масло и антифриз, но гораздо реже. Системы жидкостного охлаждения состоят из помпы, которая перекачивает жидкость, теплосъемника, который находится между радиатором и рабочим элементом, он «отбирает» тепло у радиатора и «отдает» его жидкости. Также в конструкции предусмотрен радиатор, охлаждающий саму жидкость. Эта жидкость находится в резервуаре, для предотвращения последствий теплового расширения жидкости. В некоторых моделях также устанавливается датчик потока жидкости.

Фреоновые установки

Данная система принадлежит к «семейству» холодильных установок. Она устанавливается прямо на охлаждаемый элемент и позволяет достичь отрицательных температур при непрерывной работе, что очень полезно при экстремальной работе процессора. Однако, эта система имеет массу недостатков: необходимость изоляции охлаждающей части установки, необходимость в системе по борьбе с конденсатом, повышенное энергопотребление и высокая цена.

Ватерчиллеры


Это некий гибрид фреоновой установки и системы жидкостного охлаждения. В этом тандеме антифриз в системе жидкостного охлаждения по трубкам проходит через фреоновую установку, тем самым охлаждаясь до отрицательных температур. Эта система очень полезна для охлаждения нескольких нагревающихся компонентов, так как в обычной фреоновой установке охлаждение нескольких элементов очень затруднено. К недостаткам можно отнести сложность, высокую цену и необходимость теплоизоляции всей системы охлаждения.


Системы охлаждения с элементами Пелетье




Элемент Пелетье

Для справки: принцип работы элемента Пелетье в возникновении разности температур при протекании через него электрического тока. Элемент Пелетье устанавливают поверх нагревающегося элемента, а другую его сторону охлаждают с помощью других систем охлаждения. Однако, как и во фреоновых установках необходима система по борьбе с конденсатом, так как при охлаждении достигаются отрицательные температуры. Но по сравнению с фреоновыми установками, элементы Пелетье намного эргономичнее и тише, но менее эффективнее.

Системы каскадного охлаждения


Эти системы включают в себя две или более последовательно установленных фреоновых установок. Предназначаются для получения более низких температур, нежели в однокаскадных системах, в которых приходится использовать мощные компрессоры для увеличения давления, так как требуется фреон с температурой кипения, превышающую ее же в обычных фреоновых системах. Другим решение является установка еще одной «фреонки» над радиатором, с целью охлаждения, за счет чего значительно сокращается необходимое давление и появляется возможность использования более слабых компрессоров. Такие системы очень сложно изготовить и наладить.

Системы открытого испарения

В системе открытого испарения, в качестве активного материала используется сухой лед, жидкий азот или гелий. Они испаряются в особой емкости, называемой стаканом, установленной на нагревающемся элементе. Данные системы используются в основном компьютерными экспериментаторами, использующие свои компьютеры в режиме оверклокинга, то есть в режиме экстремального разгона аппаратуры. Из недостатков существует ограниченное время службы-емкость регулярно необходимо пополнять рабочим материалом.