Самостоятельно настраиваем и чиним автомобильный усилитель.  Настройка усилителя и испытание на нагрузке Настройка и регулировка усилителя звуковой частоты

Тока покоя каскада меняйте, в зависимости от вида каскада, либо ток базы транзистора, либо напряжение смещения на сетке лампы.

Для создания тока базы транзистора, включенного по схеме с общим эмиттером, используйте резистор, соединяющий базу либо с питающей шиной, либо с коллектором. Второе предпочтительнее с точки термостабилизации. Чем меньше сопротивление резистора, тем больше приоткрывающий ток базы, а , и ток покоя каскада. Существуют и другие, более совершенные схемы термостабилизации биполярных , предполагающие использование нескольких резисторов.

Для создания напряжения смещения лампы подключите ее управляющую сетку проводу через высокоомный резистор (его номинал менять не потребуется), а между катодом и общим проводом включите резистор, с помощью которого будет регулироваться напряжение смещения. Зашунтируйте его конденсатором (если он электролитический, включите его плюсом к катоду). Чем больше сопротивление катодного резистора, тем больше и запирающее напряжение на сетке, являющееся отрицательным относительно катода (но не общего провода), и, соответственно, меньше ток покоя каскада.

Если каскад используется для усиления по переменному току, подавайте на него входной сигнал через конденсатор с очень малой утечкой, чтобы не нарушить его режим по постоянному току. Выходной сигнал снимайте с нагрузки также через конденсатор.

Независимо от того, является ли каскад ламповым или транзисторным, вначале возьмите резистор, задающий ток покоя, большого сопротивления, чтобы этот ток был малым. Подайте на вход каскада через конденсатор такой сигнал, чтобы его искажения можно было легко обнаружить на слух или на экране осциллографа. Выходной сигнал снимите также через конденсатор, и подайте его, соответственно, на контрольный усилитель или осциллограф. Транзистор заранее установите на теплоотвод.

Последовательно с нагрузочным резистором включите миллиамперметр. Лишь после этого подайте на каскад питание. Ток покоя будет малым, а искажения - большими.

Всякий раз предварительно отключая питание каскада, ставьте в него резистор все меньшего и меньшего сопротивления. Ток покоя будет увеличиваться искажения - уменьшаться. Когда они перестанут падать, прекратите снижать сопротивление. Не пытайтесь узнать на практике, что будет при дальнейшем его уменьшении - поверьте наслово: усиление начнет падать, ток покоя возрастет до недопустимо большого значения, активный элемент может выйти из строя.

Если вас устраивает повышенное энергопотребление каскада, оставьте ток покоя на посинельном уровне, а если вы хотите ради экономичности пожертвовать качеством усиления, уменьшите ток покоя до желаемого уровня.

Следует отметить, что схемы, представленные на рис. 8.14, предназначены для преобразования входных сигналов только положительной полярности. При необходимости обработки входных сигналов с отрицательной полярностью можно поменять направление включения диодов на обратное. Для обработки в одном устройстве положительных и отрицательных входных сигналов используют два встречно включенных нелинейных элемента. В качестве нелинейных элементов могут быть использованы биполярные транзисторы (их переходы эмиттер-база). При этом может быть увеличен на один – два порядка диапазон обрабатываемых сигналов и повышена точность обработки, но одновременно повышается и сложность устройства. Усилители (см. рис. 8.14) обычно используются в устройствах перемножения и деления аналоговых сигналов

и в устройствах шумоподавления в усилителях звуковой частоты.

9. РЕГУЛИРОВКИ В УСИЛИТЕЛЯХ

9.1. Общие положения

В зависимости от технического задания на усилитель и его функционального назначения в усилительном устройстве могут быть предусмотрены регулировки самых различных параметров: усилительных свойств, частотных свойств в полосе пропускания и ширины самой полосы пропускания, фазовых характеристик, динамического диапазона, входных и выходных сопротивлений

и т.д. Все эти регулировки могут быть ручными и автоматическими. Решения о необходимости использования ручных регулировок, об их глубине в каждом конкретном случае принимаются и осуществляются оператором, обслуживающим усилитель. Автоматические регулировки осуществляются в усилителе самостоятельно под воздействием изменения заданных условий функционирования. Регулировки могут быть плавными , когда регулируемый параметр меняется плавно и непрерывно, и дискретными , когда регулируемый параметр изменяется скачками. Кроме постоянно действующих регулировок в схему усилителя могут быть введены подстроечные элементы, используемые при первоначальной настройке, ремонте или профилактических работах. Наиболее часто в усилителях используются регулировки коэффициента усиления и регулировки частотных свойств. Последние, при их использовании в усилителях сигналов звуковой частоты, называются регулировками тембра.

9.2. Регулировка усиления

Предназначение регуляторов усиления:

предохранение усилителя от перегрузок в случае, когда динамический диапазон сигнала превышает динамический диапазон усилителя;

поддержание постоянной величины коэффициента усиления при замене активных элементов, старении деталей усилителя, изменении питающих напряжений и т.д.;

изменение величины выходного сигнала в нужных пределах.

Для целей изменения коэффициента усиления можно использовать потенциометрический делитель напряжения, обратную связь с переменной глубиной и изменение режима работы активных элементов.

Потенциометрический регулятор усиления может быть дискретным и плавным (рис. 9.1).

Принцип действия в обоих регуляторах один и тот же. Выходной сигнал u2 выделяется на нижнем плече делителя. Согласно второму закону Кирхгоффа, его величина пропорциональна величине сопротивления, образующего нижнее плечо. Коэффициенты передачи дискретного и плавного регулятора соответственно имеют вид

К Д = u 2

(R 2 + R 3 )

; КП =

R 1 + R 2 + R 3

R1 + R 2

Дискретный регулятор оказывается обычно сложнее плавного и используется чаще всего в измерительной аппаратуре.

Если регулятор усиления должен работать в широкой полосе частот, то приходится учитывать реактивные элементы, подключаемые к нижнему плечу делителя. Такой регулятор, как правило, строится по параллельной схеме (рис. 9.2), собираемой из нескольких делителей с соответствующими коэффициентами деления.

К нижнему плечу делителя оказывается подключенной входная емкость следующего каскада, которая и приводит к частотной зависимости коэффициента передачи. При этом полное сопротивление нижнего плеча с ростом частоты уменьшается и при активном сопротивлении верхнего плеча коэффициент деления падает с увеличением частоты. Для сохранения постоянного коэффи

циента передачи делителя во всем диапазоне частот верхнее плечо приходится шунтировать дополнительной емкостью, которая выбирается из условия равенства постоянных времени верхнего и нижнего плеча.

u 1 R 2

C 2 R 4

Так, для ступенчатого регулятора, представленного на рис. 9.2, должны соблюдаться следующие равенства:

R 1C 1 = R 2C 2 и R 3C 3 = R 4C 4 .

