Реферат: Статическая память. Оперативные запоминающие устройства

Принцип однородности памяти. Программы и данные хранятся в одной и той же памяти. Поэтому компьютер не различает, что хранится в данной ячейке памяти - число, текст или команда. Над командами можно выполнять такие же действия, как и над данными. Это открывает целый ряд возможностей. Например, программа в процессе своего выполнения также может подвергаться переработке, что позволяет задавать в самой программе правила получения некоторых ее частей (так в программе организуется выполнение циклов и подпрограмм). Более того, команды одной программы могут быть получены как результаты исполнения другой программы. На этом принципе основаны методы трансляции - перевода текста программы с языка программирования высокого уровня на язык конкретной машины.

Принцип программного управления. Из него следует, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.

Выборка программы из памяти осуществляется с помощью счетчика команд . Этот регистр процессора последовательно увеличивает хранимый в нем адрес очередной команды на длину команды .

А так как команды программы расположены в памяти друг за другом, то тем самым организуется выборка цепочки команд из последовательно расположенных ячеек памяти.

Если же нужно после выполнения команды перейти не к следующей, а к какой-то другой, используются команды условного или безусловного переходов , которые заносят в счетчик команд номер ячейки памяти, содержащей следующую команду . Выборка команд из памяти прекращается после достижения и выполнения команды “стоп” .

Таким образом, процессор исполняет программу автоматически, без вмешательства человека .

3. Принцип адресности. Структурно основная память состоит из перенумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка. Отсюда следует возможность давать имена областям памяти, так, чтобы к запомненным в них значениям можно было впоследствии обращаться или менять их в процессе выполнения программ с использованием присвоенных имен.

Компьютеры, построенные на этих принципах, относятся к типу фон-неймановских . Но существуют компьютеры, принципиально отличающиеся от фон-неймановских. Для них, например, может не выполняться принцип программного управления , т.е. они могут работать без “счетчика команд”, указывающего текущую выполняемую команду программы. Для обращения к какой-либо переменной, хранящейся в памяти, этим компьютерам не обязательно давать ей имя . Такие компьютеры называются не-фон-неймановскими .

14. АРХИТЕКТУРА И СТРУКТУРА.

При рассмотрении компьютерных устройств принято различать их архитектуру и структуру.



Архитектурой компьютера называется его описание на некотором общем уровне, включающее описание пользовательских возможностей программирования, системы команд, системы адресации, организации памяти и т.д. Архитектура определяет принципы действия, информационные связи и взаимное соединение основных логических узлов компьютера: процессора, оперативного ЗУ, внешних ЗУ и периферийных устройств. Общность архитектуры разных компьютеров обеспечивает их совместимость с точки зрения пользователя.

Структура компьютера - это совокупность его функциональных элементов и связей между ними. Элементами могут быть самые различные устройства - от основных логических узлов компьютера до простейших схем. Структура компьютера графически представляется в виде структурных схем, с помощью которых можно дать описание компьютера на любом уровне детализации.

15. ОТЛИЧИТЕЛЬНЫЕ ОСОБЕННОСТИ КАЖДОЙ ИЗ НИХ.

· Классическая архитектура (архитектура фон Неймана) - одно арифметико-логическое устройство (АЛУ), через которое проходит поток данных, и одно устройство управления (УУ), через которое проходит поток команд - программа. Это однопроцессорный компьютер . К этому типу архитектуры относится и архитектура персонального компьютера с общей шиной . Все функциональные блоки здесь связаны между собой общей шиной, называемой также системной магистралью. Физически магистраль представляет собой многопроводную линию с гнездами для подключения электронных схем. Совокупность проводов магистрали разделяется на отдельные группы: шину адреса, шину данных и шину управления.

Периферийные устройства (принтер и др.) подключаются к аппаратуре компьютера через специальные контроллеры - устройства управления периферийными устройствами. Контроллер - устройство, которое связывает периферийное оборудование или каналы связи с центральным процессором, освобождая процессор от непосредственного управления функционированием данного оборудования.

Многопроцессорная архитектура . Наличие в компьютере нескольких процессоров означает, что параллельно может быть организовано много потоков данных и много потоков команд . Таким образом, параллельно могут выполняться несколько фрагментов одной задачи.

Многомашинная вычислительная система . Здесь несколько процессоров, входящих в вычислительную систему, не имеют общей оперативной памяти , а имеют каждый свою (локальную). Каждый компьютер в многомашинной системе имеет классическую архитектуру, и такая система применяется достаточно широко. Однако эффект от применения такой вычислительной системы может быть получен только при решении задач, имеющих очень специальную структуру: она должна разбиваться на столько слабо связанных подзадач, сколько компьютеров в системе.

Преимущество в быстродействии многопроцессорных и многомашинных вычислительных систем перед однопроцессорными очевидно.

