Реляционные базы данных

Определены три основных класса сущностей:

1) Стержневые – независимая сущность. Названия помещены в прямоугольник.

2) Ассоциативные – связь вида многие ко многим между двумя или более сущностями. Ассоциации рассматриваются как полноправная сущность. Могут участвовать в других ассоциациях и обладать набором атрибутов.

a. Обозначения (обозначающая сущность) – связи вида многие к одной или одна к одной между двумя сущностями. Отличается от характеристики тем, что не зависит от обозначающей сущности.

3) Характеристические (характеристика) – связь вида многие к одной или одна к одной между двумя сущностями. Является частным случаем ассоциации. Единственная цель характеристики – описание или уточнение некоторой другой сущности. Существование характеристики полностью зависит о характеризуемой сущности.

Ключ или потенциальный ключ – лишь набор атрибутов, по значениям которых, можно однозначно найти требуемый экземпляр сущности.

Минимальность означает, что лексически из набора любого атрибута не позволяет идентифицировать сущность по оставшимся.

Один из ключей принимается за первичный ключ а остальные называются альтернативными. Потенциально ключ, состоящий из одного атрибута, называются простыми. Не допускается, чтобы первичный ключ стержневой сущности принимал неопределенное значение, иначе возникает противоречивая ситуация – появится не обладающий индивидуальностью, и, следовательно, не существующий экземпляр стрежневой сущности. По тем же причинам необходимо обеспечить уникальность первичного ключа.

Если сущность С связывает сущности А и В, то она должна включать внешние ключи, соответствующие первичным ключам сущностей А и В.

Для каждого внешнего ключа необходимо решить три вопроса:

1) Может ли дополнительный внешний ключ принимать неопределенные значения (null-значения), короче говоря, может ли существовать некоторый экземпляр сущности, для которого известна целевая сущность, указанная внешним ключом.

2) Что должно происходить при попытке удаления целевой сущности, на которую ссылается внешний ключ.

Существуют три возможности решения данного вопроса:

· Каскадирование

· Ограничение

· Установление в определенное значение

3) Что должно происходить при попытке обновления первичного ключа целевой сущности, на который ссылается некоторый внешний ключ.

Таким образом, для каждого внешнего ключа в проекте базы данных необходимо специализировать не только поле или комбинацию полей, составляющих этот внешний ключ, но так же ответы на приведенные выше вопросы.

Типы данных и домены.

Реляционная модель данных характеризуется простой структурой данных и удобным для пользователя представлением.

Реляционная модель рассчитана на организацию данных в виде двумерных таблиц. Реляционная таблица представляет собой двумерный массив и обладает следующими свойствами:

1) Каждый элемент таблицы – один элемент данных

2) Все столбцы в таблице однородны – все элементы в столбце имеют одинаковый тип и длину данных

3) Каждый столбец имеет уникальное имя

4) Одинаковые строки в таблице отсутствуют

5) Порядок следования строки столбцов может быть произвольным

Типы данных

Любые данные, используемые в программировании, имеют свои типы данных. Реляционная модель требует, чтобы типы используемых данных были простыми.

Как правило, типы данных делятся на три группы:

1) Простые типы данных

2) Структурированные типы данных

3) ссылочные типы данных

Простые (атомарные) типы данных не обладают внутренней структурой. Данные такого типа называют скалярными. К ним относятся логические, числовые, строковые типы данных. Понятие атомарности довольно относительно. Так, строковый тип данных можно рассматривать как одномерный массив символов, а целый тип данных как набор битов. Важно здесь лишь то, что при переходе на такой низкий уровень теряется семантика, то есть смысл данных.

Структурирование типов данных предназначено для задания сложных структур данных, которые конструируются из составляющих элементов, которые в свою очередь могут обладать внутренней структурой (массивы, записи, структуры).

Ссылочный тип данных предназначен для обеспечения возможности указания на другие данные. Этот тип данных предназначен для языков процедурного типа, в которых есть области памяти для хранения данных.

Для реляционной модели данных тип используемых данных не так важен. Требование того, чтобы тип данных был простым нужно понимать так, что в реляционных операциях не должна учитываться внутреннее структура данных.

Домен porno.ru

В реляционной модели данных понятие типа данных тесно связано с понятие домен, которое можно считать уточнением типа данных.

Домен – семантическое понятие. Его можно рассматривать как подмножество значений некоторого типа данных.

Свойства домена:

1) домен имеет уникальное имя в пределах базы данных

2) домен определен на некотором простом типе данных или на другом домене

3) домен может иметь некоторое логическое условие, позволяющее описать подмножество данных, допустимых для данного домена.