Для облегчения наладки подобных делителей в емкости, шунтирующие как нижнее, так и верхнее плечо, обычно включают подстроечные конденсаторы.

В настоящее время ступенчатые регуляторы начали широко применяться и в усилителях сигналов звуковой частоты. Шаг деления в этом случае вы-

бирается небольшим (1 – 2дБ), а механические переключатели заменяются на-

бором электронных ключей, состояние которых фиксируется запоминающим устройством.

Плавная регулировка усиления осуществляется с помощью переменных сопротивлений, используемых в качестве делителей напряжения сигнала (см. рис. 9.1, б). При проектировании регуляторов громкости для усилителей сигналов звуковой частоты приходится дополнительно учитывать особенности слухового восприятия человека. Человеческое ухо устроено таким образом, что ощущение громкости звука у человека пропорционально логарифму уровня сигнала. Поэтому если взять в качестве регулятора громкости переменный резистор с линейной зависимостью сопротивления от положения движка, то будет казаться, что громкость очень быстро растет в самом начале поворота движка и почти не изменяется на всей второй половине его движения. Использование резистора с показательным законом изменения сопротивления в зависимости от положения движка позволяет получить ощущение равномерного изменения громкости, пропорционального углу поворота движка. Правда, получить такую зависимость на практике мешают сравнительно малые сопротивления, шунтирующие регулятор со стороны источника сигнала и нагрузки и нарушающие необходимый закон изменения сопротивления.

Вторая особенность регуляторов

СН

СВ

громкости связана с изменением частотной

чувствительности человеческого уха при из-

менении громкости сигнала. Дело в том, что

с понижением уровня сигнала чувствитель-

ность уха к верхним и нижним частотам ос-

лабевает. Это ослабление быстро возрастает

с уменьшением громкости. Поэтому для со-

хранения равномерной частотной характеристики восприятия звука при уменьшении уровня громкости необходимо уменьшать сигнал на средних частотах сильнее, чем на нижних и верхних. Такой эффект достигается путем использования тонкомпенсированных регуляторов громкости (рис. 9.3). В этом регуляторе введены дополнительные цепи коррекции частотной характеристики. Конденсатор СВ осуществляет коррекцию в области верхних частот. Емкость СВ выбирается небольшой величины и поэтому не оказывает никакого влияния на область низких и средних частот. На высоких частотах полное сопротивление верхнего плеча делителя уменьшается, что обеспечивает

подъем частотной характеристики на этих частотах по отношению к области средних частот. Постоянная времени последовательного соединения CН RН выбрана таким образом, чтобы эта цепочка шунтировала нижнее плечо делителя в области средних и более высоких частот и тем самым создавала относительный подъем для низкочастотных составляющих спектра сигнала. По мере движения среднего вывода потенциометра вниз этот эффект выпячивания низких и высоких частот по отношению к средним усиливается. Глубина регулировки уровня, оцениваемая как отношение уровней сигнала в крайних положениях регулятора, для описанной выше регулировки громкости лежит в пределах 35 – 45дБ.

Плавное изменение уровня сигнала на выходе усилителя можно осуществить, меняя режим работы активного элемента или глубину обратной связи. Примеры таких схем представлены на рис. 9.4.

В схеме на рис. 9.4, а производится плавная регулировка усиления за счет изменения положения рабочей точки. Увеличение сопротивления R P приводит к уменьшению тока через транзистор, снижению его крутизны и, следовательно, коэффициента усиления данного каскада. Глубина регулировки ограничена тем, что при значительном уменьшении тока эмиттера появляются дополнительные нелинейные искажения и увеличивается влияние собственных шумов.

В схеме на рис. 9.4, б переменное сопротивление R P создает местную отрицательную обратную связь по току, последовательную по входу по переменной составляющей. Глубина обратной связи и соответственно коэффициент усиления зависят от величины сопротивления RP . Если в предыдущей схеме конденсатор СЭ подключить только параллельно сопротивлению RЭ , то в ней будут действовать оба метода и глубина регулировки значительно увеличится.

Управление коэффициентом усиления за счет изменения положения рабочей точки (см. рис. 9.4, в) широко применяется в системах автоматической регулировки усиления (АРУ). В этом случае в цепь базового делителя подается управляющее напряжение UУПР , величина которого определяется значением выходного сигнала.

СЭ

R И R Д

R И R Д

U УПР

При увеличении выходного сигнала под воздействием входного, напряжение UУПР запирает транзистор, а при уменьшении - открывает, поддерживая выходное напряжение постоянным при очень значительных изменениях сигнала на входе.

Следует отметить, что все перечисленные методы регулировки усиления одинаково хорошо работают в усилителях на биполярных и полевых транзисторах.

Изменение глубины обратной

связи с целью изменения коэффици-

ента усиления широко используется

в усилителях на ОУ. Для осуществ-

ления такой регулировки одно из со-

противлений в цепи обратной связи

делают переменным (см. рис. 9.5).

На рис. 9.5,а представлен ре-

гулятор на ОУ с инвертирующим

входом. Изменение положения пол-

зунка сопротивления RP приводит к

изменению глубины обратной связи и соответственно к изменению коэффициента усиления. Одновременно изменение глубины обратной связи влечет за собой изменение входного и выходного сопротивлений. Отличие схемы (см. рис. 9.5, б) от предыдущей состоит в том, что в ней использовано неинвертирующее включение ОУ.

Определенный интерес представляет схема на рис. 9.6. Здесь переменное сопротивление выполняет две функции. Изменение положения движка приводит к изменению уровня сигнала на входе ОУ и одновременно к изменению глубины обратной связи. Таким образом, зависимость коэффициента передачи от угла поворота потенциометра становится показательной и в схеме можно использовать регулятор с линейно изменяющимся сопротивлением.

Можно избежать помех, возникающих из-за нестабильности подвижного контакта, если вместо механического регулирующего элемента использовать сопротивления, управляемые напряжением или током. В качестве таких управляемых переменных сопротивлений используются полевые транзисторы и оптроны . Сопротивление канала полевого транзистора линейно зависит от напряжения между затвором и истоком, о чем свидетельствует семейство выходных характеристик, расходящееся веером при напряжении на стоке, близком к нулю . Включив такое сопротивление в качестве нижнего плеча делителя в цепи обратной связи (рис. 9.7, а), и меняя управляющее напряжение на затворе UУПР , можно регулировать глубину обратной связи и соответственно коэффициент усиления. С увеличением отрицательного управляющего напряжения на затворе сопротивление канала возрастает, растет глубина обратной

UУПР

R ОС

U УПР

Изменение тока через диод под воздействием напряжения UУПР приводит к изменению сопротивления оптрона, включенного в верхнее плечо делителя цепи обратной связи, и соответственно к изменению коэффициента усиления. Подобные схемы очень удобны для создания автоматических систем регулировки усиления и систем дистанционного управления коэффициентом усиления.

