Схема зарядки аккумулятора интерскол 12 вольт. Зарядное устройство аккумулятора шуруповерта. Виды зарядных устройств


Схема Зарядного Устройства Для Шуруповерта Интерскол 12в

Без колебаний, электроинструмент существенно упрощает наш труд, также уменьшает время рутинных операций. В ходу на данный момент и различные шуруповёрты с автономным питанием.

Разглядим устройство, принципную схему и ремонт зарядного устройства для аккумов от шуруповёрта конторы "Интерскол".

Первым делом взглянем на принципную схему. Она срисована с реальной печатной платы зарядного устройства.

Интегральная схема зарядного устройства (CDQ-F06K1).

Силовая часть зарядного устройства состоит из силового трансформатора GS-1415. Мощность его около 25-26 Ватт. Считал по упрощённой формуле, о какой занимается уже гласил тут.

Пониженное переменное напряжение 18V со вторичной обмотки трансформатора поступает на диодный мост через плавкий предохранитель FU1. Диодный мост состоит из 4 диодов VD1-VD4 типа 1N5408. Любой из диодов 1N5408 выдерживает прямой ток 3 ампера. Электролитический конденсатор C1 сглаживает пульсации напряжения после диодного моста.

База схемы управления – микросхема HCF4060BE , которая является 14-разрядным счётчиком с элементами для задающего генератора. Она управляет биполярным транзистором структуры p-n-p S9012. Транзистор нагружен на электрическое реле S3-12A. На микросхеме U1 реализован типичный таймер, включающий реле на данное время заряда – около 60 минут.

При включении зарядника в сеть и подключении аккума контакты реле JDQK1 разомкнуты.

Микросхема HCF4060BE запитывается от стабилитрона VD6 – 1N4742A (12V). Стабилитрон ограничивает напряжение с сетевого выпрямителя до уровня 12 вольт, потому что на его выходе около 24 вольт.

Если посмотреть на схему, то легко увидеть, что до нажатия кнопки "Запуск" микросхема U1 HCF4060BE обесточена – отключена от источника питания. При нажатии кнопки "Запуск" напряжение питания от выпрямителя поступает на стабилитрон 1N4742A через резистор R6.

Шуруповерт зарядка. Ремонт зарядного устройства шуруповерта Интерскол 18 В. Своими руками.

Читайте так же

Напряжение питания через открытый транзистор S9012 поступает на обмотку электрического реле JDQK1. Контакты реле замыкаются, на аккумулятор поступает напряжение питания. Начинается заряд аккума. Диодик VD8 (1N4007 ) шунтирует реле и защищает транзистор S9012 от скачка оборотного напряжения, которое появляется при обесточивании обмотки реле.

Диодик VD5 (1N5408) защищает аккумулятор от разряда, если будет отключено сетевое питание.

Что будет когда вам надоест, когда контакты кнопки "Запуск" разомкнутся? По схеме видно, что при замкнутых контактах электрического реле плюсовое напряжение через диодик VD7 (1N4007 ) поступает на стабилитрон VD6 через гасящий резистор R6. В ходе микросхема U1 остаётся присоединенной к источнику питания даже если контакты кнопки будут разомкнуты.

Сменный аккумулятор GB1 по сути есть блок, в каком поочередно соединено 12 никель-кадмиевых (Ni-Cd) частей, кто по 1,4 вольта.

На принципной схеме элементы сменного аккума обведены пунктирной линией.

Суммарное напряжение такового составного аккума составляет 14,4 вольт.

Также в блок аккумов встроен датчик температуры. На схеме он обозначен как SA1. Соблюдая принцип деяния он похож на термовыключатели серии KSD. Маркировка термовыключателя JJD-45 2A . Конструктивно он закреплён на одном из Ni-Cd частей и плотно прилегает к нему.

Один из выводов термодатчика соединён с минусовым выводом батареи аккумуляторной. 2-ой вывод подключен к отдельному, третьему разъёму.

САМАЯ ПРОСТАЯ ДОРАБОТКА стандартной зарядки интерскол под Li-ion-18650.

При включении в сеть 220V зарядное устройство ни как не проявляет выполнение своих функций. Индикаторы (зелёный и красноватый светодиоды) не сияют. При подключении сменного аккума зажигается зелёный светодиод, который свидетельствует что же на самом деле, что зарядник готов к работе.

