Схемотехника компьютерных блоков питания. Поговорим про ремонт блока питания компьютера своими руками

Схемотехника компьютерных блоков питания

Схемы для компьютеров

Р. АЛЕКСАНДРОВ, г. Малоярославец Калужской обл.
Радио, 2002 год, № 5, 6, 8

ИБП бытовых компьютеров рассчитаны на работу от сети однофазного переменного тока (110/230 В, 60 Гц ≈ импортные, 127/220 В, 50 Гц ≈ отечественного производства). Поскольку сеть 220 В, 50 Гц в России общепринята, проблемы выбора блока на нужное сетевое напряжение не существует. Нужно лишь убедиться, что переключатель сетевого напряжения на блоке (если он имеется) установлен в положение 220 или 230 В. Отсутствие переключателя говорит о том, что блок способен работать в обозначенном на его этикетке интервале сетевых напряжений без каких-либо переключений. ИБП, рассчитанные на частоту 60 Гц, безупречно работают в сети 50 Гц.

К системным платам формата AT ИБП подключают двумя жгутами проводов с розетками Р8 и Р9, показанными на рис. 1 (вид со стороны гнезд). Указанные в скобках цвета проводов стандартны, хотя не все изготовители ИБП их строго соблюдают. Чтобы правильно сориентировать розетки при подключении к вилкам системной платы, существует простое правило: четыре черных провода (цепь GND), подходящие к обеим розеткам, должны быть расположены рядом.

Основные цепи питания системных плат формата АТХ сосредоточены в разъеме, показанном на рис. 2. Как и в предыдущем случае, вид со стороны гнезд розетки. ИБП этого формата имеют вход дистанционного управления (цепь PS-ON), при соединении которого с общим проводом (цепью СОМ ≈ "common", эквивалентом GND) включенный в сеть блок начинает работать. Если цепь PS-ON≈СОМ разорвана, напряжения на выходах ИБП отсутствуют, за исключением "дежурных" +5 В в цепи +5VSB. В этом режиме потребляемая от сети мощность очень незначительна.

ИБП формата АТХ бывают снабжены дополнительной выходной розеткой, показанной на рис. 3 . Назначение ее цепей следующее:

FanM ≈ выход датчика скорости вращения вентилятора, охлаждающего ИБП (два импульса на один оборот);
FanC ≈ аналоговый (0...12 В) вход управления скоростью вращения этого вентилятора. Если этот вход отключен от внешних цепей или на него подано постоянное напряжение более 10 В, производительность вентилятора максимальна;
3.3V Sense ≈ вход сигнала обратной связи стабилизатора напряжения +3,3 В. Его соединяют отдельным проводом непосредственно с выводами питания микросхем на системной плате, что позволяет скомпенсировать падение напряжения на подводящих проводах. Если дополнительная розетка отсутствует, эта цепь бывает выведена на гнездо 11 основной розетки (см. рис. 2);
1394R ≈ минус изолированного от общего провода источника напряжения 8...48 В для питания цепей интерфейса IEEE-1394;
1394V ≈ плюс того же источника.

ИБП любого формата обязательно снабжают несколькими розетками для питания дисководов и некоторых других периферийных устройств компьютера.

Каждый "компьютерный" ИБП выдает логический сигнал, называемый R G. (Power Good) в блоках AT или PW-OK (Power OK) в блоках АТХ, высокий уровень которого свидетельствует, что все выходные напряжения находятся в допустимых пределах. На "материнской" плате компьютера этот сигнал участвует в формировании сигнала системного сброса (Reset). После включения ИБП уровень сигнала RG. (PW-OK) некоторое время остается низким, запрещая работу процессора, пока в цепях питания не завершатся переходные процессы.

При отключении сетевого напряжения или внезапно возникшей неисправности ИБП логический уровень сигнала P. G. (PW-OK) изменяется прежде, чем выходные напряжения блока упадут ниже допустимых значений. Это вызывает остановку процессора, предотвращает искажение данных, хранящихся в памяти, и другие необратимые операции.

Взаимозаменяемость ИБП можно оценить по следующим критериям.

Число выходных напряжений для питания IBM PC формата AT должно быть не менее четырех (+12 В, +5 В, -5 В и -12 В). Максимальный и минимальный выходные токи регламентируют отдельно для каждого канала. Их обычные значения для источников различной мощности приведены в табл. 1 . Компьютерам формата АТХ дополнительно необходимы +3,3 В и некоторые другие напряжения (о них было сказано выше).

Учтите, что нормальная работа блока при нагрузке меньше минимальной не гарантирована, а иногда такой режим просто опасен. Поэтому включать ИБП без нагрузки в сеть (например, для проверки) не рекомендуется.

Мощность блока питания (суммарная по всем выходным напряжениям) в полностью укомплектованном периферийными устройствами бытовом ПК должна быть не менее 200 Вт. Практически необходимо иметь 230...250 Вт, а при установке дополнительных "винчестеров" и приводов CD-ROM может потребоваться и больше. Сбои в работе ПК, особенно возникающие в моменты включения электродвигателей упомянутых устройств, нередко связаны именно с перегрузкой блока питания. Компьютеры, используемые в качестве серверов информационных сетей, потребляют до 350 Вт. ИБП небольшой мощности (40... 160 Вт) применяют в специализированных, например, управляющих компьютерах с ограниченным набором периферии.

Объем , занимаемый ИБП, обычно растет за счет увеличения его длины в сторону передней панели ПК. Установочные размеры и точки крепления блока в корпусе компьютера остаются неизменными. Поэтому любой (за редкими исключениями) блок удастся установить на место отказавшего.

Основой большинства ИБП служит двухтактный полумостовой инвертор, работающий на частоте в несколько десятков килогерц. Напряжение питания инвертора (приблизительно 300 В) ≈ выпрямленное и сглаженное сетевое. Собственно инвертор состоит из узла управления (генератора импульсов с промежуточным каскадом усиления мощности) и мощного выходного каскада. Последний нагружен на высокочастотный силовой трансформатор. Выходные напряжения получают с помощью выпрямителей, подключенных к вторичным обмоткам этого трансформатора. Стабилизация напряжений производится с помощью широтно-импульсной модуляции (ШИМ) импульсов, генерируемых инвертором. Обычно стабилизирующей ОС охвачен лишь один выходной канал, как правило, +5 или +3,3 В. В результате напряжения на других выходах не зависят от напряжения в сети, но остаются подверженными влиянию нагрузки. Иногда их дополнительно стабилизируют с помощью обычных микросхем-стабилизаторов.

СЕТЕВОЙ ВЫПРЯМИТЕЛЬ


В большинстве случаев этот узел выполняют по схеме, подобной показанной на рис. 4 , различия лишь в типе выпрямительного моста VD1 и большем или меньшем числе защитных и предохранительных элементов. Иногда мост собран из отдельных диодов. При разомкнутом выключателе S1, что соответствует питанию блока от сети 220...230 В, выпрямитель ≈ мостовой, напряжение на его выходе (соединенных последовательно конденсаторах С4, С5) близко к амплитуде сетевого. При питании от сети 110... 127 В, замкнув контакты выключателя, превращают устройство в выпрямитель с удвоением напряжения и получают на его выходе постоянное напряжение, вдвое большее амплитуды сетевого. Подобное переключение предусматривают в ИБП, стабилизаторы которых удерживают выходные напряжения в допустимых пределах лишь при отклонении сетевого на 20%. Блоки с более эффективной стабилизацией способны работать при любом сетевом напряжении (как правило, от 90 до 260 В) без переключения.

Резисторы R1, R4 и R5 предназначены для разрядки конденсаторов выпрямителя после его отключения от сети, а С4 и С5, кроме того, выравнивают напряжения на конденсаторах С4 и С5. Терморезистор R2 с отрицательным температурным коэффициентом ограничивает амплитуду броска тока зарядки конденсаторов С4, С5 в момент включения блока. Затем в результате саморазогрева его сопротивление падает, и он практически не влияет на работу выпрямителя. Варистор R3 с классификационным напряжением больше максимальной амплитуды сетевого защищает от выбросов последнего. К сожалению, этот варистор бесполезен при случайном включении блока с замкнутым выключателем S1 в сеть 220 В. От тяжелых последствий этого спасает замена резисторов R4, R5 варисторами с классификационным напряжением 180...220 В, пробой которых влечет за собой сгорание плавкой вставки FU1. Иногда варисторы подключают параллельно указанным резисторам или только одному из них.

Конденсаторы С1 ≈ СЗ и двухобмо-точный дроссель L1 образуют фильтр, защищающий компьютер от проникновения помех из сети, а сеть ≈ от помех, создаваемых компьютером. Через конденсаторы С1 и СЗ корпус компьютера связан по переменному току с проводами сети. Поэтому напряжение прикосновения к незаземленному компьютеру может достигать половины сетевого. Это не опасно для жизни, так как реактивное сопротивление конденсаторов достаточно велико, но нередко приводит к выходу из строя интерфейсных цепей в момент подключения к компьютеру периферийных устройств.

МОЩНЫЙ КАСКАД ИНВЕРТОРА

На рис. 5 показана часть схемы распространенного ИБП GT-150W. Импульсы, сформированные узлом управления, через трансформатор Т1 поступают на базы транзисторов VT1 и VT2, поочередно открывая их. Диоды VD4, VD5 защищают транзисторы от напряжения обратной полярности. Конденсаторы С6 и С7 соответствуют С4 и С5 в выпрямителе (см. рис. 4). Напряжения вторичных обмоток трансформатора Т2 выпрямляют для получения выходных. Один из выпрямителей (VD6, VD7 с фильтром L1C5) показан на схеме.