Место включения регулятора в схему (плавного и дискретного) определяется несколькими условиями.

С Р2

С Р1

Чтобы усилитель не перегружался и чтобы уже в первых каскадах не возникали нелинейные искажения, регулятор усиления желательно ставить по возможности ближе к входу. Однако если регулятор громкости включить на входе первого каскада, то в этом случае при

Правильно собранный УНЧ при соответствии режимов транзисторов диаграммам (см. рис. 63 - 68) и табл. 3 должен сразу нормально работать при подаче на вход сигнала от звукового генератора (ЗГ). Поэтому процесс настройки и регулировки усилителя НЧ сводится к проверке чувствительности, величины нелинейных искажений и частотной характеристики, а также к устранению выявленных при этом неисправностей, из-за которых тот или иной параметр не будет соответствовать норме.

Перед началом измерений целесообразно проверить ток потребления усилителем НЧ при отсутствии сигнала. Для этого вынимаются (выпаиваются) все транзисторы до блока УНЧ и замеряется ток. Например, для радиоприемников типа «Спидола» этот ток составляет 6 - 8 ма. Если же измеренный ток превышает эту величину, необходимо заменить транзистор первого каскада УНЧ на триод с большим коэффициентом усиления.

Далее к входу усилителя НЧ подключается ЗГ. Для приемников типа «Спидола» генератор подсоединяется к контакту 10 платы ПЧ-НЧ (см. рис. 2) или лепестку 1 потенциометра R30 (см. рис. 21), а земляной вывод ЗГ соединяется с контактом 7 платы ПЧ-НЧ или лепестком 3 потенциометра R30. Для остальных приемников звуковой генератор подключается к соответствующим выводам разъема «магнитофон» (Ш).

На выход приемника (рис. 69) параллельно звуковой катушке громкоговорителя подсоединяется ламповый вольтметр (ЛВ), осциллограф и измеритель нелинейных искажений (ИНИ). Для всех приемников эти приборы подключаются к гнездам внешнего громкоговорителя на колодке внешних соединений или к соответствующим контактам разъема «магнитофон» (Ш).

Ниже рассматривается порядок настройки и проверки УНЧ приемников типа «Спидола», «ВЭФ-12», «ВЭФ-201», и «ВЭФ-202». Данные по настройке и проверке УНЧ радиоприемников типа «Океан» сведены в табл. 4; «Спидола-207» и «Спидола-230» - в табл. 5. Настройка приемника «Меридиан-202», имеющего значительные отличия в электрической схеме, описывается в § 18.

Для проверки чувствительности УНЧ радиоприемников типа «Спидола», «ВЭФ-12», «ВЭФ-201» и «ВЭФ-202» на звуковом генераторе устанавливается частота 1000 гц и выходное напряжение не более 15 же. Регулятор громкости (РГ) ставится в положение максимальной громкости, а регулятор тембра («ВЭФ-12»,« ВЭФ-201» в «ВЭФ-202») - в положение широкой полосы (подъем высоких частот). При этом в громкоговорителе будет прослушиваться звук частотой 1000 гц, а выходной вольтметр покажет величину напряжения этой частоты. Регулятором выхода ЗГ устанавливается такое напряжение, при котором на выходе будет 0,56 в (1,1 в для «ВЭФ-12», «ВЭФ-201» и «ВЭФ-202»). Это напряжение соответствует номинальной выходной мощности. Напряжение на выходе ЗГ и будет чувствительностью тракта НЧ.

Рис. 69. Структурная схема настройки и проверки УНЧ приемников 1,2 - вход блока УНЧ; 3,4 - гнездо внешнего громкоговорителя или разъема «магнитофон» (III)

Параллельно с проверкой чувствительности производится проверка нелинейных искажений тракта усиления НЧ по показанию ИНИ. Коэффициент нелинейных искажений не должен превышать величин, указанных в табл. 2, а изображение синусоиды на экране осциллографа должно быть без искажений. В случае сильных искажений необходимо заменить транзисторы Т9 и Т10. Причинами завышенных нелинейных искажений может быть также неправильная распайка выводов согласующего и выходного трансформаторов (сигнал с выхода УНЧ совпадает по фазе с сигналом на входе). В этом случае необходимо перебросить концы вторичной обмотки трансформаторов. Кроме того, причина может быть в неправильно подобранной емкости конденсатора С80 и С81 («Спидола»), С77 и С76 («ВЭФ-12», «ВЭФ-201», «ВЭФ-202») и сопротивления резистора R36 («Спидола»), R42 («ВЭФ-12», «ВЭФ-201», «ВЭФ-202»).

Таблица 4

Таблица 4

Таблица 5

Для проверки частотной характеристики УНЧ на звуковом генераторе устанавливается частота 1000 гц. Регулятором громкости на выходе УНЧ устанавливается напряжение 0,56 в («Спидола»), 1,1 в («ВЭФ-12», «ВЭФ-201», «ВЭФ-202») и в дальнейшем положение РГ не меняется. Напряжение на входе (мх) не должно превышать 12 мв («Спидола»), 10 мв («ВЭФ-12», «ВЭФ-201», «ВЭФ-202»). Затем на вход УНЧ подается сигнал частотой сначала 200 гц, а потом 4000 гц (полоса воспроизведения), и в обоих случаях регулятором выхода ЗГ устанавливается напряжение u2t которое соответствует напряжению на выходе 0,56 в (1,1 в). Неравномерность частотной характеристики N определяется из соотношения N = 20 lg (и2/u1) и не должна превышать норм, указанных в табл. 2. Коррекция частотной характеристики может быть осуществлена подбором емкости конденсатора С78 («Спидола»), С73 («ВЭФ-12», «ВЭФ-201», «ВЭФ-202»).

Рис. 70. Структурная схема измерения входного сопротивления УНЧ приемников 1,2 - вход УНЧ; Нвх - сопротивление между точками 1 и 2

Иногда полезно знать величину входного сопротивления усилителя НЧ. Для этого собирается схема в соответствии с рис. 70.

Регулятор громкости устанавливается в положение максимальной громкости. От ЗГ на базу первого транзистора усилителя НЧ подается сигнал частотой 1000 гц через резистор R1 (2 - 3 ком) такой величины, чтобы напряжение на выходе было 0,56 в («Спидола») и 1,1 в («ВЭФ-12», «ВЭФ-201», «ВЭФ-202»). В этом случае ламповый вольтметр (ЛВ1) на выходе ЗГ покажет величину напряжения ut, a ЛB2 - и2 (вход УНЧ). Зная величину R1 и напряжения и2 и и1, можно подсчитать входное сопротивление усилителя (RBX) по формуле:

Rвх = u2 R1/uR1 = u2/(u1-u2) R1,

где uR1 == u1 - u2.