При нажатии кнопки "Запуск" электрическое реле замыкает свои контакты, и аккумулятор подключается к выходу сетевого выпрямителя, начинается процесс заряда аккума. Зажигается красноватый светодиод, а зелёный угасает. По истечении 50 – 60 минут, реле размыкает цепь заряда аккума. Зажигается светодиод зелёного цвета, а красноватый угасает. Зарядка завершена.

После зарядки напряжение на клеммах аккума достигает 16,8 вольт.

Таковой метод работы примитивен и с течением времени приводит к так именуемому "эффекту памяти" у аккума. Другими словами ёмкость аккума понижается.

Если следовать правильному методу заряда аккума в начале любой из его частей необходимо разрядить до 1 вольта. Т.е. блок из 12 аккумов необходимо разрядить до 12 вольт. В заряднике для шуруповёрта таковой режим не реализован .

Вот зарядная черта учебника Ni-Cd аккумуляторного элемента на 1,2V.

Читайте так же

На графике показано, как в свое время заряда изменяется температура элемента (temperature ), напряжение на его выводах (voltage ) и относительное давление (relative pressure ).

Спец контроллеры заряда для Ni-Cd и Ni-MH аккумов, обычно, работают по так именуемому способу дельта.ΔV . На рисунке видно, что в нижней части зарядки элемента происходить уменьшение напряжения на маленькую величину – порядка 10mV (для Ni-Cd) и 4mV (для Ni-MH). По этому изменению напряжения контроллер и определяет, зарядился ли элемент.

Так же в свое время зарядки происходит контроль температуры элемента при помощи термодатчика. Здесь же на графике видно, что температура зарядившегося элемента составляет около 45 0 С.

Вернёмся к схеме зарядного устройства от шуруповёрта. Сейчас понятно, что термовыключатель JDD-45 выслеживает температуру аккумуляторного блока и разрывает цепь заряда, когда температура достигнет кое-где 45 0 С. При такое происходит ранее того, как сработает таймер на микросхеме HCF4060BE. Такое происходит, когда емкость аккума снизилась по причине "эффекта памяти". В этом случае полная зарядка такового аккума происходит чуток резвее, чем за 60 минут.

Как мы рассмотрели из схемотехники, метод заряда не наиболее подходящий и с течением времени приводит к потере электроёмкости аккума. Для зарядки аккума воспользуйтесь универсальным зарядным устройством, к примеру, таким, как Turnigy Accucell 6.

С годами по причине износа и влажности кнопка SK1 "Запуск" начинает плохо срабатывать, а при и вообщем отказывает. Понятно, что при неисправности кнопки SK1 мы не сможем подать питание на микросхему U1 и запустить таймер.

Также содержит место поломка стабилитрона VD6 (1N4742A) и микросхемы U1 (HCF4060BE). Тогда при нажатии кнопки включение зарядки не происходит, индикация отсутствует.

В моей практике был случай, когда стабилитрон пробило, мультиметром он "звонился" как кусочек провода. После его смены зарядка стала исправно работать. Для смены подойдёт хоть какой стабилитрон на напряжение стабилизации 12V и мощностью 1 Ватт. Проверить стабилитрон на "пробой" сможете, так же как и обыденный диодик. О проверке диодов я уже говорил.

После ремонта необходимо проверить работу устройства. Нажатием кнопки запускаем зарядку АКБ. Примерно через час зарядное устройство должно отключиться (засветится индикатор "Сеть" (зелёный). Вынимаем АКБ и делаем "контрольный" застыл напряжения на её клеммах. АКБ обязана быть заряженной.

В том случае элементы печатной платы исправны не вызывают подозрения, а включения режима заряда не происходит, то следует проверить термовыключатель SA1 (JDD-45 2A) в аккумуляторном блоке.

Схема довольно примитивна и даже не вызывает заморочек при диагностике неисправности и ремонте даже у начинающих радиолюбителей.

Читайте так же

Зарядное устройство для шуруповерта – как избрать можно ли сделать самому Шуруповерт встречаются в каждой семье, где производятся простый ремонт. Хоть какому электроприбору требуется стационарное электричество или блок питания. Так как весьма модными являются аккумуляторные шуруповерты - требуется вдобавок зарядник. Он идет в комплекте с дрелью, ...