4) домен несет некоторую смысловую нагрузку

Например, некоторый домен D, имеющий смысл «возраст сотрудника» можно описать как некоторое подмножество множества натуральных чисел

D={nϵN: n ≥ 18 and n ≤ 60}

Отличие домена понятия подмножества состоит именно в том, что домен отражает семантику определенной предметной области. Может быть несколько доменов, совпадающих как подмножество, но несущие различный смысл. Например, домены «вес детали» и «имеющееся количество» можно одинаково описать как множество неотрицательных целых чисел, но смысл этих доменов будет различным, и это буду различные домены. Основное значение домена состоит в том, что домены ограничивают сравнения. Некорректно с логической точки зрения сравнивать значения различных доменов, даже если они имеют одинаковый тип. Синтаксически правильно выдать список всех деталей, у которых вес детали больше имеющегося количества не соответствует смыслу понятий количества и веса.

5. Отношения и их свойства, атрибуты и кортежи.
Понятие отношения является фундаментальным понятием реляционной модели данных. Атрибут отношения: <Имя_атрибута: Имя_домена>. Имена атрибутов должны быть уникальными в пределах отношения. Часто имена атрибутов совпадают с именами соответствующих доменов. Некоторое отношение R, определенное на множестве доменов D 1 ,D 2 ,…D n содержит две части: заголовок и тело. Заголовок отношения содержит фиксированное количество атрибутов отношения.

(,,…)

Тело отношения содержит множество картежей отношений. Каждый картеж отношений представляет собой множество пар вида

<Имя_атрибута: Значение_атрибута>

(,,… ).

При этом значение Val i принадлежит атрибуту A i D i . значение записывается:

R (,,…).

Число атрибутов в отношении называют степенью или арностью отношения. Число картежей отношения называют мощностью отношения. Заголовок отношения описывает декартово произведение доменов, на котором задано отношение. Заголовок статичен. Он не меняется в процессе работы с базой данных. Если в отношении изменены, добавлены или удалены атрибуты, в результате получается другое отношение. Тело отношения представляет собой набор картежей, то есть подмножество декартового произведения доменов и является отношением в математическом смысле слова. Тело отношения может изменяться во время работы с базой данных, то есть картежи могут изменяться, прибавляться и так далее.

Реляционной базой данных называется набор отношений. Схемой реляционных баз данных называется набор заголовков отношений, входящий в базу данных.

Хотя любое отношение можно изобразить в виде таблицы, но отношения не являются таблицей. Это близкие но не соответствующий понятия. Термины, которыми оперирует реляционная модель данных имеет соответствующие «табличные» синонимы.

Свойства отношений

В свойствах отношений в основном состоят различия между отношениями

1) В отношении не одинаковых картежей.

Тело отношения – это множество картежей и как всякое множество не может содержать неразличимые элементы. Таблицы в отличие от отношений могут содержать одинаковые строки.

2) Картежи не упорядочены (сверху вниз) так как тело отношения – множество.

Одно и то же отношение не может быть изображено разными таблицами, в которых строки идут в различном порядке

3) Атрибуты не упорядочены слева направо. Так как каждый атрибут имеет уникальное имя в пределах отношения, то порядок атрибутов не имеет значения. Одно и то же отношение может быть изображено разными таблицами, в которых столбцы идут в различном порядке.

4) Все значения атрибутов атомарны.

Из свойств отношения следует, что не каждая таблица может задавать отношения. Для этого ей требуется иметь простую структуру, не содержать одинаковых строк, любой ее столбец должен содержать данные только одного типа, при этом все используемые типы данных должны быть простыми.

Проблема логического проектирования реляционной базы данных состоит в обоснованном принятии решения о том, из каких отношений должна состоять база данных и какие атрибуты должны быть у этих отношений.

В реляционной модели данных фиксируется два базовых требования целостности, которые должны поддерживаться в любой реляционной СУБД.

1) Требование целостности сущностей, которое состоит в том, что любой картеж любого отношения должен быть отличим от любого другого картежа этого отношения, то есть любое отношение должно содержать первичный ключ.

2) Требование целостности по ссылкам (требование целостности внешних ключей) состоит в том, что для каждого значения внешнего ключа в отношении, на которое ведет ссылка,. Должен найтись картеж с таким же значением первичного ключа, либо значение внешнего ключа должно быть неопределенным.

  • Перевод

Выкладываю продолжение перевода цикла статей для новичков.
В настоящих и последующих - больше информации по существу.
Начало - .