Величина резистора R1 подбирается так, чтобы щ та 2и2.

Если на выходе УНЧ напряжение, соответствующее номинальной выходной мощности, может быть получено при очень малых напряжениях на входе, то это будет говорить о близости усилителя к самовозбуждению. Причинами этого явления могут быть положительная обратная связь вместо отрицательной, обрыв в цепи обратной связи или неправильная распайка выводов согласующего (выходного) трансформатора. Этот режим характеризуется очень высоким коэффициентом нелинейных искажений и большой неравномерностью частотной характеристики.

После окончания регулировки УНЧ необходимо включить напряжение питания и проверить на слух работу усилителя НЧ при всех положениях регулятора громкости. При положении РГ, соответствующему минимальной громкости, на выходе приемника не должно быть никакого сигнала, а при максимальной громкости и подаче на вход УНЧ сигнала от ЗГ частотой 1000 гц и величиной 15 - 25 мв форма выходного напряжения должна быть неискаженной и без изломов, ярко светящихся точек и т. д.

Рис. 2. Электромонтажная схема платы ПЧ-НЧ радиоприемников «Спидола», «ВЭФ-Спидола» и «ВЭФ-Спидола-10» Резистор R42 установлен со стороны фольги

Рис. 6. Электромонтажная схема платы ПЧ-НЧ радиоприемников «ВЭФ-12», «ВЭФ-201» и «ВЭФ-202» Резисторы R10, R22 и R47 установлены со стороны фольги

Рис. 10. Электромонтажные схемы планок диапазонов 25 м - П1 31 м - П2, 41 м - ПЗ, 49 м - П4 (а),- 50 - 75 ж - П5 (б); СВ - П6(в) и ДВ - П7(г) радиоприемника «Океан» На планках диапазонов 25 м (П1) и 31 м (П2) дроссель (Др) отсутствует, точки его подсоединения закорочены перемычкой
Рис. 11. Электромонтажная схема платы блока УКВ радиоприемника «Океан»

Рис. 12. Электромонтажная схема платы ВЧ-ПЧ радиоприемника «Океан» На схеме не показаны экраны транзисторов ТЗ, Т4, Т5, Т8 и Т9 и положение подвижных ножей переключателя В1. Точки 20 и 21 платы соединены перемычкой
Рис. 13. Электромонтажная схема платы УНЧ радиоприемника «Океан»

Рис. 15. Электромонтажные схемы планок диапазонов 2о м - П1, 31 м - П2, Им - ПЗ, 49 м - - П4(а); 50 - 75 м - 115(6) радиоприемника «Океан-203» На планках диапазонов 25 м (III) и 31 л (П2) дроссель (Др) отсутствует, точки его подсоединения закорочены перемычкой

Рис. 16. Электромонтажная схема платы блока УКВ радиоприемника «Океан-203»
Рис. 17. Электромонтажная схема платы ВЧ-Г1Ч радиоприемника «Океан-203» На схеме не показаны экраны транзисторов ТЗ, Т4, Т5, Т8 и Т9 и положение подвижных ножей переключателя В1
Рис. 18. Электромонтажная схема платы УНЧ радиоприемника «Океан-203»

Рис. 20. Электромонтажная схема - платы блока УКВ радиоприемника «Океан-205»
Рис. 21. Электромонтажная схема платы УНЧ радиоприемника «Океан-205»
Рис. 22. Электромонтажная схема платы выпрямителя радиоприемника «Океан-205»

Рис. 23. Электромонтажная схема платы переключателей В2 - В5 радиоприемника «Океан-205»
Рис. 24. Электромонтажные схемы планок диапазонов 25 м - П1, 31 ж-П2, 41 м - ПЗ, 49 м - П4(а); 50-75 м - П5(6j; CB - П6(в); ДВ - П7(г) радиоприемника «Океан-205» На планках диапазонов 41 м (ЛЗ) и 49 Л1 (U4) вместо перемычки между точками А и В установлен дроссель (Др)

Рис. 25. Участок электромонтажной схемы платы ВЧ-ПЧ радиоприемника «Океан-205» с измененной печатью
Рис. 27. Электромонтажные схемы планок диапазонов 25 ж - П1, 31 М - .П2, 41 м - ПЗ, 49 м~П4(а); 52-75 м - 115(6); СВ - П6(в); ДВ - П7(г) радиоприемников «Спидола-207» и «Спидола-230»

Рис. 28. Электромонтажная схема платы ПЧ-НЧ радиоприемника «Спидола-207» Экраны транзисторов ТЗ - Т7 показаны условно. Положения подвижных ножей переключателей В1 - В5 не показаны

Перед регулировкой УНЧ следует прикоснуться пинцетом к незаземленному гнезду для подключения звукоснимателя или непосредственно к управляющей сетке первой лампы усилителя. Если усилитель работает, то в громкоговорителе появится сильное гудение. Регулятор громкости при этом должен находиться в положении, соответствующем максимальной громкости.

Необходимо также правильно соединить приборы. Прежде всего соединяют между собой все клеммы, подлежащие заземлению. Клеммы приборов, находящихся со стороны входа, соединяются с клеммой Земля входа усилителя, а соответствующие клеммы приборов выхода подключаются к клемме Земля выхода усилителя. Затем клеммы Земля входа и выхода усилителя соединяют перемычкой. Подключение звукового генератора ко входу усилителя производится экранированным проводом, экран надежно заземляется.

Затем приемник включают на воспроизведение грамзаписи, а регулятор громкости устанавливают в положение максимального усиления. Если в приемнике имеется регулятор тембра, то проверку производят при различных положениях этого регулятора. При любом положении регуляторов тембра и максимальной громкости усилитель не должен возбуждаться. Возбуждение обнаруживается при появлении в громкоговорителе прерывистого звука или свистов различного тона, а также по показаниям измерительной аппаратуры.

Кроме самовозбуждения, в усилителе может появиться фон переменного тока. Наличие фона проверяется также при отсутствии сигнала на входе усилителя.

Затем приступают к проверке работы усилителя при наличии сигнала на входе. В качестве примера рассмотрим порядок проверки УНЧ промышленного приемника Сириус-309.

Выходной шланг звукового генератора типа ГЗ-33 или аналогичный ему прибор присоединяют к колодке для подключения магнитофона. Измеритель выхода типа ВЗ-2А присоединяют параллельно вторичной обмотке выходного трансформатора. Радиолу включают на воспроизведение грамзаписи. Регулятор громкости и регулятор тембра должны находиться в положении максимального усиления и наибольшей ширины полосы пропускания. На генераторе устанавливают сигнал с частотой 1000 Гц и такой уровень выходного напряжения, при котором напряжение на измерителе выхода ВЗ-2А будет 0,8В, что соответствует номинальной выходной мощности. Величина выходного напряжения звукового генератора является чувствительностью УНЧ и должна быть для данной радиолы не хуже 80 мВ. Для приемников других марок при выходном напряжении звукового генератора 0,2...0,25В усилитель должен отдавать в нагрузку мощность, близкую к номинальной.