Емкость их в среднем составляет 12 мАч. Для того чтобы устройство всегда оставалось в рабочем состоянии, необходимо зарядное устройство. Однако по напряжению они довольно сильно отличаются.

В наше время выпускаются модели на 12, 14 и 18 В. Также важно отметить, что производители применяют различные комплектующие элементы для зарядных устройств. Для того чтобы разобраться в этом вопросе, следует взглянуть на стандартную схему зарядного.

Схема зарядки

Стандартная электрическая схема зарядного устройства шуруповерта включает в себя микросхему трехканального типа. В данном случае транзисторов для модели на 12 В потребуется четыре. По емкости они могут довольно сильно отличаться. Для того чтобы устройство могло справляться с высокой тактовой частотой, на микросхеме крепятся конденсаторы. Они для зарядок используются как импульсного, так и переходного типа. В данном случае важно учитывать особенности конкретных аккумуляторных батарей.

Непосредственно тиристоры используются в устройствах для стабилизации тока. В некоторых моделях установлены тетроды открытого типа. По проводимости тока они отличаются между собой. Если рассматривать модификации на 18 В, то там часто имеются дипольные фильтры. Указанные элементы позволяют с легкость справляться с перегрузками в сети.

Модификации на 12В

На 12 В шуруповерта (схема показана ниже) представляет собой набор транзисторов емкостью до 4.4 пФ. В данном случае проводимость в цепи обеспечивается на уровне 9 мк. Для того чтобы тактовая частота резко не повышалась, применяются конденсоры. Резисторы у моделей используются в основном полевые.

Если говорить про зарядки на тетродах, то там дополнительно имеется фазовый резистор. С электромагнитными колебаниями он справляется хорошо. Отрицательное сопротивление зарядками на 12 В выдерживается в 30 Ом. Используются они чаще всего для аккумуляторных батарей на 10 мАч. На сегодняшний день они активной применяются в моделях торговой марки "Макита".

Зарядные устройства на 14 В

Схема зарядного устройства для шуруповерта на 14 В транзисторов в себя включает пять штук. Непосредственно микросхема для преобразования тока подходит лишь четырехканального типа. Конденсаторы у моделей на 14 В используются импульсные. Если говорить про батареи с емкостью в 12 мАч, то там дополнительно устанавливаются тетроды. В данном случае диодов на микросхеме предусмотрено два. Если говорить про параметры зарядок, то проводимость тока в цепи, как правило, колеблется в районе 5 мк. В среднем емкость резистора в цепи не превышает 6.3 пФ.

Непосредственно нагрузки тока зарядки на 14 В способны выдерживать в 3.3 А. Триггеры в таких моделях устанавливаются довольно редко. Однако если рассматривать шуруповерты торговой марки "Бош", то там они используются часто. В свою очередь у моделей "Макита" они заменяются волновыми резисторами. С целью стабилизации напряжения они подходят хорошо. Однако частотность зарядки может изменяться сильно.

Схемы моделей на 18 В

На 18 В схема зарядного устройства для шуруповерта предполагает использование транзисторов только переходного типа. Конденсаторов на микросхеме имеется три. Непосредственно тетрод устанавливается с Для стабилизации предельной частоты в устройстве применяется сеточный триггер. Если говорить про параметры зарядки на 18 В, то следует упомянут о том, что проводимость тока колеблется в районе 5.4 мк.

Если рассматривать зарядки для шуруповертов компании "Бош", то данный показатель может быть выше. В некоторых случаях для улучшения проводимости сигнала применяются хроматические резисторы. В данном случае емкость конденсаторов не должна превышать 15 пФ. Если рассматривать зарядные устройства торговой марки "Интерскол", то в них трансиверы используются с повышенной проводимостью. В данном случае параметр максимальной токовой нагрузки может доходить до 6 А. В конце следует упомянуть об устройствах компании "Макита". Многие из аккумуляторных моделей оснащаются качественными дипольными транзисторами. С повышенным отрицательным сопротивлением они справляются хорошо. Однако проблемы в некоторых случаях возникают с магнитными колебаниями.