4. ТАБЛИЦЫ И ПЕРВИЧНЫЕ КЛЮЧИ

Как вы уже знаете из прошлых частей, данные хранятся в таблицах , которые содержат строки или по-другому записи . Ранее я приводил пример таблицы, содержащей информацию об уроках. Давайте снова на нее взглянем.

В таблице имеются 6 уроков. Все 6 – разные, но для каждого урока значения одинаковых полей хранятся в таблице, а именно: tutorial_id (идентификатор урока), title (заголовок)и category (категория). Tutorial_id первичный ключ таблицы уроков. Первичный ключ – это значение, которое уникально для каждой записи в таблице.
В таблице клиентов ниже customer_id – первичный ключ. В данном случае первичный ключ – также уникальное значение (число) для каждой записи.

Первичные ключи в повседневной жизни
В базе данных первичные ключи используются для идентификации. В жизни первичные ключи вокруг нас везде. Каждый раз, когда вы сталкиваетесь с уникальным числом это число может служить первичным ключом в базе данных (может, но не обязательно должно использоваться как таковое. Все базы данных способны автоматически генерировать уникальное значение для каждой записи в виде числа, которое автоматически увеличивается и вставляется вместе с каждой новой записью [Т.н. синтетический или суррогатный первичный ключ – прим.перев.]).

Несколько примеров

  • Номер заказа, который вы получаете при покупке в интернет-магазине может быть первичным ключом какой-нибудь таблицы заказов в базе данных этого магазина, т.к. он является уникальным значением.
  • Номер социального страхования может быть первичным ключом в какой-нибудь таблице в базе данных государственного учреждения, т.к. она также как и в предыдущем примере уникален.
  • Номер счета-фактуры может быть использован в качестве первичного ключа в таблице базы данных, в которой хранятся выданные клиентам счета-фактуры.
  • Числовой номер клиента часто используется как первичный ключ в таблице клиентов.

Что объединяет эти примеры? То, что во всех из них в качестве первичного ключа выбирается уникальное, не повторяющееся значение для каждой записи. Еще раз. Значения поля таблицы базы данных, выбранного в качестве первичного ключа, всегда уникально.

Что характеризует первичный ключ? Характеристики первичного ключа.
Первичный ключ служит для идентификации записей.

Первичный ключ используется для идентификации записей в таблице, для того, чтобы каждая запись стала уникальной. Еще одна аналогия… Когда вы звоните в службу технической поддержки, оператор обычно просит вас назвать какой-либо номер (договора, телефона и пр.), по которому вас можно идентифицировать в системе.
Если вы забыли свой номер, то оператор службы технической поддержки попросит предоставить вас какую-либо другую информацию, которая поможет уникальным образом идентифицировать вас. Например, комбинация вашего дня рождения и фамилия. Они тоже могут являться первичным ключом, точнее их комбинация.

Первичный ключ уникален.

Первичный ключ всегда имеет уникальное значение. Представьте, что его значение не уникально. Тогда его бы нельзя было использовать для того, чтобы идентифицировать данные в таблице. Это значит, что какое-либо значение первичного ключа может встретиться в столбце, который выбран в качестве первичного ключа, только один раз. РСУБД устроены так, что не позволят вам вставить дубликаты в поле первичного ключа, получите ошибку.
Еще один пример. Представьте, что у вас есть таблица с полями first_name и last_name и есть две записи:

| first_name | last_name |
| vasya |pupkin |
| vasya |pupkin |

Т.е. есть два Васи. Вы хотите выбрать из таблицы какого-то конкретного Васю. Как это сделать? Записи ничем друг от друга не отличаются. Вот здесь и помогает первичный ключ. Добавляем столбец id (классический вариант синтетического первичного ключа) и…

Id | first_name | last_name |
1 | vasya |pupkin |
2 | vasya |pupkin |

Теперь каждый Вася уникален.

Типы первичных ключей.

Обычно первичный ключ – числовое значение. Но он также может быть и любым другим типом данных. Не является обычной практикой использование строки в качестве первичного ключа (строка – фрагмент текста), но теоретически и практически это возможно.
Составные первичные ключи.
Часто первичный ключ состоит из одного поля, но он может быть и комбинацией нескольких столбцов, например, двух (трех, четырех…). Но вы помните, что первичный ключ всегда уникален, а значит нужно, чтобы комбинация n-го количества полей, в данном случае 2-х, была уникальна. Подробнее об этом расскажу позднее.

Автонумерация.