После этого проверяют частотную характеристику усилителя и действие регулятора тембра и громкости. На вход УНЧ подают от генератора сигнал, равный 0,25В с частотой 1000 Гц. Регулятор тембра устанавливают в положение, соответствующее завалу высших звуковых частот. Регулятором громкости на измерителе выхода устанавливают напряжение, равное 0,8 В. Затем, не меняя напряжения, на звуковом генераторе устанавливают частоту, равную 5000 Гц. При этом выходное напряжение на измерителе выхода должно уменьшиться до 0,4 В.

Чтобы проверить действие регулятора громкости, необходимо на вход радиолы подать от генератора типа Г4-102 напряжение, модулированное по амплитуде напряжением 1000 Гц с глубиной модуляции 30 %, при котором измеритель выхода покажет напряжение 2,5 В. Регулятор громкости при этом должен находиться в положении максимальной громкости. Затем регулятор громкости устанавливают в положение минимальной громкости и замечают показание измерителя выхода. Отношение напряжения (на выходе приемника), соответствующего номинальной выходной мощности, к напряжению, соответствующему положению минимальной громкости регулятора громкости (в децибелах), должно быть не менее 40 дБ.

Проверяя частотную характеристику и действия регуляторов тембра и громкости, необходимо следить за тем, чтобы напряжение на выходе звукового генератора соответствовало 250 мВ. Пределы измерений выходного напряжения при проверке частотной характеристики и регулировки тембра и громкости в приемниках других марок должны быть указаны в инструкции по ремонту в виде таблицы.

Выше была рассмотрена методика проверки УНЧ с однртактным выходным каскадом, В высококачественных УНЧ приемников первого и высшего классов и транзисторных приемников оконечные каскады собираются по двухтактным схемам.

Настройку двухтактных выходных каскадов начинают с фазоинверсного каскада. При регулировке этого каскада устанавливают одинаковые величины выходного напряжения, сдвинутые по фазе на 180°. Для этого подбирают величины сопротивлений резисторов в цепях коллектора и эмиттера. Транзисторы, применяемые в двухтактной схеме усилителя мощности, должны иметь одинаковые параметры. Хорошо, если у транзисторов токи коллекторов и коэффициент усиления по току отличаются не более чем на ±10 %. Если транзисторы не идентичны по параметрам, то приходится регулировать напряжение смещения с помощью резисторов, включенных в базовых цепях. Условием нормальной работы двухтактного оконечного каскада является симметрия его плеч как по постоянному току, так и по переменному.

Если нужно проверить полярность подключения цепи обратной связи, на вход УНЧ от звукового генератора подают сигнал частотой 1000 Гц такой величины, при которой выходное напряжение было бы примерно вдвое меньше номинального. Затем замыкают накоротко резистор, с которого снимается напряжение обратной связи, и наблюдают за показаниями измерителя выходного напряжения. Если при этом показания измерителя выхода увеличиваются, то значит полярность обратной связи отрицательная (правильная), а если уменьшаются - положительная. Для изменения полярности необходимо поменять местами концы вторичной обмотки выходного трансформатора.

Заключительный этап регулировки усилителя - проверка всех его качественных показателей: а) измерение выходной мощности; б) снятие частотной характеристики; в) измерение коэффициента гармонических искажений; г) проверка уровня фона.

Методика ремонта УМЗЧ

Ремонт УМЗЧ – чуть ли не самый частый из вопросов, задаваемых на радиолюбительских форумах. И при том – один из самых сложных. Конечно, существуют «излюбленные» неисправности, но в принципе, выйти из строя может любой из нескольких десятков, а то и сотен компонентов, входящих в состав усилителя. Тем более, что и схем УМЗЧ – великое множество.

Конечно, охватить все случаи, встречающиеся в практике ремонта, не представляется возможным, однако, если следовать определенному алгоритму, то в подавляющем большинстве случаев удается восстановить работоспособность устройства за вполне приемлемое время. Данный алгоритм был выработан мною по опыту ремонта около полусотни различных УМЗЧ, от простейших, на несколько ватт или десятков ватт, до концертных «монстров» по 1…2 кВт на канал, большинство из которых поступало на ремонт без принципиальных схем .

Главной задачей ремонта любого УМЗЧ является локализация вышедшего из строя элемента, повлекшего за собой неработоспособность как всей схемы, так и выход из строя других каскадов. Поскольку в электротехнике бывает всего 2 типа дефектов:

  1. наличие контакта там, где его быть не должно;
  2. отсутствие контакта там, где он должен быть,

то «сверхзадачей» ремонта является нахождение пробитого или оборванного элемента. А для этого – отыскать тот каскад, где он находится. Дальше – «дело техники». Как говорят врачи: «Правильный диагноз - половина лечения».

Перечень оборудования и инструментов, необходимых (или по крайней мере крайне желательных) при ремонте:

  1. Отвертки, бокорезы, пассатижи, скальпель (нож), пинцет, лупа – т.е., минимальный обязательный набор обычного монтажного инструмента.
  2. Тестер (мультиметр).
  3. Осциллограф.
  4. Набор ламп накаливания на различные напряжения – от 220 В до 12 В (по 2 шт.).
  5. Низкочастотный генератор синусоидального напряжения (весьма желательно).
  6. Двухполярный регулируемый источник питания на 15…25(35) В с ограничением выходного тока (весьма желательно).
  7. Измеритель емкости и эквивалентного последовательного сопротивления (ESR ) конденсаторов (весьма желательно).
  8. И, наконец, самый главный инструмент – голова на плечах (обязательно!).

Рассмотрим данный алгоритм на примере ремонта гипотетического транзисторного УМЗЧ с биполярными транзисторами в выходных каскадах (рис.1), не слишком примитивного, но и не очень сложного. Такая схема является наиболее распростра­ненной «классикой жанра». Функционально он состоит из следующих блоков и узлов:

а) двухполярный источник питания (не показан);

б) входной дифференциальный каскад на транзисторах VT 2, VT 5 с токовым зеркалом на транзисторах VT 1 и VT 4 в их коллекторных нагрузках и стабилизатором их эмиттерного тока на VT 3;

в) усилитель напряжения на VT 6 и VT 8 в каскодном включении, с нагрузкой в виде генератора тока на VT 7;

г) узел термостабилизации тока покоя на транзисторе VT 9;

д) узел защиты выходных транзисторов от перегрузки по току на транзисторах VT 10 и VT 11;

е) усилитель тока на комплементарных тройках транзисторов, включенных по схеме Дарлингтона в каждом плече (VT 12 VT 14 VT 16 и VT 13 VT 15 VT 17).