Зарядные устройства "Интрескол"

Стандартное зарядное устройство шуруповерта "Интерскол" (схема показана ниже) включает в себя двуканальную микросхему. Конденсаторы подбираются для нее все с емкостью в 3 пФ. В данном случае транзисторы у моделей на 14 В используются импульсного типа. Если рассматривать модификации на 18 В, то там можно встретить переменные аналоги. Проводимость у данных устройств способна доходить до 6 мк. В данном случае батареи используются в среднем на 12 мАч.

Схема для модели "Макита"

Схема зарядного устройства имеет микросхему трехканального типа. Всего транзисторов в цепи предусмотрено три. Если говорить про шуруповерты на 18 В, то в данном случае конденсаторы устанавливаются с емкостью 4.5 пФ. Проводимость обеспечивается в районе 6 мк.

Все это позволяет снять нагрузку с транзисторов. Непосредственно тетроды применяются открытого типа. Если говорить про модификации на 14 В, то зарядки выпускаются со специальными триггерами. Данные элементы позволяют отлично справляться с повышенной частотностью устройства. При этом скачки в сети им не страшны.

Устройства для зарядки шуруповертов "Бош"

Стандартная шуруповерта "Бош" включает в себя микросхему трехканального типа. В данном случае транзисторы имеются импульсного типа. Однако если говорить про шуруповерты на 12 В, то там установлены переходные аналоги. В среднем пропускная способность у них имеется на уровне 4 мк. Конденсаторы в устройствах применяются с хорошей проводимостью. Диодов у зарядок представленного бренда имеется два.

Триггеры в устройствах используются только на 12 В. Если говорить про систему защиты, то трансиверы применяются лишь открытого типа. В среднем токовую нагрузку они способны переносить в 6 А. В данном случае отрицательное сопротивление в цепи не превышает 33 Ом. Если отдельно говорить про модификации на 14 В, то выпускаются они под батареи на 15 мАч. Триггеры не используются. При этом конденсаторов в схеме имеется три.

Схема для модели "Скил"

Схема зарядного устройства включает в себя трехканальную микросхему. В данном случае модели на рынке представлены на 12 и 14 В. Если рассматривать первый вариант, то транзисторы в цепи используются импульсного типа. Приводимость тока у них равняется не более 5 мк. В данном случае триггеры во всех конфигурациях используются. В свою очередь тиристоры применяются только для зарядок на 14 В.

Конденсаторы у моделей на 12 В устанавливаются с варикапом. В данном случае больших перегрузок они не способны выдержать. При этом транзисторы перегреваются довольно быстро. Непосредственно диодов в зарядке на 12 В имеется три.

Применение регулятора LM7805

Схема зарядного устройства для шуруповерта с регулятором LM7805 включает в себя только двухканальные микросхемы. Конденсаторы используются на ней с емкостью от 3 до 10 пФ. Встретить регуляторы данного типа чаще всего можно у моделей торговой марки "Бош". Непосредственно для зарядок на 12 В они не подходят. В данном случае параметр отрицательного сопротивления в цепи доходит до 30 Ом.

Если говорить про транзисторы, то они у моделей применяются импульсного типа. Триггеры для регуляторов использоваться могут. Диодов в цепи предусмотрено три. Если говорить про модификации на 14 В, то тетроды для них подходят лишь волнового типа.

Использование транзисторов BC847

Схема зарядного устройства для шуруповерта на транзисторах BC847 является довольно простой. Используются указанные элементы чаще всего компанией "Макита". Подходят они для аккумуляторов на 12 мАч. В данном случае микросхемы используются трехканального типа. Конденсаторы применяются с двоенными диодами.

Непосредственно триггеры используются открытого типа, а проводимость тока у них находится на уровне 5.5 мк. Всего транзисторов для зарядки в 12 В потребуется три. Один из них устанавливается у конденсаторов. Остальные в данном случае находятся за опорными диодами. Если говорить про напряжение, то зарядки на 12 В перегрузки с данным транзисторами способны переносить в 5 А.

Устройство на транзисторах IRLML2230

Схемы зарядки с транзисторами данного типа встречаются довольно часто. Компания "Интрескол" использует их в модификациях на 14 и 18 В. В данном случае микросхемы применяются только трехканального типа. Непосредственно емкость указанных транзисторов равняется 2 пФ.