Поле первичного ключа часто, но не всегда, обрабатывается самой базой данных. Вы можете, условно говоря, сказать базе данных, чтобы она сама автоматически присваивала уникальное числовое значение каждой записи при ее создании. База данных, обычно, начинает нумерацию с 1 и увеличивает это число для каждой записи на одну единицу. Такой первичный ключ называется автоинкрементным или автонумерованным. Использование автоинкрементных ключей – хороший способ для задания уникальных первичных ключей. Классическое название такого ключа – суррогатный первичный ключ [Как и упоминалось выше. – прим. перев.]. Такой ключ не содержит полезной информации, относящейся к сущности (объекту), информация о которой хранится в таблице, поэтому он и называется суррогатным.

5. СВЯЗЫВАНИЕ ТАБЛИЦ С ПОМОЩЬЮ ВНЕШНИХ КЛЮЧЕЙ

Когда я начинал разрабатывать базы данных я часто пытался сохранять информацию, которая казалась родственной, в одной таблице. Я мог, например, хранить информацию о заказах в таблице клиентов. Ведь заказы принадлежат клиентам, верно? Нет. Клиенты и заказы представляют собой отдельные сущности в базе данных. И тому и другому нужна своя собственная таблица. А записи в этих двух таблицах могут быть связаны для того, чтобы установить отношения между ними. Проектирование базы данных – это решение двух вопросов:
  • определение того, какие сущности вы хотите хранить в ней
  • какие связи между этими сущностями существуют
Один-ко-многим.
Клиенты и заказы имеют связь (состоят в отношениях) один-ко-многим потому, что один клиент может иметь много заказов, но каждый конкретный заказ (их множество ) оформлен только одним клиентом, т.е. может иметь только одного клиента. Не беспокойтесь, если на данный момент понимание этой связи смутно. Я еще расскажу о связях в следующих частях.

Одно является важных сейчас – то, что для связи один-ко-многим необходимо две отдельные таблицы. Одна для клиентов, другая для заказов. Давайте немного попрактикуемся, создавая эти две таблицы.

Какую информацию мы будем хранить? Решаем первый вопрос.
Для начала мы определимся какую информацию о заказах и о клиентах мы будем хранить. Чтобы это сделать мы должны задать себе вопрос: “Какие единичные блоки информации относятся к клиентам, а какие единичные блоки информации относятся к заказам?”

Проектируем таблицу клиентов.

Заказы действительно принадлежат клиентам, но заказ – это это не минимальный блок информации , который относится к клиентам (т.е. этот блок можно разбить на более мелкие: дата заказа, адрес доставки заказа и пр., к примеру).
Поля ниже – это минимальные блоки информации, которые относятся к клиентам:

  • customer_id (primary key) – идентификатор клиента
  • first_name - имя
  • last_name - отчество
  • address - адрес
  • zip_code – почтовый индекс
  • country - страна
  • birth_date – дата рождения
  • username – регистрационное имя пользователя (логин)
  • password – пароль

Давайте перейдем к непосредственному созданию этой таблицы в SQLyog (естественно, что вы можете использовать любую другую программу). Ниже приведен пример того, как могла бы выглядеть таблица в программе SQLyog после создания. Все графические приложения для управления базами данных имеют приблизительно одинаковую структуру интерфейса. Вы также можете создать таблицу с помощью командной строки без использования графической утилиты.


Создание таблицы в SQLyog. Обратите внимание, что выбран флажок первичного ключа (PK) для поля customer_id. Поле customer_id является первичным ключом. Также выбран флажок Auto Incr, что означает, что база данных будет автоматически подставлять уникальное числовое значение, которое, начиная с нуля, будет каждый раз увеличиваться на одну единицу.

Проектируем таблицу заказов.
Какие минимальные блоки информации, необходимые нам, относятся к заказу?

  • order_id (primary key) – идентификатор заказа
  • order_date – дата и время заказа
  • customer – клиент, который сделал заказ

Ниже – пример таблицы в SQLyog.

Эти две таблицы (клиентов и заказов ) связаны потому, что поле customer в таблице заказов ссылается на первичный ключ (customer_id ) таблицы клиентов. Такая связь называется связью по внешнему ключу . Вы должны представлять себе внешний ключ как простую копию (копию значения) первичного ключа другой таблицы. В нашем случае значение поля customer_id из таблицы клиентов копируется в таблицу заказов при вставке каждой записи. Таким образом, у нас каждый заказ привязан к клиенту. И заказов у каждого клиента может быть много, как и говорилось выше.

Создание связи по внешнему ключу.

Вы можете задаться вопросом: “Каким образом я могу убедиться или как я могу увидеть, что поле customer в таблице заказов ссылается на поле customer_id в таблице клиентов”. Ответ прост – вы не можете сделать этого потому, что я еще не показал вам как создать связь.
Ниже – окно SQLyog с окном, которое я использовал для создания связи между таблицами.