Рис. 1.

  1. Первым пунктом любого ремонта является внешний осмотр сабжа и его обнюхивание (!). Уже одно это позволяет иногда хотя бы предположить сущность дефекта. Если пахнет паленым – значит, что-то явно горело.
  1. Проверка наличия сетевого напряжения на входе: тупо перегорел сетевой предо­хранитель, разболталось крепление проводов сетевого шнура в вилке, обрыв в сетевом шнуре и т.п. Этап – банальнейший по своей сущности, но на котором ремонт заканчивается примерно в 10% случаев.
  1. Ищем схему на усилитель. В инструкции, в Интернете, у знакомых, друзей и т.п. К сожалению, все чаше и чаще в последнее время – безуспешно. Не нашли – тяжко вздыхаем, посыпаем голову пеплом и принимаемся за вырисовывание схемы по плате. Можно этот этап и пропустить. Если неважен результат. Но лучше не пропускать. Муторно, долго, противно, но – «Надо, Федя, надо…» ((С) «Операция «Ы»…).
  1. Вскрываем сабж и производим внешний осмотр его «потрохов». Применяем лупу, если нужно. Можно увидеть разрушенные корпуса п/п приборов, потемневшие, обуглившиеся или разрушенные резисторы, вздутые электролитические конденсаторы или потеки электролита из них, оборванные проводники, дорожки печатной платы и т.п. Если таковое найдено – это еще не повод для радости: разрушенные детали могут быть следствием выхода из строя какой-нибудь «блошки», которая визуально цела.
  1. Проверяем блок питания. Отпаиваем провода, идущие от БП к схеме (или отсоединяем разъем, если он есть) . Вынимаем сетевой предохранитель и к контактам его держателя подпаиваем лампу на 220 В (60…100 Вт). Она ограничит ток первичной обмотки трансформатора, равно как и токи во вторичных обмотках.

Включаем усилитель. Лампа должна мигнуть (на время зарядки конденсаторов фильтра) и погаснуть (допускается слабое свечение нити). Это значит, что К.З. по первичной обмотке сетевого трансформатора нет, как нет явного К.З. в его вторичных обмотках. Тестером на режиме переменного напряжения измеряем напряжение на первичной обмотке трансформатора и на лампе. Их сумма должна быть равна сетевому. Измеряем напряжения на вторичных обмотках. Они должны быть пропорциональными тому, что измерено фактически на первичной обмотке (относительно номинального). Лампу можно отключать, ставить предохранитель на место и включать усилитель прямо в сеть. Повторяем проверку напряжений на первичной и вторичной обмотках. Соотношение (пропорция) между ними должно быть таким же, как при измерении с лампой.

Лампа горит постоянно в полный накал – значит, имеем К.З. в первичной цепи: проверяем целостность изоляции проводов, идущих от сетевого разъема, тумблер питания, держатель предохранителя. Отпаиваем один из поводов, идущих на первичную обмотку трансформатора. Лампа погасла – скорее всего вышла из строя первичная обмотка (или межвитковое замыкание).

Лампа горит постоянно в неполный накал – скорее всего, дефект во вторичных обмотках или в подключенных к ним цепях. Отпаиваем по одному проводу, идущему от вторичных обмоток к выпрямителя(м). Не перепутать, Кулибин! Чтобы потом не было мучительно больно от неправильной подпайки назад (промар­кировать, например, с помощью кусочков липкой малярной ленты). Лампа погасла – значит, с трансформатором все в порядке. Горит – снова тяжко вздыхаем и либо ищем ему замену, либо перематываем.

  1. Определились, что трансформатор в порядке, а дефект в выпрямителях или конденсаторах фильтра. Прозваниваем диоды (желательно отпаять под одному проводу идущему к их выводам, либо выпаять, если это интегральный мост) тестером в режиме омметра на минимальном пределе. Цифровые тестеры в этом режиме часто врут, поэтому желательно использовать стрелочный прибор. Лично я давно пользуюсь прозвонкой-«пищалкой» (рис. 2, 3). Диоды (мост) пробиты или оборваны – меняем. Целые – «звоним» конденсаторы фильтра. Перед измерением их надо разрядить (!!!) через 2-ваттный резистор сопротивлением около 100 Ом. Иначе можно сжечь тестер. Если конденсатор цел – при замыкании стрелка сначала отклоняется до максимума, а потом довольно медленно (по мере заряда конденсатора) «ползет» влево. Меняем подключение щупов. Стрелка сначала зашкаливает вправо (на конденсаторе остался заряд от предыдущего измерения) а потом опять ползет влево. Если есть измеритель емкости и ESR , то весьма желательно использовать его. Пробитые или оборванные конденсаторы меняем.

Рис. 2. Рис. 3.

  1. Выпрямители и конденсаторы целые, но на выходе блока питания стои́т стабилизатор напряжения? Не беда. Между выходом выпрямителя(ей) и входом(ами) стабилизатора(ов) включаем лампу(ы) (цепочку(и) ламп) на суммарное напряжение близкое к указанному на корпусе конденсатора фильтра. Лампа загорелась – дефект в стабилизаторе (если он интегральный), либо в цепи формирования опорного напряжения (если он на дискретных элементах), либо пробит конденсатор на его выходе. Пробитый регулирующий транзистор определяется прозваниванием его выводов (выпаять!).
  1. С блоком питания все в порядке (напряжения на его выходе симметричные и номинальные)? Переходим к самому главному – собственно усилителю. Подбираем лампу (или цепочки ламп) на суммарное напряжение, не ниже номинального с выхода БП и через нее (них) подключаем плату усилителя. Причем, желательно к каждому из каналов по отдельности. Включаем. Загорелись обе лампы – пробиты оба плеча выходных каскадов. Только одна – одно из плеч. Хотя и не факт.

Лампы не горят или горит только одна из них. Значит, выходные каскады, скорее всего, целые. К выходу подключаем резистор на 10…20 Ом. Включаем. Лампы должны мигнуть (на плате обычно есть еще конденсаторы по питанию). Подаем на вход сигнал от генератора (регулятор усиления – на максимум). Лампы (обе!) зажглись. Значит, усилитель что-то усиливает, (хотя хрипит, фонит и т.п.) и дальнейший ремонт заключается в поиске элемента, выводящего его из режима. Об этом – ниже.