Большинство мощных каскадов ИБП отличаются от рассмотренного лишь типами транзисторов, которые могут быть, например, полевыми или содержать встроенные защитные диоды. Существует несколько вариантов исполнения базовых цепей (для биполярных) или цепей затвора (для полевых транзисторов) с разным числом, номиналами и схемами включения элементов. Например, резисторы R4, R6 могут быть подключены непосредственно к базам соответствующих транзисторов.

В установившемся режиме узел управления инвертором питают выходным напряжением ИБП, но в момент включения оно отсутствует. Существуют два основных способа получить необходимое для пуска инвертора напряжение питания. Первый из них реализован в рассматриваемой схеме (рис. 5). Сразу после включения блока выпрямленное сетевое напряжение поступает через резистивный делитель R3 ≈ R6 в базовые цепи транзисторов VT1 и\/Т2, приоткрывая их, причем диоды VD1 и VD2 предотвращают шунтирование участков база-эмиттер транзисторов обмотками II и III трансформатора Т1. В это же время происходит зарядка конденсаторов С4, С6 и С7, причем ток зарядки конденсатора С4, протекая по обмотке I трансформатора Т2 и по части обмотки II трансформатора Т1, наводит в обмотках II и III последнего напряжение, открывающее один из транзисторов и закрывающее другой. Какой из транзисторов закроется, а какой ≈ откроется, зависит от асимметрии характеристик элементов каскада.

В результате действия положительной ОС процесс протекает лавинообразно, а наведенный в обмотке II трансформатора Т2 импульс через один из диодов VD6, VD7, резистор R9 и диод VD3 заряжает конденсатор СЗ до напряжения, достаточного для начала работы узла управления. В дальнейшем он питается по той же цепи, а выпрямленное диодами VD6, VD7 напряжение после сглаживания фильтром L1C5 поступает на выход+12 В ИБП.

Вариант цепей начального запуска, использованный в ИБП LPS-02-150XT, отличается только тем, что напряжение на делитель, аналогичный R3 ≈ R6 (рис. 5), подают от отдельного однополупериодного выпрямителя сетевого напряжения с конденсатором фильтра небольшой емкости. В результате транзисторы инвертора приоткрываются раньше, чем зарядятся конденсаторы фильтра основного выпрямителя (С6, С7, см. рис. 5), что обеспечивает более уверенный запуск.

Второй способ питания узла управления во время пуска предусматривает наличие специального понижающего трансформатора небольшой мощности с выпрямителем, как показано на схеме рис. 6 , примененной в ИБП PS-200B.

Число витков вторичной обмотки трансформатора выбрано таким образом, чтобы выпрямленное напряжение было немного меньшим выходного в канале +12 В блока, но достаточным для работы узла управления. Когда выходное напряжение ИБП достигает номинала, диод VD5 открывается, диоды моста VD1 ≈ VD4 остаются закрытыми в течение всего периода переменного напряжения и узел управления переходит на питание выходным напряжением инвертора, не потребляя больше энергии от "пускового" трансформатора.

В мощных каскадах инверторов, запускаемых таким образом, необходимость в начальном смещении на базах транзисторов и положительной обратной связи отсутствует. Поэтому не требуется резисторов R3, R5, диоды VD1, VD2 заменяют перемычками, а обмотку II трансформатора Т1 выполняют без отвода (см. рис. 5).

ВЫХОДНЫЕ ВЫПРЯМИТЕЛИ

На рис. 7 показана типовая схема четырехканального выпрямительного узла ИБП. Чтобы не нарушать симметрии пе-ремагничивания магнитопровода силового трансформатора выпрямители строят только по двухполупериодным схемам, причем мостовые выпрямители, для которых характерны повышенные потери, почти не применяют. Главная особенность выпрямителей в ИБП ≈ сглаживающие фильтры, начинающиеся с индуктивности (дросселя). Напряжение на выходе выпрямителя с подобным фильтром зависит не только от амплитуды, но и от скважности (отношения длительности к периоду повторения) поступающих на вход импульсов. Это дает возможность стабилизировать выходное напряжение, изменяя скважность входного. Применяемые во многих других случаях выпрямители с фильтрами, начинающимися с конденсатора, подобным свойством не обладают. Процесс изменения скважности импульсов обычно называют ШИМ ≈ широтно-импульсной модуляцией (англ. PWM ≈ Pulse Width Modulation).

Так как амплитуда импульсов, пропорциональная напряжению в питающей сети, на входах всех имеющихся в блоке выпрямителей изменяется по одинаковому закону, стабилизация с помощью ШИМ одного из выходных напряжений стабилизирует и все остальные. Чтобы усилить этот эффект, дроссели фильтров L1.1 ≈ L1.4 всех выпрямителей намотаны на общем магнитопроводе. Магнитная связь между ними дополнительно синхронизирует происходящие в выпрямителях процессы.

Для правильной работы выпрямителя с L-фильтром необходимо, чтобы ток его нагрузки превышал некоторое минимальное значение, зависящее от индуктивности дросселя фильтра и частоты импульсов. Эту начальную нагрузку создают резисторы R4 ≈ R7, подключенные параллельно выходным конденсаторам С5 ≈ С8. Они же служат для ускорения разрядки конденсаторов после выключения ИБП.

Иногда напряжение -5 В получают без отдельного выпрямителя из напряжения -12 В с помощью интегрального стабилизатора серии 7905. Отечественные аналоги ≈ микросхемы КР1162ЕН5А, КР1179ЕН05. Ток, потребляемый узлами компьютера по этой цепи, обычно не превышает нескольких сотен миллиампер.

В некоторых случаях интегральные стабилизаторы устанавливают и в других каналах ИБП. Это решение исключает влияние изменяющейся нагрузки на выходные напряжения, но снижает КПД блока и по этой причине применяется только в сравнительно маломощных каналах. Примером может служить схема узла выпрямителей ИБП PS-6220C, показанная на рис. 8 . Диоды VD7 ≈ VD10 ≈ защитные.

Как и в большинстве других блоков, здесь в выпрямителе напряжения +5 В установлены диоды с барьером Шоттки (сборка VD6), отличающиеся меньшими, чем у обычных диодов падением напряжения в прямом направлении и временем восстановления обратного сопротивления. Оба этих фактора благоприятны для увеличения КПД. К сожалению, сравнительно низкое допустимое обратное напряжение не позволяет применять диоды Шоттки и в канале +12 В. Однако в рассматриваемом узле эта проблема решена последовательным соединением двух выпрямителей: к 5 В недостающие 7 В добавляет выпрямитель на сборке диодов Шоттки VD5.

Для устранения опасных для диодов выбросов напряжения, возникающих в обмотках трансформатора на фронтах импульсов, предусмотрены демпфирующие цепи R1C1, R2C2, R3C3 и R4C4.

УЗЕЛ УПРАВЛЕНИЯ

В большинстве "компьютерных" ИБП этот узел построен на базе микросхемы ШИМ-контроллера TL494CN (отечественный аналог ≈ КР1114ЕУ4) или ее модификаций. Основная часть схемы подобного узла ≈ на рис. 9 , на ней показаны и элементы внутреннего устройства упомянутой микросхемы.

Генератор пилообразного напряжения G1 служит задающим. Его частота зависит от номиналов внешних элементов R8 и СЗ. Генерируемое напряжение поступает на два компаратора (A3 и А4), выходные импульсы которых суммирует элемент ИЛИ D1. Далее импульсы через элементы ИЛИ-НЕ D5 и D6 подают на выходные транзисторы микросхемы (V3, V4). Импульсы с выхода элемента D1 поступают также на счетный вход триггера D2, и каждый из них изменяет состояние триггера. Таким образом, если на вывод 13 микросхемы подана лог. 1 или он, как в рассматриваемом случае, оставлен свободным, импульсы на выходах элементов D5 и D6 чередуются, что и необходимо для управления двухтактным инвертором. Если микросхему TL494 применяют в однотактном преобразователе напряжения, вывод 13 соединяют с общим проводом, в результате триггер D2 больше не участвует в работе, а импульсы на всех выходах появляются одновременно.

Элемент А1 ≈ усилитель сигнала ошибки в контуре стабилизации выходного напряжения ИБП. Это напряжение (в рассматриваемом случае ≈ +5 В) через резистивный делитель R1R2 поступает на один из входов усилителя. На втором его входе ≈ образцовое напряжение, полученное от встроенного в микросхему стабилизатора А5 с помощью резистивного делителя R3 ≈ R5. Напряжение на выходе А1, пропорциональное разности входных, задает порог срабатывания компаратора А4 и, следовательно, скважность импульсов на его выходе. Так как выходное напряжение ИБП зависит от скважности (см. выше), в замкнутой системе автоматически поддерживается его равенство образцовому с учетом коэффициента деления R1R2. Цепь R7C2 необходима для устойчивости стабилизатора. Второй усилитель (А2) в данном случае от ключей подачей соответствующих напряжений на его входы и в работе не участвует.

Функция компаратора A3 ≈ гарантировать наличие паузы между импульсами на выходе элемента D1, даже если выходное напряжение усилителя А1 вышло за допустимые пределы. Минимальный порог срабатывания A3 (при соединении вывода 4 с общим проводом) задан внутренним источником напряжения GV1. С увеличением напряжения на выводе 4 минимальная длительность паузы растет, следовательно, максимальное выходное напряжение ИБП падает.

Этим свойством пользуются для плавного пуска ИБП. Дело в том, что в начальный момент работы блока конденсаторы фильтров его выпрямителей полностью разряжены, что эквивалентно замыканию выходов на общий провод. Пуск инвертора сразу же "на полную мощность" приведет к огромной перегрузке транзисторов мощного каскада и возможному выходу их из строя. Цепь C1R6 обеспечивает плавный, без перегрузок, пуск инвертора.