Перегрузки тока от сети они переносят хорошо. В данном случае показатель проводимости в зарядках не превышает 4 А. Если говорить про другие компоненты, то конденсаторы устанавливаются импульсного типа. В данном случае их потребуется три. Если говорить про модели на 14 В, то в них тиристоры для стабилизации напряжения имеются.

Использование, электроинструмента существенно облегчает наш труд и сокращает время сборки. В настоящее время большую популярность набрали шуруповерты с автономным питанием от аккумуляторной батареи. В рамках данной статьи рассмотрим схему типичного зарядного устройства для шуруповерта А также советы по ремонту и варианты радиолюбительских конструкций.

Силовую часть зарядного устройства шуроповерта представляет силовой трансформатор типа GS-1415 рассчитанный на мощность 25 Ватт.

Со вторичной обмотки трансформатора снимается пониженное переменное напряжение номиналом 18В оно следует на из 4 диодов VD1-VD4 типа 1N5408, через плавкий . Диодный мост. Каждый полупроводниковый элемент 1N5408 рассчитан на прямой ток до трех ампер. Электролитическая емкость C1 сглаживает пульсации появляющиеся в схеме после диодного моста.

Управление реализовано на микросборке HCF4060BE , которая совмещает в себе 14-разрядным счетчиком с компонентами задающего генератора. Она управляет типа S9012. Он нагружен на реле типа S3-12A. Таким образом схемотехнически реализован таймер, включающий реле на время заряда аккумуляторной батареи около часа. При включении ЗУ и подсоединения аккумулятора контакты реле находятся в нормально разомкнутом положении. HCF4060BE получает питание через 1N4742A на 12 вольт, т.к с выхода выпрямителя идет около 24 вольт.

При замыкании кнопки "Пуск" напряжение с выпрямителя начинает следовать на стабилитрон через сопротивление R6, затем стабилизированное напряжение идет на 16 вывод U1. Открывается транзистор S9012, которым управляет HCF4060BE. Напряжение через открытые переходы транзистора S9012 следует на обмотку реле. Контакты последнего замыкаются, и аккумулятор начинает заряжаться. Защитный диод VD8 (1N4007) шунтирует реле и защищает VT от скачка обратного напряжения, которое возникнет в момент обесточивания обмотки реле. VD5 не дает разряжаться аккумулятору при отключении сетевого напряжения. С размыканием контактов кнопки "Пуск" ничего не произойдет т.к питание идет через диод VD7 (1N4007), стабилитрон VD6 и гасящий резистор R6. Поэтому микросхема будет получать питание даже после отпускания кнопки.

Сменный типичный аккумулятор от электроинструмента собран из отдельных последовательно соединенных никель-кадмиевых Ni-Cd аккумуляторов, каждый по 1,2 вольта, т.о их 12 штук. Суммарное напряжение такой батареи будет около 14,4 вольта. Кроме того в блок аккумуляторов добавлен датчик температуры - SA1 он приклеен к одной из Ni-Cd батарей и плотно прилегает к ней. Один из выводов терморегулятора подключен к минусу аккумуляторной батареи. Второй вывод подсоединен к отдельному, третьему разъему.

При нажатии кнопки "Пуск" реле замыкает свои контакты, и начинается процесс заряда батареи. Загорается красный светодиод. Через час, реле своими контактами рвет цепь заряда аккумулятора шуроповерта. Загорается зеленый светодиод, а красный тухнет.

Термоконтакт отслеживает температуру батареи и разрывает цепь заряда, если температура выше 45°. Если такое случается раньше чем отработает, это говорит об присутствии "эффекта памяти".

Основой конструкции является регулируемый стабилизатор положительного напряжения. Он допускает работу с током нагрузки до 1,5А, которого вполне достаточно для заряда аккумуляторов.

Переменное напряжение величиной 13В, снимается с вторичной обмотки трансформатора, выпрямляется диодным мостом D3SBA40. На его выходе стоит фильтрующий конденсатор С1, который снижает пульсации выпрямленного напряжения. С выпрямителя постоянное напряжение поступает на интегральный стабилизатор, выходное напряжение, которого задается сопротивлением резистора R4 на уровне 14,1В (Зависит от типа АКБ шуруповерта). Датчиком тока зарядки является сопротивление R3, параллельно которому подсоединено подстроечное сопротивление R2, с помощью этого сопротивления задается уровень зарядного тока, который соответствует 0,1 от емкости аккумулятора. На первом этапе батарея заряжается стабильным током, затем, когда зарядный ток станет меньше величины тока ограничения, АКБ будет заряжаться более низким током до напряжения стабилизации DA1.