  1. Для дальнейшей проверки лично я не использую штатный блок питания усилителя, а применяю 2-полярный стабилизированный БП с ограничением тока на уровне 0,5 А. Если такового нет – можно использовать и БП усилителя, подключенный, как было указано, через лампы накаливания. Только нужно тщательно изолировать их цоколи, чтобы случайно не вызвать КЗ и быть аккуратным, чтобы не разбить колбы. Но внешний БП – лучше. Заодно виден и потребляемый ток. Грамотно спроектированный УМЗЧ допускает колебания питающих напряжений в довольно больших пределах. Нам ведь не нужны при ремонте его супер-пупер параметры, достаточно просто работоспособности.
  1. Итак, с БП всё в порядке. Переходим к плате усилителя (рис. 4). Перво-наперво надо локализовать каскад(ы) с пробитым(и)/оборванным(и) компонентом(ами). Для этого крайне желательно иметь осциллограф. Без него эффективность ремонта падает в разы. Хотя и с тестером можно тоже много чего сделать. Почти все измерения производятся без нагрузки (на холостом ходу). Допустим, что на выходе у нас «перекос» выходного напряжения от нескольких вольт до полного напряжения питания.
  1. Для начала отключаем узел защиты, для чего выпаиваем из платы правые выводы диодов VD 6 и VD 7 (у меня в практике было три случая, когда причиной неработо­способности был выход из строя именно этого узла). Смотрим напряжение не выходе. Если нормализовалось (может быть остаточный перекос в несколько милливольт – это норма), прозваниваем VD 6, VD 7 и VT 10, VT 11. Могут быть обрывы и пробои пассивных элементов. Нашли пробитый элемент – меняем и восстанавливаем подключение диодов. На выходе ноль? Выходной сигнал (при подаче на вход сигнала от генератора) присутствует? Ремонт закончен.

er=0 width=1058 height=584 src="amp_repair.files/image004.jpg">

Рис. 4.

Ничего с сигналом на выходе не изменилось? Оставляем диоды отключенными и идем дальше.

  1. Выпаиваем из платы правый вывод резистора ООС (R 12 вместе с правым выводом C 6), а также левые выводы R 23 и R 24, которые соединяем проволочной пере­мычкой (показана на рис. 4 красным) и через дополнительный резистор (без нумерации, порядка 10 кОм) соединяем с общим проводом. Перемыкаем проволочной перемычкой (красный цвет) коллекторы VT 8 и VT 7, исключая конденсатор С8 и узел термостабилизации тока покоя. В итоге усилитель разъединяется на два самостоятельных узла (входной каскад с усилителем напряжения и каскад выходных повторителей), которые должны работать самостоятельно.

Смотрим, что имеем на выходе. Перекос напряжения остался? Значит, пробит(ы) транзистор(ы) «перекошенного» плеча. Выпаиваем, звоним, заменяем. Заодно проверяем и пассивные компоненты (резисторы). Наиболее частый вариант дефекта, однако должен заметить, что очень часто он является следствием выхода из строя какого-то элемента в предыдущих каскадах (включая узел защиты!). Поэтому последующие пункты все-таки желательно выполнить.

Перекоса нет? Значит, выходной каскад предположительно цел. На всякий случай подаем сигнал от генератора амплитудой 3…5 В в точку «Б» (соединения резисторов R 23 и R 24). На выходе должна быть синусоида с хорошо выраженной «ступенькой», верхняя и нижняя полуволны которой симметричны. Если они не симметричны – значит, «подгорел» (потерял параметры) какой-то из транзисторов плеча, где она ниже. Выпаиваем, звоним. Заодно проверяем и пассивные компоненты (резисторы).

Сигнала на выходе нет вообще? Значит, вылетели силовые транзисторы обоих плеч «насквозь». Печально, но придется выпаивать все и прозванивать с последующей заменой.

Не исключены и обрывы компонентов. Тут уж нужно включать «8-й инструмент». Проверяем, заменяем…

  1. Добились симметричного повторения на выходе (со ступенькой) входного сигнала? Выходной каскад отремонтирован. А теперь нужно проверить работоспособность узла термостабилизации тока покоя (транзистор VT 9). Иногда наблюдается нарушение контакта движка переменного резистора R 22 с резистивной дорожкой. Если он включен в эмиттерной цепи, как показано на приведенной схеме, ничего страшного с выходным каскадом при этом произойти не может, т.к. в точке подключения базы VT 9 к делителю R 20– R 22 R 21 напряжение просто повышается, он приоткрывается больше и, соответственно, снижается падение напряжения между его коллектором и эмиттером. В выходном сигнале простоя появится ярко выраженная «ступенька».

Однако (очень даже нередко), подстроечный резистор ставится между коллектором и базой VT9. Крайне «дураконезащищенный» вариант! Тогда при потере контакта движка с резистивной дорожкой напряжение на базе VT9 снижается, он призакрывается и, соответственно, повышается падение напряжения между его коллектором и эмиттером, что ведет к резкому возрастанию тока покоя выходных транзисторов, их перегреву и, естественно, тепловому пробою. Еще более дурацкий вариант выполнения этого каскада – если база VT9 соединена только с движком переменного резистора. Тогда при потере контакта на ней может быть все, что угодно, с соответствующими последствиями для выходных каскадов.

Если есть возможность, сто́ит переставить R 22 в базо-эмиттерную цепь. Правда, при этом регулировка тока покоя станет выражено нелинейной от угла поворота движка, но IMHO это не такая уж и большая плата за надежность. Можно просто заменить транзистор VT 9 на другой, с обратным типом проводимости, если позволяет разводка дорожек на плате. На работу узла термостабилизации это никак не повлияет, т.к. он является двухполюсником и не зависит от типа проводимости транзистора.

Проверка этого каскада осложняется тем, что, как правило, соединения с коллекторами VT 8 и VT 7 сделаны печатными проводниками. Придется поднимать ножки резисторов и делать соединения проводочками (на рис. 4 показаны разрывы проводников). Между шинами положительного и отрицательного напряжений питания и, соответственно, коллектором и эмиттером VT 9 включаются резисторы примерно по 10 кОм (без нумерации, показаны красным) и замеряется падение напряжения на транзисторе VT 9 при вращении движка подстроечного резистора R 22. В зависимости от количества каскадов повторителей оно должно изменяться в пределах примерно 3…5 В (для «троек, как на схеме) или 2,5… 3,5 В (для «двоек»).

  1. Вот и добрались мы до самого интересного, но и самого сложного – дифкаскада с усилителем напряжения. Они работают только совместно и разделить их на отдельные узлы принципиально невозможно.

Перемыкаем правый вывод резистора ООС R 12 с колекторами VT 8 и VT 7 (точка «А », являющаяся теперь его «выходом»). Получаем «урезанный» (без выходных каскадов) маломощный ОУ, вполне работоспособный на холостом ходе (без нагрузки). Подаем на вход сигнал амплитудой от 0,01 до 1 В и смотрим, что будет в точке А . Если наблюдаем усиленный сигнал симметричной относительно земли формы, без искажений, значит данный каскад цел.

  1. Сигнал резко снижен по амплитуде (мало усиление) – в первую очередь проверить емкость конденсатора(ов) С3(С4, т.к. производители для экономии очень часто ставят только один полярный конденсатор на напряжение 50 В и больше, рассчитывая, что в обратной полярности он все равно будет работать, что не есть гут). При его подсыхании или пробое резко снижается коэффициент усиления. Если нет измерителя емкости – проверяем просто путем замены на заведомо исправный.