В первый после включения момент конденсатор С1 разряжен, а напряжение на выводе 4 DA1 близко к +5 В, получаемым от стабилизатора А5. Это гарантирует паузу максимально возможной длительности, вплоть до полного отсутствия импульсов на выходе микросхемы. По мере зарядки конденсатора С1 через резистор R6 напряжение на выводе 4 уменьшается, а с ним и длительность паузы. Одновременно растет выходное напряжение ИБП. Так продолжается, пока оно не приблизится к образцовому и не вступит в действие стабилизирующая обратная связь. Дальнейшая зарядка конденсатора С1 на процессы в ИБП не влияет. Так как перед каждым включением ИБП конденсатор С1 должен быть полностью разряжен, во многих случаях предусматривают цепи его принудительной разрядки (на рис. 9 не показаны).

ПРОМЕЖУТОЧНЫЙ КАСКАД

Задача этого каскада ≈ усиление импульсов перед их подачей на мощные транзисторы. Иногда промежуточный каскад отсутствует как самостоятельный узел, входя в состав микросхемы задающего генератора. Схема такого каскада, примененного в ИБП PS-200B, показана на рис. 10 . Согласующий трансформатор Т1 здесь соответствует одноименному на рис. 5.

В ИБП APPIS использован промежуточный каскад по схеме, приведенной на рис. 11 , отличающийся от рассмотренного выше наличием двух согласующих трансформаторов Т1 и Т2 ≈ отдельно для каждого мощного транзистора. Полярность включения обмоток трансформаторов такова, что транзистор промежуточного каскада и связанный с ним мощный транзистор находятся в открытом состоянии одновременно. Если не принять специальных мер, через несколько тактов работы инвертора накопление энергии в магнитопроводах трансформаторов приведет к насыщению последних и значительному уменьшению индуктивности обмоток.

Рассмотрим, как решается эта проблема, на примере одной из "половин" промежуточного каскада с трансформатором Т1. При открытом транзисторе микросхемы обмотка Ia подключена к источнику питания и общему проводу. Через нее течет линейно нарастающий ток. В обмотке II наводится положительное напряжение, поступающее в базовую цепь мощного транзистора и открывающее его. Когда транзистор в микросхеме будет закрыт, ток в обмотке Iа прервется. Но магнитный поток в магнитопроводе трансформатора не может измениться мгновенно, поэтому в обмотке Iб возникнет линейно спадающий ток, текущий через открывшийся диод VD1 от общего провода к плюсу источника питания. Таким образом энергия, накопленная в магнитном поле в течение импульса, в паузе возвращается в источник. Напряжение на обмотке II во время паузы ≈ отрицательное, и мощный транзистор закрыт. Аналогичным образом, но в противофазе, работает вторая "половина" каскада с трансформатором Т2.

Наличие в магнитопроводах пульсирующих магнитных потоков с постоянной составляющей приводит к необходимости увеличивать массу и объем трансформаторов Т1 и Т2. В целом промежуточный каскад с двумя трансформаторами не очень удачен, хотя он и получил довольно широкое распространение.

Если мощности транзисторов микросхемы TL494CN недостаточно для непосредственного управления выходным каскадом инвертора, применяют схему, подобную приведенной на рис. 12 , где изображен промежуточный каскад ИБП KYP-150W. Половины обмотки I трансформатора Т1 служат коллекторными нагрузками транзисторов VT1 и VT2, поочередно открываемых импульсами, поступающими от микросхемы DA1. Резистор R5 ограничивает коллекторный ток транзисторов приблизительно до 20 мА. С помощью диодов VD1, VD2 и конденсатора С1 на эммитерах транзисторов VT1 и VT2 поддерживают необходимое для их надежного закрывания напряжение +1,6 В. Диоды VD4 и VD5 демпфируют колебания, возникающие в моменты переключения транзисторов в контуре, образованном индуктивностью обмотки I трансформатора Т1 и ее собственной емкостью. Диод VD3 закрывается, если выброс напряжения на среднем выводе обмотки I превышает напряжение питания каскада.

Еще один вариант схемы промежуточного каскада (ИБП ESP-1003R) показан на рис. 13. В данном случае выходные транзисторы микросхемы DA1 включены по схеме с общим коллектором. Конденсаторы С1 и С2 ≈ форсирующие. Обмотка I трансформатора Т1 не имеет среднего вывода. В зависимости от того, какой из транзисторов VT1, VT2 в данный момент открыт, цепь обмотки замыкается на источник питания через резистор R7 или R8, подключенный к коллектору закрытого транзистора.

ПОИСК И УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ

Прежде чем ремонтировать ИБП, его необходимо извлечь из системного блока компьютера. Для этого отключают компьютер от сети, вынув вилку из розетки. Вскрыв корпус компьютера, освобождают все разъемы ИБП и, отвернув четыре винта на задней стенке системного блока, вынимают ИБП. Затем снимают П-образную крышку корпуса ИБП, отвернув крепящие ее винты. Печатную плату можно извлечь, отвернув три винта-"самореза", которыми она закреплена. Особенность плат многих ИБП в том, что печатный проводник общего провода разделен на две части, которые соединяются между собой лишь через металлический корпус блока. На извлеченной из корпуса плате эти части необходимо соединить навесным проводником.

Если блок питания был отключен от сети питания менее получаса назад, необходимо найти на плате и разрядить оксидные конденсаторы 220 или 470 мкФ х 250 В (это самые большие конденсаторы в блоке). В процессе ремонта эту операцию рекомендуется повторять после каждого отключения блока от сети либо временно зашунтировать конденсаторы резисторами 100...200 кОм мощностью не менее 1 Вт.

В первую очередь осматривают детали ИБП и выявляют явно неисправные, например, сгоревшие или с трещинами в корпусе. Если выход блока из строя был вызван неисправностью вентилятора, следует проверить элементы, установленные на теплоотводах: мощные транзисторы инвертора и сборки диодов Шотки выходных выпрямителей. При "взрыве" оксидных конденсаторов происходит разбрызгивание их электролита по всему блоку. Во избежание окисления металлических токоведущих частей необходимо смыть электролит слабощелочным раствором (например, разведя средство "Fairy" водой в соотношении 1:50).

Включив блок в сеть, прежде всего следует измерить все его выходные напряжения. Если окажется, что хотя бы в одном из выходных каналов напряжение близко к номинальному значению, неисправность следует искать в выходных цепях неисправных каналов. Однако, как показывает практика, выходные цепи редко выходят из строя.

В случае нарушения работы всех каналов методика определения неисправностей следующая. Измеряют напряжение между плюсовым выводом конденсатора С4 и минусовым С5 (см. рис. 4) или коллектором транзистора VT1 и эмиттером VT2 (см. рис. 5) Если измеренное значение существенно меньше 310 В, нужно проверить и при необходимости заменить диодный мост VD1 (см. рис. 4) или отдельные составляющие его диоды. Если выпрямленное напряжение в норме, а блок не работает, скорее всего, отказал один или оба транзистора мощного каскада инвертора (VT1, VT2, см. рис. 5), которые подвержены наибольшим тепловым перегрузкам. При исправных транзисторах остается проверить микросхему TL494CN и связанные с ней цепи.

Отказавшие транзисторы допускается заменять отечественными или импортными аналогами, подходящими по электрическим параметрам, габаритным и установочным размерам, руководствуясь данными, приведенными в табл. 2. Замену диодам подбирают по табл. 3.

Выпрямительные диоды сетевого выпрямителя (см. рис. 4) можно с успехом заменить отечественными КД226Г, КД226Д. Если в сетевом выпрямителе установлены конденсаторы емкостью 220 мкФ, желательно их заменить на 470 мкФ, место для этого на плате обычно предусмотрено. Для снижения помех рекомендуется каждый из четырех выпрямительных диодов зашунтировать конденсатором 1000 пФ на напряжение 400...450 В.

Транзисторы 2SC3039 можно заменить отечественными КТ872А. А вот демпфирующий диод PXPR1001 взамен отказавшего трудно приобрести даже в больших городах. В этой ситуации можно воспользоваться тремя соединенными последовательно диодами КД226Г или КД226Д. Существует возможность взамен отказавшего диода и защищенного им мощного транзистора установить транзистор со встроенным демпфирующим диодом, например, 2SD2333, 2SD1876, 2SD1877 или 2SD1554. Следует заметить, что во многих выпущенных после 1998 г. ИБП такая замена уже произведена.

Для увеличения кликните по изображению (откроется в новом окне)

Для повышения надежности работы ИЭП можно рекомендовать параллельно резисторам R7 и R8 (см. рис. 5) подключить дроссели индуктивностью по 4 мкГн. Их можно намотать проводом диаметром не менее 0,15 мм в шелковой изоляции на любых кольцевых магнитопроводах. Число витков рассчитывают по известным формулам.

Подстроечный резистор для регулировки выходного напряжения (R3, см. рис. 9) во многих ИБП отсутствует, вместо него установлен постоянный. Если требуется подстройка, ее можно произвести, временно установив подстроечный резистор, а затем вновь заменив его постоянным найденного номинала.

Для повышения надежности полезно заменить установленные в фильтрах наиболее мощных выпрямителей + 12 В и +5 В импортные оксидные конденсаторы эквивалентными по емкости и напряжению конденсаторами К50-29. Следует заметить, что на платах многих ИБП установлены не все предусмотренные схемой конденсаторы (по-видимому, из экономии), что отрицательно сказывается на характеристиках блока. Рекомендуется установить недостающие конденсаторы на предназначенные для них места.

Собирая блок после ремонта, не забудьте удалить временно установленные перемычки и резисторы, а также подключить к соответствующему разъему встроенный вентилятор.