Датчиком зарядного тока для светодиода HL1 является VD2. В этом случае HL1 будет индицировать ток номиналом до 50 миллиампер. Если в качестве датчика тока использовать R3, то светодиод погаснет при токе 0,6А, что было бы слишком рано. Аккумулятор не успел бы зарядиться. Это устройство можно использовать и для шестивольтовых аккумуляторов.

Аккумуляторный шуруповерт является альтернативой обычной отвёртке при выполнении как небольших задач, так и крупных ремонтных проектов в доме. Инструмент доступен по цене, им легко пользоваться, а особым преимуществом является отсутствие провода, обычного для электроинструментов. Для периодической подзарядки аккумуляторов используется зарядное устройство для шуруповерта.

Преимущества аккумуляторных инструментов

Сегодня существует множество приспособлений, которые успешно справляются с монтажными работами, использующих крепёж: отвёртки, дрели, сверлильные станки, многие из них имеют зарядное устройство для шуруповерта.

Маленькие, лёгкие, мобильные и автономные шуруповёрты обладают преимуществами:

Устройство беспроводных источников питания

Иногда для старых моделей инструмента невозможно приобрести новый зарядник и необходима доработка или сделать новый самостоятельно. Для свинцово-кислотных батарей Ni-Cd и Li-ion потребуется схема зарядного устройства для шуруповёрта 18 вольт. Основными особенностями этого универсального источника являются:

  1. Напряжение постоянного тока.
  2. Автоматическое отключение при полной зарядке.
  3. Максимальный ток 5 ампер, аккумуляторы могут заряжаться в обычном режиме.
  4. Полностью настраиваемый режим согласно спецификациям батареи.
  5. Низкая себестоимость.
  6. Оптимальная электросхема. Никаких специальных деталей не требуется, все они стандартные и легко доступны.
  7. Светодиодные индикаторы для контроля состояния отсечки и зарядки.
  8. Подходит для гаражей и домашнего использования.

Это многоцелевое приспособление представляет собой источник постоянного напряжения на 5 ампер, однако, для зарядки меньшего тока может потребоваться дополнительная цепь постоянного тока между входным источником питания.

При глубокой зарядке батарея может перегреваться, что должно быть защищено автоматической схемой контроллера температуры или охлаждением вентилятора. Список деталей для ремонта шуруповёрта своими руками:

  1. Резисторы.
  2. Конденсаторы.
  3. Симистры.
  4. Стабилитроны.
  5. Редуктор.

Ремонт источников тока

У аккумуляторных батарей в действительности нет сложных запасных частей, так как она собирается из простейших зарядных элементов. Для того чтобы определиться с ремонтом нужно открыть источник и проверить наличие повреждений. Инструменты и материалы, которые понадобятся при выполнении ремонта:

  • Мультиметр.
  • Отвёртка.
  • Очиститель электрических контактов.
  • Изолента.

Бывают случаи, когда катушка беспроводной отвёртки имеет дефект и, следовательно, перегревает устройство. Изоляция легко плавится, аккумуляторы выходят из строя и беспроводная отвёртка не может использоваться. Техническую ошибку не всегда можно определить внешним осмотром и нужна разборка инструмента.

Последовательность операций:

Диагностика состояния электроинструмента

Горячие поверхности беспроводной отвёртки и батареи свидетельствуют о перегреве инструмента. Перегрев - это процесс, который может произойти в двух случаях. С одной стороны, шуруповёрт имеет внутренний дефект, а с другой стороны, возможно, что он используется неправильно. Для этого перед ремонтом нужно провести проверку:

Шуруповерты производит большое количество фирм, особенно популярны инструменты фирм Интерскол, Bosch, Макита. Обычно они чрезвычайно прочны и надёжны, тем не менее отдельные части могут изнашиваться. Например, когда при нажиме на курок дрель не работает. Такая поломка говорит о том, что не действует триггер (кнопка). Замена триггера - довольно простая операция. Перед началом ремонта аккумулятор должен быть удалён, чтобы предупредить получение травмы при включении спускового механизма двигателя. Порядок проведения замены регулятора на примере зарядного устройства для шуруповерта Бош:

Другой вид ремонта шуруповёрту Бош, например, или от другого известного производителя требуется намного реже и его лучше доверить сервисному центру.