Сигнал перекошен – в первую очередь проверить емкость конденсаторов С5 и С9, шунтирующих шины питания предусилительной части после резисторов R17 и R19 (если эти RC-фильтры вообще есть, т.к. нередко они не ставятся).

На схеме приведены два распространенных варианта симметрирования нулевого уровня: резистором R 6 или R 7 (могут быть, конечно же, и другие), при нарушении контакта движка которых тоже может быть перекос выходного напряжения. Проверить вращением движка (хотя, если контакт нарушен «капитально», это может и не дать результата). Тогда попробовать перемкнуть пинцетом их крайние выводы с выводом движка.

Сигнал вообще отсутствует – смотрим, а есть ли он вообще на входе (обрыв R3 или С1, К.З. в R1, R2, С2 и т.п.). Только сначала нужно выпаять базу VT2, т.к. на ней сигнал будет очень маленьким и смотреть на правом выводе резистора R3. Конечно, входные цепи могут сильно отличаться от приведенных на рисунке – включать «8-й инструмент». Помогает.

  1. Естественно, описать все возможные причинно-следственные варианты дефектов мало реально. Поэтому дальше просто изложу, как проверять узлы и компоненты данного каскада.

Стабилизаторы тока VT 3 и VT 7. В них возможны пробои или обрывы. Из платы выпаиваются коллекторы и замеряется ток между ними и землей. Естественно, сначала нужно рассчитать по напряжению на их базах и номиналам эмиттерных резисторов, каким он должен быть. (N . B .! В моей практике был случай самовозбуждения усилителя из-за чрезмерно большого номинала резистора R 10, поставленного изготовителем. Помогла подстройка его номинала на полностью работающем усилителе – без указанного выше разделения на каскады).

Аналогично можно проверить и транзистор VT 8: если перемкнуть коллектор-эмиттер транзистора VT 6, он также тупо превращается в генератор тока.

Транзисторы дифкаскада VT 2 V 5 T и токового зеркала VT 1 VT 4, а также VT 6 проверяются их прозвонкой после отпайки. Лучше замерить коэффициент усиления (если тестер – с такой функцией). Желательно подобрать с одинаковыми коэффициентами усиления.

  1. Пару слов «не для протокола». Почему-то в подавляющем большинстве случаев в каждый последующий каскад ставят транзисторы все бо́льшей и бо́льшей мощности. В этой зависимости есть одно исключение: на транзисторах каскада усиления напряжения (VT 8 и VT 7) рассеивается в 3…4 раза бо́льшая мощность , чем на предрайверных VT 12 и VT 23 (!!!). Поэтому, если есть такая возможность, их сто́ит сразу же заменить на транзисторы средней мощности. Неплохим вариантом будет КТ940/КТ9115 или аналогичные импортные.
  1. Довольно нередкими дефектами в моей практике были непропаи («холодная» пайка к дорожкам/«пятачкам» или плохое облуживание выводов перед пайкой) ножек компонентов и обломы выводов транзисторов (особенно в пластмассовом корпусе) непосред­ственно возле корпуса, которые очень трудно было увидеть визуально. Пошатать транзисторы, внимательно наблюдая за их выводами. В крайнем случае – выпаять и впаять заново.

Если проверили все активные компоненты, а дефект сохраняется – нужно (опять же, с тяжким вздохом), выпаять из платы хоть по одной ножке и проверить тестером номиналы пассивных компонентов. Нередки случаи обрывов постоянных резисторов без каких-либо внешних проявлений. Неэлектролитические конденса­торы, как правило, не пробиваются/обрываются, но всякое бывает…

  1. Опять же, по опыту ремонта: если на плате видны потемневшие/обугленные резисторы, причем симметрично в обеих плечах, сто́ит пересчитать выделяемую на нем мощность. В житомирском усилителе « Dominator » производитель поставил в одном из каскадов резисторы по 0,25 Вт, которые регулярно горели (до меня было 3 ремонта). Когда я просчитал их необходимую мощность – чуть не упал со стула: оказалось, что на них должно рассеиваться по 3 (три!) ватта…
  1. Наконец, все заработало… Восстанавливаем все «порушенные» соединения. Совет вроде бы и банальнейший, но сколько раз забываемый!!! Восстанавливаем в обратной последовательности и после каждого соединения проверяем усилитель на работоспособность. Нередко покаскадная проверка, вроде бы, показала, что все исправно, а после восстанов­ления соединений дефект опять «выползал». Последними подпаиваем диоды каскада токовой защиты.
  1. Выставляем ток покоя. Между БП и платой усилителя включаем (если они были отключены ранее) «гирлянду» ламп накаливания на соответствующее суммарное напряжение. Подключаем к выходу УМЗЧ эквивалент нагрузки (резистор на 4 или 8 Ом). Движок подстроечного резистора R 22 устанавливаем в нижнее по схеме положение и на вход подаем сигнал от генератора частотой 10…20 кГц (!!!) такой амплитуды, чтобы на выходе выл сигнал не более 0,5…1 В. При таких уровне и частоте сигнала хорошо заметна «ступенька», которую трудно заметить на большом сигнале и малой частоте. Вращением движка R22 добиваемся ее устранения. При этом нити накала ламп должны немного светиться. Можно проконтролировать ток и амперметром, включив его параллельно каждой гирлянде ламп. Не сто́ит удивляться, если он будет заметно (но не более, чем в 1,5…2 раза в бо́льшую сторону) отличаться от того, что указано в рекомендациях по настройке – нам ведь важно не «соблюдение рекомендаций», а качество звучания! Как правило, в «рекомендациях» ток покоя значительно завышается, для гарантированного достижения запланированных параметров («по худшему»). Перемыкаем «гирлянды» перемычкой, повышаем уровень выходного сигнала до уровня 0,7 от максимального (когда начинается амплитудное ограничение выходного сигнала) и даем усилителю прогреться 20…30 минут. Этот режим является наиболее тяжелым для транзисторов выходного каскада – на них при этом рассеивается максимальная мощность. Если «ступенька» не появилась (при малом уровне сигнала), а ток покоя возрос не более, чем в 2 раза, настройку считаем законченной, иначе убираем «ступеньку» снова (как было указано выше).
  1. Убираем все временные соединения (не забывать!!!), собираем усилитель окончательно, закрываем корпус и наливаем чарку, которую с чувством глубокого удовлетворения проделанной работой, выпиваем. А то работать не будет!

Конечно же, в рамках данной статьи не описаны нюансы ремонта усилителей с «экзотическими» каскадами, с ОУ на входе, с выходными транзисторами, включенными с ОЭ, с «двухэтажными» выходными каскадами и многое другое…

Falconist