ЛИТЕРАТУРА
1. Куличков А. Импульсные блоки питания для IBM PC. - М.: ДМК, серия "Ремонт и сервис", 2000.
2. Гук М. Аппаратные средства IBM PC. - С.-Пб.: Питер, 2000.
3. Куневич А.. Сидоров И. Индуктивные элементы на ферритах. - С.-Пб.: Лениздат, 1997.
4. Никулин С. Надежность элементов радиоэлектронной аппаратуры. - М.: Энергия, 1979.

Линейный и импульсный источники питания

Начнем с основ. Блок питания в компьютере выполняет три функции. Во-первых, переменный ток из бытовой сети электропитания нужно преобразовать в постоянный. Второй задачей БП является понижение напряжения 110-230 В, избыточного для компьютерной электроники, до стандартных значений, требуемых конвертерами питания отдельных компонентов ПК, - 12 В, 5 В и 3,3 В (а также отрицательные напряжения, о которых расскажем чуть позже). Наконец, БП играет роль стабилизатора напряжений.

Есть два основных типа источников питания, которые выполняют перечисленные функции, - линейный и импульсный. В основе простейшего линейного БП лежит трансформатор, на котором напряжение переменного тока понижается до требуемого значения, и затем ток выпрямляется диодным мостом.

Однако от БП требуется еще и стабилизация выходного напряжения, что обусловлено как нестабильностью напряжения в бытовой сети, так и падением напряжения в ответ на увеличение тока в нагрузке.

Чтобы компенсировать падение напряжения, в линейном БП параметры трансформатора рассчитываются так, чтобы обеспечить избыточную мощность. Тогда при высоком токе в нагрузке будет наблюдаться требуемый вольтаж. Однако и повышенное напряжение, которое возникнет без каких-либо средств компенсации при низком токе в полезной нагрузке, тоже неприемлемо. Избыточное напряжение устраняется за счет включения в цепь неполезной нагрузки. В простейшем случае таковой является резистор или транзистор, подключенный через стабилитрон (Zener diode). В более продвинутом - транзистор управляется микросхемой с компаратором. Как бы то ни было, избыточная мощность просто рассеивается в виде тепла, что отрицательно сказывается на КПД устройства.

В схеме импульсного БП возникает еще одна переменная, от которой зависит напряжение на выходе, в дополнение к двум уже имеющимся: напряжению на входе и сопротивлению нагрузки. Последовательно с нагрузкой стоит ключ (которым в интересующем нас случае является транзистор), управляемый микроконтроллером в режиме широтно-импульсной модуляции (ШИМ). Чем выше длительность открытых состояний транзистора по отношению к их периоду (этот параметр называется duty cycle, в русскоязычной терминологии используется обратная величина - скважность), тем выше напряжение на выходе. Из-за наличия ключа импульсный БП также называется Switched-Mode Power Supply (SMPS).

Через закрытый транзистор ток не идет, а сопротивление открытого транзистора в идеале пренебрежимо мало. В действительности открытый транзистор обладает сопротивлением и рассеивает какую-то часть мощности в виде тепла. Кроме того, переход между состояниями транзистора не идеально дискретный. И все же КПД импульсного источника тока может превышать 90%, в то время как КПД линейного БП со стабилизатором в лучшем случае достигает 50%.

Другое преимущество импульсных источников питания состоит в радикальном уменьшении габаритов и массы трансформатора по сравнению с линейными БП такой же мощности. Известно, что чем выше частота переменного тока в первичной обмотке трансформатора, тем меньше необходимый размер сердечника и число витков обмотки. Поэтому ключевой транзистор в цепи размещают не после, а до трансформатора и, помимо стабилизации напряжения используют для получения переменного тока высокой частоты (для компьютерных БП это от 30 до 100 кГц и выше, а как правило - около 60 кГц). Трансформатор, работающий на частоте электросети 50-60 Гц, для мощности, требуемой стандартным компьютером, был бы в десятки раз массивнее.

Линейные БП сегодня применяются главным образом в случае маломощных устройств, когда относительно сложная электроника, необходимая для импульсного источника питания, составляет более чувствительную статью расходов в сравнении с трансформатором. Это, к примеру, блоки питания на 9 В, которые используются для гитарных педалей эффектов, а когда-то - для игровых приставок и пр. А вот зарядники для смартфонов уже сплошь импульсные - тут расходы оправданны. Благодаря существенно меньшей амплитуде пульсаций напряжения на выходе линейные БП также применяются в тех областях, где это качество востребованно.

⇡ Общая схема блока питания стандарта ATX

БП настольного компьютера представляет собой импульсный источник питания, на вход которого подается напряжение бытовой электросети с параметрами 110/230 В, 50-60 Гц, а на выходе есть ряд линий постоянного тока, основные из которых имеют номинал 12, 5 и 3,3 В. Помимо этого, БП обеспечивает напряжение -12 В, а когда-то еще и напряжение -5 В, необходимое для шины ISA. Но последнее в какой-то момент было исключено из стандарта ATX в связи с прекращением поддержки самой ISA.

На упрощенной схеме стандартного импульсного БП, представленной выше, можно выделить четыре основных этапа. В таком же порядке мы рассматриваем компоненты блоков питания в обзорах, а именно:

  1. фильтр ЭМП - электромагнитных помех (RFI filter);
  2. первичная цепь - входной выпрямитель (rectifier), ключевые транзисторы (switcher), создающие переменный ток высокой частоты на первичной обмотке трансформатора;
  3. основной трансформатор;
  4. вторичная цепь - выпрямители тока со вторичной обмотки трансформатора (rectifiers), сглаживающие фильтры на выходе (filtering).

⇡ Фильтр ЭМП

Фильтр на входе БП служит для подавления двух типов электромагнитных помех: дифференциальных (differential-mode) - когда ток помехи течет в разные стороны в линиях питания, и синфазных (common-mode) - когда ток течет в одном направлении.

Дифференциальные помехи подавляются конденсатором CX (крупный желтый пленочный конденсатор на фото выше), включенным параллельно нагрузке. Иногда на каждый провод дополнительно вешают дроссель, выполняющий ту же функцию (нет на схеме).

Фильтр синфазных помех образован конденсаторами CY (синие каплевидные керамические конденсаторы на фото), в общей точке соединяющими линии питания с землей, и т.н. синфазным дросселем (common-mode choke, LF1 на схеме), ток в двух обмотках которого течет в одном направлении, что создает сопротивление для синфазных помех.

В дешевых моделях устанавливают минимальный набор деталей фильтра, в более дорогих описанные схемы образуют повторяющиеся (полностью или частично) звенья. В прошлом нередко встречались БП вообще без фильтра ЭМП. Сейчас это скорее курьезное исключение, хотя, покупая совсем дешевый БП, можно, все-таки нарваться на такой сюрприз. В результате будет страдать не только и не столько сам компьютер, сколько другая техника, включенная в бытовую сеть, - импульсные БП являются мощным источником помех.

В районе фильтра хорошего БП можно обнаружить несколько деталей, защищающих от повреждения само устройство либо его владельца. Почти всегда есть простейший плавкий предохранитель для защиты от короткого замыкания (F1 на схеме). Отметим, что при срабатывании предохранителя защищаемым объектом является уже не блок питания. Если произошло КЗ, то, значит, уже пробило ключевые транзисторы, и важно хотя бы предотвратить возгорание электропроводки. Если в БП вдруг сгорел предохранитель, то менять его на новый, скорее всего, уже бессмысленно.

Отдельно выполняется защита от кратковременных скачков напряжения с помощью варистора (MOV - Metal Oxide Varistor). А вот никаких средств защиты от длительного повышения напряжения в компьютерных БП нет. Эту функцию выполняют внешние стабилизаторы со своим трансформатором внутри.

Конденсатор в цепи PFC после выпрямителя может сохранять значительный заряд после отключения от питания. Чтобы беспечного человека, сунувшего палец в разъем питания, не ударило током, между проводами устанавливают разряжающий резистор большого номинала (bleeder resistor). В более изощренном варианте - вместе с управляющей схемой, которая не дает заряду утекать при работе устройства.

Кстати, наличие фильтра в блоке питания ПК (а в БП монитора и практически любой компьютерной техники он тоже есть) означает, что покупать отдельный «сетевой фильтр» вместо обычного удлинителя, в общем-то, без толку. У него внутри все то же самое. Единственное условие в любом случае - нормальная трехконтактная проводка с заземлением. В противном случае конденсаторы CY, соединенные с землей, просто не смогут выполнять свою функцию.

⇡ Входной выпрямитель

После фильтра переменный ток преобразуется в постоянный с помощью диодного моста - как правило, в виде сборки в общем корпусе. Отдельный радиатор для охлаждения моста всячески приветствуется. Мост, собранный из четырех дискретных диодов, - атрибут дешевых блоков питания. Можно также поинтересоваться, на какой ток рассчитан мост, чтобы определить, соответствует ли он мощности самого БП. Хотя по этому параметру, как правило, имеется хороший запас.

⇡ Блок активного PFC

В цепи переменного тока с линейной нагрузкой (как, например, лампа накаливания или электроплитка) протекающий ток следует такой же синусоиде, как и напряжение. Но это не так в случае с устройствами, имеющими входной выпрямитель, - такими как импульсные БП. Блок питания пропускает ток короткими импульсами, примерно совпадающими по времени с пиками синусоиды напряжения (то есть максимальным мгновенным напряжением), когда подзаряжается сглаживающий конденсатор выпрямителя.

Сигнал тока искаженной формы раскладывается на несколько гармонических колебаний в сумме с синусоидой данной амплитуды (идеальным сигналом, который имел бы место при линейной нагрузке).

Мощность, используемая для совершения полезной работы (которой, собственно, является нагрев компонентов ПК), указана в характеристиках БП и называется активной. Остальная мощность, порождаемая гармоническими колебаниями тока, называется реактивной. Она не производит полезной работы, но нагревает провода и создает нагрузку на трансформаторы и прочее силовое оборудование.