Создание связи по внешнему ключу между таблицами заказов и клиентов.

В окне выше вы можете видеть, как поле customer таблицы заказов слева связывается с первичным ключом (customer_id) таблицы клиентов справа.

Теперь, когда вы посмотрите на данные, которые могли бы быть в таблицах, вы увидите, что две таблицы связаны.


Заказы связаны с клиентами через поле customer, которое ссылается на таблицу клиентов.

На изображении вы видите, что клиент mary поместила три заказа, клиент pablo поместил один, а клиент john – ни одного.
Вы можете спросить: “А что же именно заказали все эти люди?” Это хороший вопрос. Вы возможно ожидали увидеть заказанные товары в таблице заказов. Но это плохой пример проектирования. Как бы вы поместили множественные продукты в единственную запись? Товары – это отдельные сущности, которые должны храниться в отдельной таблице. И связь между таблицами заказов и товаров будет являться связью один-ко-многим. Я расскажу об этом далее.

6. СОЗДАНИЕ ДИАГРАММЫ СУЩНОСТЬ-СВЯЗЬ

Ранее вы узнали как записи из разных таблиц связываются друг с другом в реляционных базах данных. Перед созданием и связыванием таблиц важно, чтобы вы подумали о сущностях , которые существуют в вашей системе (для которой вы создаете базу данных) и решили каким образом эти сущности бы связывались друг с другом. В проектировании баз данных сущности и их отношения обычно предоставляются в диаграмме сущность-связь (англ. entity-relationship diagram, ERD) . Данная диаграмма является результатом процесса проектирования базы данных.
Сущности.
Вы можете задаться вопросом, что же такое сущность. Нуу… это “вещь” в системе. Там. Моя Мама всегда хотела, чтобы я стал учителем потому, что я очень хорошо объясняю различные вещи.

В контексте проектирования баз данных сущность – это нечто, что заслуживает своей собственной таблицы в модели вашей базы данных. Когда вы проектируете базу данных, вы должны определить эти сущности в системе, для которой вы создаете базу данных. Это скорее вопрос диалога с клиентом или с собой с целью выяснения того, с какими данными будет работать ваша система.

Давайте возьмем интернет-магазин для примера. Интернет-магазин продает товары . Товар мог бы стать очевидной сущностью в системе интернет-магазина. Товары заказываются клиентами . Вот мы с вами и увидели еще две очевидных сущности: заказы и клиенты .

Заказ оплачивается клиентом… это интересно. Мы собираемся создавать отдельную таблицу для платежей в базе данных нашего интернет-магазина? Возможно. Но разве платежи – это минимальный блок информации, который относится к заказам? Это тоже возможно.

Если вы не уверены, то просто подумайте о том, какую информацию о платежах вы хотите хранить. Возможно, вы захотите хранить метод платежа или дату платежа . Но это все еще минимальные блоки информации, которые могли бы относиться к заказу . Можно изменить формулировки. Метод платежа - метод платежа заказа. Дата платежа – дата платежа заказа. Таким образом, я не вижу необходимости выносить платежи в отдельную таблицу, хотя концептуально вы бы могли выделить платежи как сущность, т.к. вы могли бы рассматривать платежи как контейнер информации (метод платежа, дата платежа).

Давайте не будет слишком академичными.

Как вы видите, есть разница между сущностью и непосредственно таблицей в базе данных, т.е. это не одно и то же. Специалисты отрасли информационных технологий могут быть ОЧЕНЬ академичными и педантичными в этом вопросе. Я не такой специалист. Эта разница зависит от вашей точки зрения на ваши данные, вашу информацию. Если вы смотрите на моделирование данных с точки зрения программного обеспечения, то вы можете прийти к множеству сущностей, которые нельзя будет перенести напрямую в базу данных. В данном руководстве мы смотрим на данные строго с точки зрения баз данных и в нашем маленьком мире сущность – это таблица.


Держитесь там, вы действительно близки к получению вашей ученой степени по базам данных.

Как вы видите определение того, какие сущности имеет ваша система – это немного интеллектуальный процесс, который требует некоторого опыта и часто – это предмет для внесения изменений, пересмотров, раздумий, но, конечно, это не ракетостроение.


Диаграмма сущность-связь может быть достаточно большой, если вы работаете над сложным приложением. Некоторые диаграммы могут содержать сотни или даже тысячи таблиц.

Связи.
Второй шаг в проектировании баз данных – это выбор того, какие связи существуют между сущностями в вашей системе. Сейчас это может быть немного сложно для понимания, но, повторюсь еще раз, это не ракетостроение. С приобретением некоторого опыта и переосмысления выполненной работы вы будете завершать очередную модель базы данных верным или почти верным образом.