Аккумуляторные шуруповёрты в наши дни достаточно надёжны, поэтому на самом деле трудно найти случаи поломок модели с напряжением 18 В. Литий-ионные аккумуляторы имеют отличное время автономной работы и низкие скорости саморазряда, благодаря чему инструменты, оснащеные ими, постоянно находят применение в домашнем хозяйстве.

Без сомнений, электроинструмент значительно облегчает наш труд, а также сокращает время рутинных операций. В ходу сейчас и всевозможные шуруповёрты с автономным питанием.

Рассмотрим устройство, принципиальную схему и ремонт зарядного устройства для аккумуляторов от шуруповёрта фирмы "Интерскол".

Для начала взглянем на принципиальную схему. Она срисована с реальной печатной платы зарядного устройства.

Печатная плата зарядного устройства (CDQ-F06K1).

Силовая часть зарядного устройства состоит из силового трансформатора GS-1415. Мощность его около 25-26 Ватт. Считал по упрощённой формуле, о которой уже говорил .

Пониженное переменное напряжение 18V со вторичной обмотки трансформатора поступает на диодный мост через плавкий предохранитель FU1. Диодный мост состоит из 4 диодов VD1-VD4 типа 1N5408. Каждый из диодов 1N5408 выдерживает прямой ток 3 ампера. Электролитический конденсатор C1 сглаживает пульсации напряжения после диодного моста.

Основа схемы управления – микросхема HCF4060BE , которая является 14-разрядным счётчиком с элементами для задающего генератора. Она управляет биполярным транзистором структуры p-n-p S9012. Транзистор нагружен на электромагнитное реле S3-12A. На микросхеме U1 реализован своеобразный таймер, который включает реле на заданное время заряда – около 60 минут.

При включении зарядника в сеть и подключении аккумулятора контакты реле JDQK1 разомкнуты.

Микросхема HCF4060BE запитывается от стабилитрона VD6 – 1N4742A (12V). Стабилитрон ограничивает напряжение с сетевого выпрямителя до уровня 12 вольт, так как на его выходе около 24 вольт.

Если взглянуть на схему, то не трудно заметить, что до нажатия кнопки "Пуск" микросхема U1 HCF4060BE обесточена – отключена от источника питания. При нажатии кнопки "Пуск" напряжение питания от выпрямителя поступает на стабилитрон 1N4742A через резистор R6.

Напряжение питания через открытый транзистор S9012 поступает на обмотку электромагнитного реле JDQK1. Контакты реле замыкаются, и на аккумулятор поступает напряжение питания. Начинается заряд аккумулятора. Диод VD8 (1N4007 ) шунтирует реле и защищает транзистор S9012 от скачка обратного напряжения, которое образуется при обесточивании обмотки реле.

Диод VD5 (1N5408) защищает аккумулятор от разряда, если вдруг будет отключено сетевое питание.

Что будет после того, когда контакты кнопки "Пуск" разомкнутся? По схеме видно, что при замкнутых контактах электромагнитного реле плюсовое напряжение через диод VD7 (1N4007 ) поступает на стабилитрон VD6 через гасящий резистор R6. В результате микросхема U1 остаётся подключенной к источнику питания даже после того, как контакты кнопки будут разомкнуты.

Сменный аккумулятор.

Сменный аккумулятор GB1 представляет собой блок, в котором последовательно соединено 12 никель-кадмиевых (Ni-Cd) элементов, каждый по 1,2 вольта.

На принципиальной схеме элементы сменного аккумулятора обведены пунктирной линией.

Суммарное напряжение такого составного аккумулятора составляет 14,4 вольт.

Также в блок аккумуляторов встроен датчик температуры. На схеме он обозначен как SA1. По принципу действия он похож на термовыключатели серии KSD . Маркировка термовыключателя JJD-45 2A . Конструктивно он закреплён на одном из Ni-Cd элементов и плотно прилегает к нему.

Один из выводов термодатчика соединён с минусовым выводом аккумуляторной батареи. Второй вывод подключен к отдельному, третьему разъёму.