Векторная сумма реактивной и активной мощности называется полной мощностью (apparent power). А отношение активной мощности к полной называется коэффициентом мощности (power factor) - не путать с КПД!

У импульсного БП коэффициент мощности изначально довольно низкий - около 0,7. Для частного потребителя реактивная мощность не составляет проблемы (благо она не учитывается электросчетчиками), если только он не пользуется ИБП. На бесперебойник как раз таки ложится полная мощность нагрузки. В масштабе офиса или городской сети избыточная реактивная мощность, создаваемая импульсными БП уже значительно снижает качество электроснабжения и вызывает расходы, поэтому с ней активно борются.

В частности, подавляющее большинство компьютерных БП оснащаются схемами активной коррекции фактора мощности (Active PFC). Блок с активным PFC легко опознать по единственному крупному конденсатору и дросселю, установленным после выпрямителя. В сущности, Active PFC является еще одним импульсным преобразователем, который поддерживает на конденсаторе постоянный заряд напряжением около 400 В. При этом ток из питающей сети потребляется короткими импульсами, ширина которых подобрана таким образом, чтобы сигнал аппроксимировался синусоидой - что и требуется для имитации линейной нагрузки. Для синхронизации сигнала потребления тока с синусоидой напряжения в контроллере PFC имеется специальная логика.

Схема активного PFC содержит один или два ключевых транзистора и мощный диод, которые размещаются на одном радиаторе с ключевыми транзисторами основного преобразователя БП. Как правило, ШИМ-контроллер ключа основного преобразователя и ключа Active PFC являются одной микросхемой (PWM/PFC Combo).

Коэффициент мощности у импульсных блоков питания с активным PFC достигает 0,95 и выше. Кроме того, у них есть одно дополнительное преимущество - не требуется переключатель сети 110/230 В и соответствующий удвоитель напряжения внутри БП. Большинство схем PFC переваривают напряжения от 85 до 265 В. Кроме того, снижается чувствительность БП к кратковременным провалам напряжения.

Кстати, помимо активной коррекции PFC, существует и пассивная, которая подразумевает установку дросселя большой индуктивности последовательно с нагрузкой. Эффективность ее невелика, и в современном БП вы такое вряд ли найдете.

⇡ Основной преобразователь

Общий принцип работы для всех импульсных БП изолированной топологии (с трансформатором) один: ключевой транзистор (или транзисторы) создает переменный ток на первичной обмотке трансформатора, а ШИМ-контроллер управляет скважностью их переключения. Конкретные схемы, однако, различаются как по количеству ключевых транзисторов и прочих элементов, так и по качественным характеристикам: КПД, форма сигнала, помехи и пр. Но здесь слишком многое зависит от конкретной реализации, чтобы на этом стоило заострять внимание. Для интересующихся приводим набор схем и таблицу, которая позволит по составу деталей опознавать их в конкретных устройствах.

Транзисторы Диоды Конденсаторы Ножки первичной обмотки трансформатора
Single-Transistor Forward 1 1 1 4
2 2 0 2
2 0 2 2
4 0 0 2
2 0 0 3

Помимо перечисленных топологий, в дорогих БП встречаются резонансные (resonant) варианты Half Bridge, которые легко опознать по дополнительному крупному дросселю (или двум) и конденсатору, образующим колебательный контур.

Single-Transistor Forward

⇡ Вторичная цепь

Вторичная цепь - это все, что находится после вторичной обмотки трансформатора. В большинстве современных блоков питания трансформатор имеет две обмотки: с одной из них снимается напряжение 12 В, с другой - 5 В. Ток сначала выпрямляется с помощью сборки из двух диодов Шоттки - одной или нескольких на шину (на самой высоконагруженной шине - 12 В — в мощных БП бывает четыре сборки). Более эффективными с точки зрения КПД являются синхронные выпрямители, в которых вместо диодов используются полевые транзисторы. Но это прерогатива по-настоящему продвинутых и дорогих БП, претендующих на сертификат 80 PLUS Platinum.

Шина 3,3 В, как правило, выводится от той же обмотки, что и шина 5 В, только напряжение понижается с помощью насыщаемого дросселя (Mag Amp). Специальная обмотка на трансформаторе под напряжение 3,3 В - экзотический вариант. Из отрицательных напряжений в текущем стандарте ATX осталось только -12 В, которое снимается со вторичной обмотки под шину 12 В через отдельные слаботочные диоды.

ШИМ-управление ключом преобразователя изменяет напряжение на первичной обмотке трансформатора, а следовательно - на всех вторичных обмотках сразу. При этом потребление тока компьютером отнюдь не равномерно распределено между шинами БП. В современном железе наиболее нагруженной шиной является 12-В.

Для раздельной стабилизации напряжений на разных шинах требуются дополнительные меры. Классический способ подразумевает использование дросселя групповой стабилизации. Три основные шины пропущены через его обмотки, и в результате если на одной шине увеличивается ток, то на других - падает напряжение. Допустим, на шине 12 В возрос ток, и, чтобы предотвратить падение напряжения, ШИМ-контроллер уменьшил скважность импульсов ключевых транзисторов. В результате на шине 5 В напряжение могло бы выйти за допустимые рамки, но было подавлено дросселем групповой стабилизации.

Напряжение на шине 3,3 В дополнительно регулируется еще одним насыщаемым дросселем.

В более совершенном варианте обеспечивается раздельная стабилизация шин 5 и 12 В за счет насыщаемых дросселей, но сейчас эта конструкция в дорогих качественных БП уступила место преобразователям DC-DC. В последнем случае трансформатор имеет единственную вторичную обмотку с напряжением 12 В, а напряжения 5 В и 3,3 В получаются благодаря преобразователям постоянного тока. Такой способ наиболее благоприятен для стабильности напряжений.

Выходной фильтр

Финальной стадией на каждой шине является фильтр, который сглаживает пульсации напряжения, вызываемые ключевыми транзисторами. Кроме того, во вторичную цепь БП в той или иной мере пробиваются пульсации входного выпрямителя, чья частота равна удвоенной частоте питающей электросети.

В состав фильтра пульсаций входит дроссель и конденсаторы большой емкости. Для качественных блоков питания характерна емкость не менее 2 000 мкФ, но у производителей дешевых моделей есть резерв для экономии, когда устанавливают конденсаторы, к примеру, вдвое меньшего номинала, что неизбежно отражается на амплитуде пульсаций.

⇡ Дежурное питание +5VSB

Описание компонентов блока питания было бы неполным без упоминания об источнике дежурного напряжения 5 В, который делает возможным спящий режим ПК и обеспечивает работу всех устройств, которые должны быть включены постоянно. «Дежурка» питается от отдельного импульсного преобразователя с маломощным трансформатором. В некоторых БП встречается и третий трансформатор, использующийся в цепи обратной связи для изоляции ШИМ-контроллера от первичной цепи основного преобразователя. В других случаях эту функцию выполняют оптопары (светодиод и фототранзистор в одном корпусе).

⇡ Методика тестирования блоков питания

Одним из основных параметров БП является стабильность напряжений, которая находит отражение в т.н. кросс-нагрузочной характеристике. КНХ представляет собой диаграмму, в которой на одной оси отложен ток или мощность на шине 12 В, а на другой - совокупный ток или мощность на шинах 3,3 и 5 В. В точках пересечения при разных значениях обеих переменных определяется отклонение напряжения от номинала на той или иной шине. Соответственно, мы публикуем две разные КНХ - для шины 12 В и для шины 5/3,3 В.

Цвет точки означает процент отклонения:

  • зеленый: ≤ 1%;
  • салатовый: ≤ 2%;
  • желтый: ≤ 3%;
  • оранжевый: ≤ 4%;
  • красный: ≤ 5%.
  • белый: > 5% (не допускается стандартом ATX).

Для получения КНХ используется сделанный на заказ стенд для тестирования блоков питания, который создает нагрузку за счет рассеивания тепла на мощных полевых транзисторах.

Другой не менее важный тест - определение размаха пульсаций на выходе БП. Стандарт ATX допускает пульсации в пределах 120 мВ для шины 12 В и 50 мВ - для шины 5 В. Различают высокочастотные пульсации (на удвоенной частоте ключа основного преобразователя) и низкочастотные (на удвоенной частоте питающей сети).

Этот параметр мы измеряем при помощи USB-осциллографа Hantek DSO-6022BE при максимальной нагрузке на БП, заданной спецификациями. На осциллограмме ниже зеленый график соответствует шине 12 В, желтый - 5 В. Видно, что пульсации находятся в пределах нормы, и даже с запасом.

Для сравнения приводим картину пульсаций на выходе БП старого компьютера. Этот блок изначально не был выдающимся, но явно не стал лучше от времени. Судя по размаху низкочастотных пульсаций (обратите внимание, что деление развертки напряжения увеличено до 50 мВ, чтобы колебания поместились на экран), сглаживающий конденсатор на входе уже пришел в негодность. Высокочастотные пульсации на шине 5 В находятся на грани допустимых 50 мВ.

В следующем тесте определяется КПД блока при нагрузке от 10 до 100% от номинальной мощности (путем сравнения мощности на выходе с мощностью на входе, измеренной при помощи бытового ваттметра). Для сравнения на графике приводятся критерии различных категорий 80 PLUS. Впрочем, большого интереса в наши дни это не вызывает. На графике приведены результаты топового БП Corsair в сравнении с весьма дешевым Antec, а разница не то чтобы очень велика.