Итак. Я рассказал вам о связи один-ко-многим и я расскажу вам больше о связях в дальнейших частях этого руководства, поэтому сейчас я больше не буду останавливаться на этом. Просто запомните, что решение о том, какие связи будут иметь ваши сущности – важная часть проектирования баз данных и эти связи отображаются в диаграмме сущность-связь .

Используются в любой деятельности: в банковской и финансовой отраслях, туристическом бизнесе, складских хозяйствах, на производстве и в обучении. Они представляют собой совокупность таблиц, имеют четкие свойства и подчиняются строгим требованиям. В реляционных БД таблицы называют отношениями.

Что такое первичный ключ в БД

В базе данных первичный ключ таблицы - это один из ее столбцов (Primary key). Разберемся на примере, как это выглядит. Представим простое отношение студентов университета (назовем его "Студенты").

Нам необходимо однозначно определить студента по одному столбцу. Для этого информация в этом столбце для каждой записи должна быть уникальной. Но имеющиеся данные в этом отношении не дают нам однозначно идентифицировать запись, так как на одном курсе и одном факультете могут учиться однофамильцы, тезки и учащиеся с одинаковыми фамилиями и именами. Первичный ключ в базе данных служит для точного определения необходимой строки в отношении. Чаще всего в этом качестве используется числовое поле, автоматически возрастающее с вводом записи (автоинкрементный столбец-идентификатор).

Простой и составной первичный ключ

Primary key может быть простым и составным. Если уникальность записи определяется значением только в одном поле, как описано выше, мы имеем дело с простым ключом. Составной ключ - это первичный ключ базы данных, состоящий из двух и более полей. Рассмотрим следующее отношение клиентов банка.

Ф. И. О. Дата рождения Серия паспорта Номер паспорта
Иванов П.А. 12.05.1996 75 0553009
Сергеев В.Т. 14.07.1958 71 4100654
Краснов Л.В. 22.01.2001 73 1265165

Паспорта людей могут содержать одни и те же серии либо номера, но паспортов с одним и тем же сочетанием серии и номера не существует. Таким образом, поля "Серия паспорта" и "Номер паспорта" станут составным ключом указанного отношения, однозначно идентифицируя человека.

Связи между отношениями

Итак, первичный ключ в базе данных - это один или несколько столбцов таблицы, позволяющий однозначно идентифицировать строку этого отношения. Для чего же он нужен?

Вернемся к первому примеру с отношением "Студенты". В базе данных, кроме этого отношения, хранится и другая информация, например, успеваемость каждого учащегося. Чтобы не повторять всю информацию, что уже содержится в БД, пользуются ключом, ссылаясь на нужную запись. Это выглядит так.

В двух отношениях примера мы видим поле ID. Это первичные ключи в базе данных для этих таблиц. Как видим, в успеваемости содержатся только ссылки на эти поля из других таблиц без необходимости указывать всю информацию из них.

Естественный и суррогатный ключ

Как определяют первичный ключ таблицы базы данных? Два рассмотренных нами примера - "Студенты" и "Клиенты банка" - иллюстрируют понятия естественного и суррогатного ключа. В таблице клиентов банка мы определили ключ, состоящий из полей "Номер" и "Серия паспорта", использовав уже имеющиеся столбцы. Такой ключ называется естественным, для его определения мы не производили никаких изменений и дополнений. В случае с отношением "Студенты" ни одно поле или сочетание полей не давали нам уникальности. Это вынудило нас ввести дополнительное поле с кодом учащегося. Такой ключ называется суррогатным, для него мы добавили еще один служебный столбец в таблицу. Этот столбец не несет никакой полезной информации и служит только для идентификации записей.

Внешний ключ и целостность данных в БД

Все вышеизложенное приводит нас к внешнему ключу (Foreign key) и целостности БД. Foreign key - это поле, ссылающееся на Primary key внешнего отношения. В таблице успеваемости это столбцы "Студент" и "Дисциплина". Их данные отсылают нас к внешним таблицам. То есть поле "Студент" в отношении "Успеваемость" - это Foreign key, а в отношении "Студент" это первичный ключ в базе данных.

Важным принципом построения баз данных является их целостность. И одно из ее правил - целостность по ссылкам. Это значит, что внешний ключ таблицы не может ссылаться на несуществующий Primary key другого отношения. Нельзя удалить из отношения "Студент" запись с кодом 1000 - Иванов Иван, если на нее ссылается запись из таблицы успеваемости. В правильно построенной БД при попытке удаления вы получите ошибку, что это поле используется.