Алгоритм работы схемы довольно прост.

При включении в сеть 220V зарядное устройство ни как не проявляет свою работу. Индикаторы (зелёный и красный светодиоды) не светятся. При подключении сменного аккумулятора загорается зелёный светодиод, который свидетельствует о том, что зарядник готов к работе.

При нажатии кнопки "Пуск" электромагнитное реле замыкает свои контакты, и аккумулятор подключается к выходу сетевого выпрямителя, начинается процесс заряда аккумулятора. Загорается красный светодиод, а зелёный гаснет. По истечении 50 – 60 минут, реле размыкает цепь заряда аккумулятора. Загорается светодиод зелёного цвета, а красный гаснет. Зарядка завершена.

После зарядки напряжение на клеммах аккумулятора может достигать 16,8 вольт.

Такой алгоритм работы примитивен и со временем приводит к так называемому "эффекту памяти" у аккумулятора. То есть ёмкость аккумулятора снижается.

Если следовать правильному алгоритму заряда аккумулятора для начала каждый из его элементов нужно разрядить до 1 вольта. Т.е. блок из 12 аккумуляторов нужно разрядить до 12 вольт. В заряднике для шуруповёрта такой режим не реализован .

Вот зарядная характеристика одного Ni-Cd аккумуляторного элемента на 1,2V.

На графике показано, как во время заряда меняется температура элемента (temperature ), напряжение на его выводах (voltage ) и относительное давление (relative pressure ).

Специализированные контроллеры заряда для Ni-Cd и Ni-MH аккумуляторов, как правило, работают по так называемому методу дельта -ΔV . На рисунке видно, что в конце зарядки элемента происходить уменьшение напряжения на небольшую величину – порядка 10mV (для Ni-Cd) и 4mV (для Ni-MH). По этому изменению напряжения контроллер и определяет, зарядился ли элемент.

Так же во время зарядки происходит контроль температуры элемента с помощью термодатчика. Тут же на графике видно, что температура зарядившегося элемента составляет около 45 0 С.

Вернёмся к схеме зарядного устройства от шуруповёрта. Теперь понятно, что термовыключатель JDD-45 отслеживает температуру аккумуляторного блока и разрывает цепь заряда, когда температура достигнет где-то 45 0 С. Иногда такое происходит раньше того, как сработает таймер на микросхеме HCF4060BE. Такое происходит, когда емкость аккумулятора снизилась из-за "эффекта памяти". При этом полная зарядка такого аккумулятора происходит чуть быстрее, чем за 60 минут.

Как видим из схемотехники, алгоритм заряда не самый оптимальный и со временем приводит к потере электроёмкости аккумулятора. Поэтому для зарядки аккумулятора можно воспользоваться универсальным зарядным устройством , например, таким, как Turnigy Accucell 6.

Возможные неполадки зарядного устройства.

Со временем из-за износа и влажности кнопка SK1 "Пуск" начинает плохо срабатывать, а иногда и вообще отказывает. Понятно, что при неисправности кнопки SK1 мы не сможем подать питание на микросхему U1 и запустить таймер.

Также может иметь место выход из строя стабилитрона VD6 (1N4742A) и микросхемы U1 (HCF4060BE). В таком случае при нажатии кнопки включение зарядки не происходит, индикация отсутствует.

В моей практике был случай, когда стабилитрон пробило, мультиметром он "звонился" как кусок провода. После его замены зарядка стала исправно работать. Для замены подойдёт любой стабилитрон на напряжение стабилизации 12V и мощностью 1 Ватт. Проверить стабилитрон на "пробой" можно также, как и обычный диод. О проверке диодов я уже рассказывал.

После ремонта нужно проверить работу устройства. Нажатием кнопки запускаем зарядку АКБ. Приблизительно через час зарядное устройство должно отключиться (засветится индикатор "Сеть" (зелёный). Вынимаем АКБ и делаем "контрольный" замер напряжения на её клеммах. АКБ должна быть заряженной.

Если же элементы печатной платы исправны и не вызывают подозрения, а включения режима заряда не происходит, то следует проверить термовыключатель SA1 (JDD-45 2A) в аккумуляторном блоке.

Схема достаточно примитивна и не вызывает проблем при диагностике неисправности и ремонте даже у