Более насущный для пользователя вопрос - шум от встроенного вентилятора. Непосредственно измерить его вблизи от ревущего стенда для тестирования БП невозможно, поэтому мы измеряем скорость вращения крыльчатки лазерным тахометром - также при мощности от 10 до 100%. На нижеприведенном графике видно, что при низкой нагрузке на этот БП 135-миллиметровый вентилятор сохраняет низкие обороты и вряд ли слышен вообще. При максимальной нагрузке шум уже можно различить, но уровень все еще вполне приемлемый.


Как самому изготовить полноценный блок питания с диапазоном регулируемого напряжения 2,5-24 вольта, да очень просто, повторить может каждый не имея за плечами радиолюбительского опыта.

Делать будем из старого компьютерного блока питания, ТХ или АТХ без разницы, благо, за годы PC Эры у каждого дома уже накопилось достаточно количество старого компьютерного железа и БП наверняка тоже там есть, поэтому себестоимость самоделки будет незначительной, а для некоторых мастеров равно нулю рублей.

Мне достался для переделки вот какой АТ блок.


Чем мощнее будете использовать БП тем лучше результат, мой донор всего 250W с 10 амперами на шине +12v, а на деле при нагрузке всего 4 А он уже не справляется, происходит полная просадка выходного напряжения.

Смотрите что написано на корпусе.


Поэтому смотрите сами, какой ток вы планируете получать с вашего регулируемого БП, такой потенциал донора и закладывайте сразу.

Вариантов доработки стандартного компьютерного БП множество, но все они основаны на изменении в обвязке микросхемы IC - TL494CN (её аналоги DBL494, КА7500, IR3М02, А494, МВ3759, М1114ЕУ, МPC494C и т.д.).


Рис №0 Распиновка микросхемы TL494CN и аналогов.

Посмотрим несколько вариантов исполнения схем компьютерных БП, возможно одна из них окажется ваша и разбираться с обвязкой станет намного проще.

Схема №1.

Приступим к работе.
Для начала необходимо разобрать корпус БП, выкручиваем четыре болта, снимаем крышку и смотрим внутрь.


Ищем на плате микросхему из списка выше, если таковой не окажется, тогда можно поискать вариант доработки в интернете под вашу IС.

В моем случае на плате была обнаружена микросхема KA7500, значит можно приступать к изучению обвязки и расположению ненужных нам деталей, которые необходимо удалить.


Для удобства работы, сначала полностью открутим всю плату и вынем из корпуса.


На фото разъём питания 220v.

Отсоединим питание и вентилятор, выпаиваем или выкусываем выходные провода, чтобы не мешали нам разбираться в схеме, оставим только необходимые, один желтый (+12v), черный (общий) и зеленый* (пуск ON) если есть такой.


В моём АТ блоке зеленого провода нет, поэтому он запускается сразу при включении в розетку. Если блок АТХ, то в нем должен быть зеленый провод, его необходимо припаять на "общий", а если пожелаете сделать отдельную кнопку включения на корпусе, то тогда просто поставьте выключатель в разрыв этого провода.


Теперь надо посмотреть на сколько вольт стоят выходные большие конденсаторы, если на них написано меньше 30v , то надо заменить их на аналогичные, только с рабочим напряжение не меньше 30 вольт.


На фото - черные конденсаторы как вариант замены для синего.

Делается это потому, что наш доработанный блок будет выдавать не +12 вольт, а до +24 вольт, и без замены конденсаторы просто взорвутся при первом испытании на 24v, через несколько минут работы. При подборе нового электролита емкость уменьшать не желательно, увеличивать всегда рекомендуется.

Самая ответственная часть работы.
Будем удалять все лишнее в обвязке IC494, и припаивать другие номиналы деталей, чтобы в результате получилась вот такая обвязка (Рис. №1).


Рис. №1 Изменение в обвязке микросхемы IC 494 (схема доработки).

Нам будут нужны только эти ножки микросхемы №1, 2, 3, 4, 15 и 16, на остальные внимание не обращать.


Рис. №2 Вариант доработки на примере схемы №1

Расшифровка обозначений.


Делать надо примерно так , находим ножку №1 (где стоит точка на корпусе) микросхемы и изучаем, что к ней присоединено, все цепи необходимо удалить, отсоединить. В зависимости от того как у вас в конкретной модификации платы будут расположены дорожки и впаяны детали, выбирается оптимальный вариант доработки, это может быть выпаивание и приподнятие одной ножки детали (разрывая цепь) или проще будет перерезать дорожку ножом. Определившись с планом действий, начинаем процесс переделки по схеме доработки.




На фото - замена резисторов на нужный номинал.


На фото - приподнятием ножек ненужных деталей, разрываем цепи.

Некоторые резисторы, которые уже впаяны в схему обвязки могут подойти без их замены, например, нам необходимо поставить резистор на R=2.7k с подключением к "общему", но там уже стоит R=3k подключенный к "общему", это нас вполне устраивает и мы его оставляем там без изменений (пример на Рис. №2, зеленые резисторы не меняются).






На фото - перерезанные дорожки и добавленные новые перемычки, старые номиналы записываем маркером, может понадобится восстановить все обратно.

Таким образом просматриваем и переделываем все цепи на шести ножках микросхемы.

Это был самой сложный пункт в переделке.

Делаем регуляторы напряжения и тока.


Берем переменные резисторы на 22к (регулятор напряжения) и 330Ом (регулятор тока), припаиваем к ним по два 15см провода, другие концы впаиваем на плату согласно схеме (Рис. №1). Устанавливаем на лицевую панель.

Контроль напряжения и тока.
Для контроля нам понадобятся вольтметр (0-30v) и амперметр (0-6А).


Эти приборы можно приобрести в Китайских интернет магазинах по самой выгодной цене, мой вольтметр мне обошелся с доставкой всего 60 рублей. (Вольтметр: )


Амперметр я использовал свой, из старых запасов СССР.

ВАЖНО - внутри прибора есть резистор Тока (датчик Тока), необходимый нам по схеме (Рис. №1), поэтому, если будете использовать амперметр, то резистор Тока ставить дополнительно не надо, без амперметра ставить надо. Обычно RТока делается самодельный, на 2-х ватное сопротивление МЛТ наматывается провод D=0,5-0,6 мм, виток к витку на всю длину, концы припаяем к выводам сопротивления, вот и все.

Корпус прибора каждый сделает под себя.
Можно оставить полностью металлический, прорезав отверстия под регуляторы и приборы контроля. Я использовал обрезки ламината, их легче сверлить и выпиливать.

Добрый день, друзья!

А вы хотели бы узнать, как устроен блок питания компьютера? Сейчас мы попытаемся разобраться в этом вопросе.

Для начала отметим, что , как и любому электронному устройству, необходим источник электрической энергии . Вспомним, что бывают

Первичные и вторичные источники электропитания

Первичные - это, в частности, химические источники тока (элементы питания и аккумуляторы) и генераторы электрической энергии, находящиеся на электростанциях.

В компьютерах могут применяться:

  • литиевые элементы напряжением 3 В для питания КМОП микросхемы, в которой хранятся установки BIOS,
  • литий-ионные аккумуляторы (в ноутбуках).

Литиевые элементы 2032 питают микросхему структуру CMOS, хранящую настройки Setup компьютера.

Потребление тока при этом невелико (порядка единиц микроампер), поэтому энергии батареи хватает на несколько лет .

После исчерпания энергии такие источник энергии восстановлению не подлежат.

В отличие от элементов литий-ионные аккумуляторы являются возобновляемыми источниками. Они периодически то запасают энергию, то отдают ее. Сразу отметим, что любые аккумуляторы имеют ограниченное количество циклов заряд-разряд.

Но большая часть стационарных компьютеров питается не от аккумуляторов, а от сети переменного напряжения.

В настоящее время в каждом доме имеются розетки с переменным напряжением 220 В (в некоторых странах 110 — 115 В) частотой 50 Герц (в некоторых странах – 60 Герц), которые можно считать первичными источниками .

Но основные компоненты компьютера не могут непосредственно использовать такое напряжение.

Его необходимо преобразовать. Выполняет эту работу источник вторичного электропитания (народное название — «блок питания ») компьютера. В настоящее время почти все блоки питания (БП) - импульсные. Рассмотрим более подробно, как устроен импульсный блок питания.

Входной фильтр, высоковольтный выпрямитель и емкостный фильтр

На входе импульсного БП имеется входной фильтр. Он не пропускает помехи, которые всегда есть в электрической сети, в блок питания.

Помехи могут возникать при коммутации мощных потребителей энергии, сварке и т.п.

В то же время он задерживает помехи и самого блока, не пропуская их в сеть.

Если быть более точным, помехи в БП и из него проходят, но достаточно сильно ослабляются .

Входной фильтр представляет собой фильтр нижних частот (ФНЧ).

Он пропускает низкие частоты (в том числе сетевое напряжение, частота которого равна 50 Гц) и ослабляет высокие.

Отфильтрованное напряжение поступает на высоковольтный выпрямитель (ВВ). Как правило, ВВ выполнен по мостовой схеме из четырех полупроводниковых диодов.

Диоды могут быть как отдельными, так и смонтированными в одном корпусе. Существует и другое название такого выпрямителя — «диодный мост ».

Выпрямитель превращает переменное напряжение в пульсирующее, т. е. одной полярности.

Грубо говоря, диодный мост «заворачивает» отрицательную полуволну, превращая ее в положительную.

Пульсирующее напряжение представляет собой ряд полуволн положительной полярности. На выходе ВВ стоит емкостной фильтр - один или два последовательно включенных электролитических конденсатора.

Конденсатор - это буферный элемент, который может заряжаться, запасая энергию и разряжаться, отдавая ее.

Когда напряжение на выходе выпрямителя ниже некоей величины («провал»), конденсатор разряжается, поддерживая его на нагрузке. Если же оно выше, конденсатор заряжается, обрезая пики напряжения.