Существуют и другие группы правил целостности, а также другие ограничения баз данных, которые также заслуживают внимания и должны быть учтены разработчиками.

P rimary Key (Первичный ключ) является полем в таблице, которое однозначно идентифицирует каждую строку/запись в таблице базы данных. Первичные ключи должны содержать уникальные значения. Первичный ключ столбец не может иметь значения .

Таблица может иметь только один первичный ключ, который может состоять из одного или нескольких полей. Когда несколько полей используются в качестве первичного ключа, их называют составным ключом.

Если таблица имеет первичный ключ, определенный на любом поле (ях), то вы не можете иметь две записи, имеющие одинаковое значение этого поля (ей).

Примечание – Вы могли бы использовать эти понятия при создании таблиц базы данных.

Создание первичного ключа

Вот синтаксис для определения атрибута ID в качестве первичного ключа в таблице Customers.

CREATE TABLE CUSTOMERS(ID INT NOT NULL, NAME VARCHAR (20) NOT NULL, AGE INT NOT NULL, ADDRESS CHAR (25) , SALARY DECIMAL (18, 2), PRIMARY KEY (ID));

Для того, чтобы создать ограничение первичного ключа на столбце «ID», когда таблица CUSTOMERS уже существует, используйте следующий синтаксис SQL:

ALTER TABLE CUSTOMERS ADD PRIMARY KEY (ID);

Примечание

Если вы используете оператор ALTER TABLE, чтобы добавить первичный ключ, столбец первичного ключа (ей) должен был уже объявлен как не содержащий NULL значения (если таблица была создана первым).

Для определения первичного ключа на нескольких столбцах, используйте синтаксис SQL приведенный ниже:

CREATE TABLE CUSTOMERS(ID INT NOT NULL, NAME VARCHAR (20) NOT NULL, AGE INT NOT NULL, ADDRESS CHAR (25) , SALARY DECIMAL (18, 2), PRIMARY KEY (ID, NAME));

Чтобы создать ограничение первичного ключа на колонки «ID» и «NAME», когда таблица CUSTOMERS уже существует, используйте следующий синтаксис SQL.

ALTER TABLE CUSTOMERS ADD CONSTRAINT PK_CUSTID PRIMARY KEY (ID, NAME);

Удаление первичного ключа

Вы можете очистить ограничения первичного ключа из таблицы с помощью синтаксиса, приведенного ниже.

ALTER TABLE CUSTOMERS DROP PRIMARY KEY;

Таблицы

В реляционной базе данных информация организована в виде реляционных таблиц, разделенных на строки и столбцы, на пересечении которых содержатся значения данных .

Таблица – это некоторая регулярная структура, состоящая из конечного набора однотипных записей.

Таблица отражает тип объекта реального мира (сущность). Строки соответствуют экземпляру объекта, конкретному событию или явлению. Столбцы соответствуют атрибутам(признакам, характеристикам, параметрам) объекта, события, явления. У каждой таблицы имеется уникальное имя внутри базы данных, описывающее ее содержимое.

У каждого столбца в таблице есть свое имя, которое обычно служит заголовком столбца. Все столбцы в одной таблице должны иметь уникальные имена, однако разрешается присваивать одинаковые имена столбцам, расположенным в различных таблицах. В реляционной модели данных атрибуты отношений не упорядочены, т. е. обращение к полям всегда происходит по именам, а не по расположению. Однако в языке SQL допускается индексное указание столбцов таблиц, при этом столбцы рассматриваются в порядке слева направо (их порядок определяется при создании таблицы) .

В любой таблице всегда есть как минимум 1 столбец. В стандарте ANSI/ISO не указывается максимально допустимое число столбцов в таблице, однако почти во всех коммерческих СУБД этот предел существует. В СУБД Firebird этот предел составляет 32 767 столбцов.

В РМДреляционной модели данных для обозначения строки отношения используется понятие кортеж. Представлением кортежа на физическом уровне является строка таблицы базы данных. Строки таблицы не имеют имен и определенного порядка. В таблице может содержаться любое количество строк. Вполне допустимо существование таблицы с нулевым количеством строк. Такая таблица называется пустой. Пустая таблица сохраняет структуру, определенную ее столбцами, просто в ней не содержатся данные. Как правило, не накладывается ограничений на количество строк в таблице, и во многих СУБД размер таблиц ограничен лишь свободным дисковым пространством компьютера. В других СУБД имеется максимальный предел, однако он весьма высок – около двух миллиардов строк, а иногда и больше.