В курсе высшей математике доказывается, что пульсирующее напряжение представляет собой сумму постоянной составляющей и гармоник , частоты которых кратны основной частоте сети.

Таким образом, емкостный фильтр можно рассматривать здесь как фильтр нижних частот, выделяющий постоянную составляющую и ослабляющий гармоники. В том числе и основную гармонику сети — 50 Гц.

Источник дежурного напряжения

В компьютерном блоке питания имеется так называемый источник дежурного напряжения (+5 VSB).

Если вилка кабеля вставлена в питающую сеть, это напряжение присутствует на соответствующем контакте разъема блока питания. Мощность этого источника небольшая, он способен отдавать ток 1 — 2 А.

Именно этот маломощный источник и запускает гораздо более мощный инвертор. Если разъем блока питания вставлен в материнскую плату, то часть ее компонентов находится под напряжением + 5 VSB.

Сигнал на запуск инвертора подается с материнской платы. Причем для включения можно использовать маломощную кнопку.

В более старых моделях компьютеров устанавливались БП старого стандарта АТ. Они имели громоздкие выключатели с мощными контактами, что удорожало конструкцию. Использование нового стандарта АТХ позволяет «будить» компьютер одним движением или кликом «мышки». Или нажатием клавиши на клавиатуре. Это, конечно, удобно.

Но при этом надо помнить, что конденсаторы в источнике дежурного напряжения всегда находятся под напряжением . Электролит в них подсыхает, срок службы уменьшается.

Большинство пользователей традиционно включает компьютер кнопкой на корпусе, питая его через фильтр-удлинитель. Таким образом, можно рекомендовать после отключения компьютера исключать подачу напряжения на блок питания выключателем фильтра.

Выбор - удобство или надежность - за вами, уважаемый читатели.

Устройство источника дежурного напряжения

Источник дежурного напряжения (ИДН) содержит в себе маломощный инвертор.

Этот инвертор превращает высокое постоянное напряжение, полученное с высоковольтного фильтра, в переменное. Это напряжение понижается до необходимой величины маломощным трансформатором.

Инвертор работает на гораздо более высокой частоте, чем частота сети, поэтому размеры его трансформатора невелики. Напряжение со вторичной обмотки подается на выпрямитель и низковольтный фильтр (электролитические конденсаторы).

Напряжение ИДН должно находиться в пределах 4,75 - 5,25 В. Если оно будет меньше - основной мощный инвертор может не запуститься. Если оно будет больше, компьютер может «подвисать» и сбоить.

Для поддержания стабильного напряжения в ИДН часто используется регулируемый стабилитрон (иначе называемый источником опорного напряжения) и обратная связь. При этом часть выходного напряжения ИДН подается во входные высоковольтные цепи.

Заканчивая первую часть статьи, отметим, что для гальванической развязки входных и выходных цепей используется оптопара .

Оптопара содержит источник и приемник излучения. В чаще всего используется оптопара, содержащая в себе светодиод и фототранзистор.

Инвертор в ИДН собран чаще всего на мощном высоковольтном полевом или биполярном транзисторе. Мощный транзистор отличается от маломощных тем, что рассеивает бОльшую мощность и имеет бОльшие габариты.

В этом месте сделаем паузу. Во второй части статьи мы рассмотрим основной инвертор и низковольтную часть компьютерного блока питания.

С вами был Виктор Геронда.

До встречи на блоге!

P.S. Фото кликабельны, кликайте, рассматривайте внимательно схемы и удивляйте знакомых своей эрудицией!

Выполнять ремонт компьютерного «железа» самостоятельно – дело достаточно сложное. При этом, пользователь должен точно знать, какой именно из всех компонентов нуждается в ремонте. Ремонтировать блок питания компьютера имеет смысл, если он (как минимум) снят с гарантии, а также – стоимость замены делает такой ремонт действительно целесообразным. Качественный ремонт в СЦ может по цене доходить до стоимости «бюджетных» БП. Обычно, кое-что пользователь может сделать и сам… При условии, что имеет навыки работы с электрооборудованием (220 Вольт), и хорошо понимает опасность ошибки в подобной работе.

Рекомендации по самостоятельному ремонту компьютерных блоков питания:

  1. Подключение к сети 220 В любого блока питания необходимо осуществлять через «быстрый» предохранитель на ток не более 2А.
  2. Первый запуск после ремонтных работ производится последовательно с лампой накаливания. О коротком замыкании на входе устройства скажет накал лампы. Такой БП, включать в сеть – нельзя.
  3. В процессе как диагностики, так и ремонта, необходимо проводить разряд всех электролитических емкостей (после каждого включения/отключения). Нужно ждать 3-5 минут, либо использовать электролампу на 220В – вспышка укажет, что разряд действительно произведен.
  4. Все ремонтные операции проводятся при полностью отключенном от сети блоке питания.

Желательно, чтобы рядом с рабочим местом не было заземленных предметов (таких как: отопительные радиаторы, трубы и т.д.)

Собственно, в высоковольтную часть схемы БП – мы не «полезем». Самостоятельный ремонт сводится к: поиску «кольцевых» трещин; замене силовых диодов (если необходимо); замене «плохих» конденсаторов (если необходимо).

В любом случае, ремонт блока питания компьютераначинается с его демонтажа из ПК. Конечно, это стоит сделать, если вы на 100% уверены, что ремонтировать нужно именно БП.

Разбор корпуса самого БП осуществляется откручиванием саморезов (винтов), крепящих две половинки друг к другу. Используется крестовая отвертка.

Примечание: выполняя самостоятельный разбор БП, вы повреждаете пломбу изготовителя – что влечет лишение дальнейшей гарантии на это устройство.

Непосредственно о том, как производится ремонт блока питания и об основных неисправностях – рассказано далее. Чаще всего, отказы, которые встречаются, могут быть обнаружены и устранены достаточно просто:

  • Проверьте, присутствует ли «дежурное» напряжение (+5В SB). Это – фиолетовый провод 24-контактного (основного) разъема блока питания. Между «черным» и «фиолетовым» – должно быть напряжение +5 Вольт. Проверить его наличие можно и до разбора корпуса блока, при этом, сам БП должен быть включен в сеть.

  • Разобрали блок питания – смотрим на плату. Часто встречаются неисправные (вспухшие) электролитические конденсаторы. Это можно определить визуально, чаще всего подвержены дефекту именно электролитические конденсаторы не очень большой емкости (470-220 мкФ, и меньше). Такой конденсатор необходимо отпаять с платы (для этого, ее придется снять), а новый, должен быть той же емкости и рассчитан на то же (или – большее) напряжение. Внимание: соблюдайте полярность выводов! На импортных, «полосой» обозначен «минус».

  • Следующая неисправность – это выход из строя низковольтных диодов (12 или 5В). Они могут быть конструктивно выполнены как сборки из двух диодов (плоский корпус с тремя выводами), бывает и раздельная установка.


  • С проверкой/заменой диодов – немного сложнее, чем с конденсаторами. Для проверки, нужно выпаивать один вывод каждого диода (можно – и всю деталь). Как «звонится» исправный диод – все знают. При прямом подключении, тестер покажет значение (близкое к «0»), при обратном – ничего не показывает (сам тестер – включен в режиме «диод»):

  • На замену, рекомендуется устанавливать диоды Шоттки, имеющие аналогичный (или – больший) заявленный ток/напряжение.
  • Осуществляя ремонт блока питания самостоятельно, отверните винты самой платы и снимите ее (убедитесь еще раз, блок – должен быть обесточен). Внимательно смотря на монтаж, довольно быстро можно будет заметить дефекты «кольцевых трещин»:

Их нужно «пропаять», затем – все собрать и включить (возможно – все заработает).

Отдельно нужно сказать про «дежурное» питание. Как правило, ремонт блока питания путем просто замены сгоревших транзисторов, результата не даст – транзисторы снова сгорают, причем – те же. Виновником поломки может являться и трансформатор. Это – деталь дефицитная, которую трудно купить и найти. В редких случаях, причиной отсутствия 5В «дежурного» напряжения может быть изменение рабочей частоты, за которую отвечают «частотозадающие» детали: резистор и конденсатор (не электролитический).

Примечание: чтобы произвести отпайку детали, установленной на теплоотводе, предварительно демонтируют (откручивают) ее крепление. Установка – производится в обратном порядке (сначала – крепление, затем – пайка). Старайтесь не нарушать изоляцию детали от теплоотвода (как правило, используется слюда).

Запуск блока питания: проверьте наличие +5V SB. Если оно есть – попробуем запустить блок питания (соединяют «салатовый» провод, PS-ON, с «черным», общим).

На этом, возможности пользователя по самостоятельному ремонту – можно сказать, исчерпываются.

Внимание! Не занимайтесь самостоятельным ремонтом блока питания, если вы не имеете опыта в электротехнике! После каждого отключения, необходимо разряжать высоковольтные конденсаторы (ждать 3-5 минут)!

Подробнее: «вспухшие» конденсаторы и их замена

Надеемся, по фотографии – понятно, какие конденсаторы «вспухли», какие – нет.

Если на плате есть несколько одинаковых (или – набор параллельно соединенных), из которых «вспух» хотя бы один – менять лучше все. Фирмы, производящие надежную продукцию: Nichicon, Rubycon. Но такие вы – вряд ли найдете. Из бюджетных, можно посоветовать Teapo, Samsung.

При установке, необходимо соблюдать полярность (рабочее напряжение – должно быть таким же или больше, чем обозначено на заменяемом).

На фото – конденсатор на 16 Вольт, 470 МикроФарад (Rubycon, самая дорогая серия).