Проиллюстрируем более наглядно структуру одной из таблиц учебной базы данных (см. приложение А). На рис. 1.1 приведена структура таблицы Abonent, содержащей сведения об абонентах компаний жилищно-комму­нального хозяйства.

Рис. 1.1. Структурареляционной таблицы Abonent

Каждая горизонтальная строка этой таблицы представляет отдельную физическую сущность – одного абонента. Двенадцать строк таблицы вместе представляют всех абонентов. Все данные, содержащиеся в конкретной строке таблицы, представляют собой набор значений атрибутов конкретного абонента, который описывается этой строкой.


Каждый вертикальный столбец таблицы представляет совокупность значений конкретного атрибута объекта. Например, в столбце AccountCD содержатся уникальные номера лицевых счетов абонентов. В столбце Phone содержатся номера телефонов абонентов.

На пересечении каждой строки с каждым столбцом таблицы содержится в точности одно значение данных. Например, в строке, представляющей абонента Конюхова В. С., в столбце Fio содержится значение "Конюхов В.С.". В столбце AccountCD той же строки содержится значение "015527", которое является номером лицевого счета абонента с ФИО Конюхов В. С.

Все значения, содержащиеся в одном и том же столбце, являются данными одного типа. Например, в столбце Fio содержатся только слова, а в столбце StreetCD содержатся целые числа, представляющие идентификаторы улиц. В реляционной модели данных общая совокупность значений, из которой берутся действительные значения для определенных атрибутов (столбцов), называется доменом . Доменом столбца Fio, например, является множество фамилий, имен и отчеств (ФИО) абонентов. Каждый столбец всегда определяется на одном домене.

В реляционных базах данных домен определяется путем задания как минимум некоторого базового типа данных, к которому относятся элементы домена, а часто также и произвольного логического выражения, применяемого к элементам этого типа данных (ограничения домена).

В учебной базе данных определены следующие домены:

§ Boollean (Логический): SMALLINT . Поля, определяемые на этом домене, могут принимать только целочисленные значения, равные 0 или 1. Это достигается наложением в домене условия проверки (CHECK) на принимаемые этим доменом значения.

§ Money (Деньги): NUMERIC(15,2) . Домен предназначен для определения в таблицах полей, хранящих денежные суммы.

§ PKField (Поле ПК): INTEGER . Домен предназначен для определения первичных и внешних ключей таблиц. Ограничение обязательности данных (NOT NULL) на этот домен не наложено. Оно накладывается при объявлении первичного ключа таблицы. Это сделано для того, чтобы можно было определить внешний ключ на этом домене без условия NOT NULL.

§ TMonth (Месяц): SMALLINT . Домен предназначен для определения в таблицах полей, содержащих номера месяцев. Целочисленные значения в таком поле могут находиться в диапазоне 1...12.

§ TYear (Год): SMALLINT . Домен предназначен для определения полей, содержащих номер года. Целочисленные значения могут находиться в диапазоне 1990...2100.

Поскольку строки в реляционной таблице не упорядочены, то нельзя выбрать строку по ее номеру в таблице. В таблице нет «первой», «последней» или «тринадцатой» строки. Тогда каким же образом можно указать в таблице конкретную строку, например строку для абонента с ФИО Аксенов С.А.?

Ключевым элементом данных называется такой элемент, по которому можно определить значения других элементов данных.

В реляционной базе данных в каждой таблице есть 1 или несколько столбцов, значения в которых во всех строках разные. Этот столбец (столбцы) называется первичным ключом таблицы.

Первичный ключ – это атрибут или группа атрибутов, которые единственным образом идентифицируют каждую строку в таблице.

Вернемся к рассмотрению таблицы Abonent учебной базы данных (рис. 1.1). На первый взгляд, первичным ключом таблицы Abonent могут служить и столбец AccountCD, и столбец Fio. Однако в случае если будут зарегистрированы 2 абонента с одинаковыми ФИО, то столбец Fio больше не сможет исполнять роль первичного ключа. На практике в качестве первичных ключей таблиц обычно следует выбирать идентификаторы, такие как уникальный номер лицевого счета абонента (AccountCD в таблице Abonent), идентификатор улицы (StreetCD в таблице Street) и т. д.

Если в таблице нет полей, значения в которых уникальны, для создания первичного ключа в нее обычно вводят дополнительное поле, значениями которого СУБД может распоряжаться по своему усмотрению.

Если первичный ключ представляет собой комбинацию столбцов, то такой первичный ключ называется составным .

Вторичные ключи устанавливаются по полям, которые часто используются при поиске или сортировке данных. В отличие от первичных ключей поля для вторичных ключей могут содержать не уникальные значения.