Технология пайки

Производя монтаж и демонтаж деталей на плате компьютерного БП, рекомендуется использовать паяльник мощностью 40 Ватт. В отдельных случаях, для громоздких деталей («мощных» выводов), можно пользоваться паяльником и на 60 Ватт (но – не более).

Самый простой припой (типа ПОС-60) – в данном случае, подходит. Лучше взять в виде тонкой проволоки.

Флюс – не используется (достаточно иметь в наличии обычную канифоль).

Демонтаж детали:

  • Греть паяльником, до полного расплавления припоя;
  • Используя устройство для отпайки (из пластика), быстро произвести откачку жидкого припоя:

  • Повторить пункты 1 и 2.

Правильно отпаянная деталь, легко самостоятельно выходит из платы (не нужно «поддавливать» вывод паяльником).

Если демонтируется конденсатор – предварительно можно «откусывать» выступающий вывод бокорезами.

Если отпаивается силовой элемент – необходимо полностью выкрутить винт крепления.

Замена предохранителя

В схеме любого БП, предохранитель идет сразу после розетки питания (последовательно с одной из фаз 220 В). Сами предохранители, как детали, различаются по силе тока (то есть, сколько ампер он выдержит в максимуме). Также, предохранители делятся на «F»-тип («быстрые»), «T»-тип («тепловые»).

Если предохранитель необходимо заменить – вы должны выяснить, на какой номинал (силу тока) он был рассчитан. Также, желательно знать «тип».

Замена на предохранитель с большим номиналом – не допускается. Замена F на T – тоже.

Примечание: если вы знаете, какой нужен «ток», но не знаете «тип», можете устанавливать новый предохранитель типа «F».

Именно так. А чтобы не было вопросов, почему он чаще сгорает – проще будет все же узнать достоверные данные (как номинал, так и тип).

Если предохранитель – в стеклянном цилиндрическом корпусе, то в любом случае он рассчитан на 220В электросети. Применение других типов конструкции – не допускается.

Что используется (приборы и материалы)

При выполнении ремонта блока питания компьютера, не понадобятся какие-то «нестандартные» устройства или оборудование:

Но то, что на рис. – подразумевает, что вы как минимум умеете обращаться с: паяльником, тестером (щипцами, бокорезами…). Для профессионального ремонта, здесь должен был быть осциллограф (достаточно полосы пропускания 3 МГц). Вот только, цена его… (как 2-3 новых БП).

Надеемся, приведенная здесь информация – будет полезна для выполнения «начального» ремонта. Более сложные операции (ремонт трансформатора, работа с высоковольтной «обвязкой», восстановление генерации) – под силу профессионалам (имеющим опыт именно в ремонте БП).

Импульсный блок питания – не очень «простое» устройство, в некоторых случаях восстановление жизнеспособности – производится полной заменой деталей (того или иного узла). Более сложный, «самостоятельный» ремонт – не обязан в каждом случае «увенчаться успехом»…

Характеристики диодов

Сам по себе диод, как отдельный элемент, бывает одного из трех типов: просто диод (p-n переход), СВЧ-диод, и диод Шоттки (квантовый). Нас интересует только последний из них.

Задача диода – пропускать ток в одну сторону (и не пропускать – в другую). Если падение напряжения в прямом включении на обычных диодах – 1 или 2 вольта, то на диодах Шоттки – близко к нулю. Напряжения, получаемые в компьютерном БП – невысокие (12 Вольт и 5), вот почему используются только Шоттки.

Вы можете посмотреть, чему равно падение напряжения на диоде. Тестер должен быть в режиме «диод» (как говорилось выше). Если он «покажет» от 0,015 до 0,7 – то, все правильно. Такие значения – типичны для Шоттки-диода (меньше – это уже «пробой»).

Внутри схем блоков питания, используют пару диодов, включая их встречно:

Для положительного напряжения – используют «сборки» (трехвыводные, в них – 2 диода). Одиночные диоды (круглый корпус) – обычно используют для получения отрицательных напряжений. При замене, одиночные диоды (даже если «полетел» один), рекомендуется менять «парой».

Как лучше подобрать замену? Если на «прямоугольном» пластмассовом корпусе (3-х выводном) – написана марка:

То, с «круглыми» – будет сложнее. Полоска на корпусе означает лишь «направление».

Если мы знаем марку диодов – ищем такие же, или – смотрим параметры (напряжение, ток), и ищем аналог (с таким же или чуть большим значением).

Если не знаем – что ж, надо «скачать» схему вашего блока питания, и посмотреть. Между прочим, в СЦ тоже так поступают (а вот думать, гадать, какая там сила тока – не очень благодарное занятие). Не забывая, что компьютерные БП – содержат только диоды Шоттки.

Примечание: устанавливать диодные сборки/диоды с заведомо большими параметрами тока и напряжения – не рекомендуется (допустим: было 50 Вольт 12 А, а ставят 50 Вольт 20 А). Не нужно этого делать, так как: может быть другой корпус. Кроме чего, есть «дополнительные» параметры (которые в более «мощном» случае – отличаются «не в лучшую» сторону).

Типичный пример (сборки, маломощный БП): 12CTQ040 (40В, 12А); 10CTQ150 (150В, 10А).

Пример одиночных диодов: 90SQ045 (45В, 9А); SR350 (50В, 3А).

Замена вентилятора БП

Как выбрать новый вентилятор для БП? Он, то есть вентилятор, должен быть: с гидро-подшипником, трехпиновый (3 провода в кабеле), и – подходящих размеров (12см/8 см).

Еще – важно, что в БП используется низкооборотистый «вент», обычно это 1200-1400 (для 12 см) и 1600-2000 (для 8).

При старте БП, на вентилятор подается не все напряжение (не 12 Вольт), а, скажем так, 3-5 Вольт. Важно, чтобы вентилятор умел «стартовать» при таких напряжениях (иначе, он не раскрутится после включения). Уточняйте «стартовое напряжение» вентилятора, будьте внимательны.

Способ подключения вентилятора к БП:

  1. Два проводка (черный, красный) припаяны к плате блока питания.
  2. Два проводка (черный, красный) присоединяются коннектором 2-пин к коннектору платы.
  3. Три проводка (черный, красный + желтый) присоединяются коннектором 3-пин к плате.

В первых двух случаях, желтый провод – тахометр – можно вывести из корпуса БП для мониторинга самой материнской платой.

Обратите внимание на такой параметр, как высота вентилятора. Если взять больше, чем нужно, корпус БП – «не закроется».

При замене, важно, чтобы производительность нового вентилятора (в «литрах в минуту»), была бы как минимум, той же, что и у старого вентилятора. Пожалуй, этот параметр – является основным (в описании товара, он обычно – указывается).

Таким образом, можно сразу провести «мод» блока питания, установив не менее производительный, но более «тихий» пропеллер (гидро-подшипник в бюджетных БП – не часто идет «по умолчанию»).

Вот пожалуй и все, что можно сказать про вентиляторы. Выбирайте.

Эквивалент нагрузки

Блок питания, при запуске «проводком», стартовал. Не спешите устанавливать его в компьютер. Попробуем протестировать БП на эквиваленте нагрузки.

Берутся такие резисторы:

Они называются «ПЭВ» (марка медного провода, из которого сделаны). Можно взять на 25 Ватт, или на 10 (на 7,5):

Главное здесь – составить схему из них (соединяя: параллельно, последовательно), чтобы получилось «мощное» сопротивление (3 Ома и 5-6 Ом).

5-омную нагрузку, мы будем включать в «12В» линию, 3-омную – к «5В». Для подсоединения к БП, используется Molex-разъем (желтый провод – это 12 В):

Примечание: при создании «эквивалента», учитывайте мощность, которая приходится на каждый резистор (она не должна превосходить значение, на которое он рассчитан).

Зная напряжение на резисторе, мощность находится по закону: напряжение в квадрате / сопротивление.

Пример: 4 резистора по 20 Ом – «в параллель», мощность каждого – 7,5 Ватт (пойдет на тестирование линии «12-вольт»).

Можно использовать и галогенные лампочки на 12V (допустим: две по 10 Ватт, в параллель).

Итак, подключив эквивалент нагрузки к Molex-разъему, пробуем включить блок питания («салатовый»/«черный», разъем ATX). Шнур «220 Вольт», тоже должен быть «штатный».

Если включение произошло – подождите 10 секунд. Не уходит ли блок в защиту? Вентилятор должен вращаться, все напряжения – находиться в нужном диапазоне (допускается отклонение не более 5-6%).

Собственно, в таком, «щадящем» для него режиме, любой БП должен работать сколь угодно долго.

Можно сделать и более мощный «эквивалент». То есть, сопротивление в Омах – будет еще ниже. Главное – не «переборщить» (для каждого БП, максимальная сила тока – указана):

Сила тока через нагрузку равна напряжению, деленному на ее сопротивление (в Омах). Ну, это – вы и так знаете…

При тестировании, «нагрузка» будет включаться только в две линии («плюс 5», «плюс 12»). Этого, в общем, достаточно. Другие напряжения («минусы»), можно промерить вольтметром (на 24-пиновом штекере).

Примечание: если линию «+12» вы хотите «испытывать» с силой тока выше 6А – не используйте Molex-разъемы! 4-пиновый разъем питания процессора (+12 В) – держит до 10 Ампер. При необходимости, нагрузка «раскидывается» между двумя разъемами (процессорным, «молексом»).

Примечание 2: При выполнении любых соединений, используйте провод достаточного сечения (на 1 мм кв. – ток 10 А).

На эквиваленте нагрузки, будет выделяться тепло (тепловая мощность равна электрической). Позаботьтесь об охлаждении (притоке воздуха). В процессе тестирования, первые 2-3 минуты – лучше следить, не перегреется ли один из резисторов.

На фото – «серьезный» подход к созданию «эквивалента».

Ремонт блока питания