Архитектура с параллельными процессорами . Здесь несколько АЛУ работают под управлением одного УУ. Это означает, что множество данных может обрабатываться по одной программе - то есть по одному потоку команд. Высокое быстродействие такой архитектуры можно получить только на задачах, в которых одинаковые вычислительные операции выполняются одновременно на различных однотипных наборах данных.

В современных машинах часто присутствуют элементы различных типов архитектурных решений. Существуют и такие архитектурные решения, которые радикально отличаются от рассмотренных выше.

16. ЦЕНТРАЛЬНЫЙ ПРОЦЕССОР. ДВЕ ОСНОВНЫЕ РАЗНОВИДНОСТИ ПАМЯТИ КОМПЬЮТЕРА.

Центральный процессор в общем случае содержит в себе:

  • арифметико-логическое устройство;
  • шины данных и шины адресов;
  • регистры;
  • счетчики команд;
  • кэш - очень быструю память малого объема (от 8 до 512 Кбайт);
  • математический сопроцессор чисел с плавающей точкой.

Современные процессоры выполняются в виде микропроцессоров . Физически микропроцессор представляет собой интегральную схему - тонкую пластинку кристаллического кремния прямоугольной формы площадью всего несколько квадратных миллиметров, на которой размещены схемы, реализующие все функции процессора. Кристалл-пластинка обычно помещается в пластмассовый или керамический плоский корпус и соединяется золотыми проводками с металлическими штырьками, чтобы его можно было присоединить к системной плате компьютера.

В вычислительной системе может быть несколько параллельно работающих процессоров; такие системы называются многопроцессорными.

Как устроена память

Память компьютера построена из двоичных запоминающих элементов- битов , объединенных в группы по 8 битов, которые называются байтами. (Единицы измерения памяти совпадают с единицами измерения информации). Все байты пронумерованы. Номер байта называется его адресом.

Байты могут объединяться в ячейки, которые называются также словами. Для каждого компьютера характерна определенная длина слова - два, четыре или восемь байтов. Это не исключает использования ячеек памяти другой длины (например, полуслово, двойное слово). Как правило, в одном машинном слове может быть представлено либо одно целое число, либо одна команда. Однако, допускаются переменные форматы представления информации. Разбиение памяти на слова для четырехбайтовых компьютеров представлено в таблице:

Байт 0 Байт 1 Байт 2 Байт 3 Байт 4 Байт 5 Байт 6 Байт 7
ПОЛУСЛОВО ПОЛУСЛОВО ПОЛУСЛОВО ПОЛУСЛОВО
СЛОВО СЛОВО
ДВОЙНОЕ СЛОВО

Широко используются и более крупные производные единицы объема памяти: Килобайт, Мегабайт, Гигабайт , а также, в последнее время, Терабайт и Петабайт .

Современные компьютеры имеют много разнообразных запоминающих устройств, которые сильно отличаются между собой по назначению, временным характеристикам, объёму хранимой информации и стоимости хранения одинакового объёма информации. Различают два основных вида памяти - внутреннюю и внешнюю.

17 . ОСНОВНЫЕ КОМПОНЕНТЫ ВНУТРЕННЕЙ ПАМЯТИ. СТАТИЧЕСКАЯ И ДИНАМИЧЕСКАЯ ПАМЯТЬ.

В состав внутренней памяти входят оперативная память, кэш-память и специальная память.

1. Оперативная память

Оперативная память используется только для временного хранения данных и программ , так как, когда машина выключается, все, что находилось в ОЗУ, пропадает . Доступ к элементам оперативной памяти прямой - это означает, что каждый байт памяти имеет свой индивидуальный адрес.

Объем ОЗУ обычно составляет от 32 до 512 Мбайт. Для несложных административных задач бывает достаточно и 32 Мбайт ОЗУ, но сложные задачи компьютерного дизайна могут потребовать от 512 Мбайт до 2 Гбайт ОЗУ.

Обычно ОЗУ исполняется из интегральных микросхем памяти SDRAM (синхронное динамическое ОЗУ). Каждый информационный бит в SDRAM запоминается в виде электрического заряда крохотного конденсатора, образованного в структуре полупроводникового кристалла. Из-за токов утечки такие конденсаторы быстро разряжаются, и их периодически (примерно каждые 2 миллисекунды) подзаряжают специальные устройства. Этот процесс называется регенерацией памяти (Refresh Memory). Микросхемы SDRAM имеют ёмкость 16 - 256 Мбит и более. Они устанавливаются в корпуса и собираются в модули памяти .

Большинство современных компьютеров комплектуются модулями типа DIMM (Dual-In-line Memory Module - модуль памяти с двухрядным расположением микросхем). В компьютерных системах на самых современных процессорах используются высокоскоростные модули Rambus DRAM (RIMM) и DDR DRAM .

Модули памяти характеризуются такими параметрами, как объем -(16, 32, 64, 128, 256 или 512 Мбайт), число микросхем, паспортная частота (100 или 133 МГц), время доступа к данным (6 или 7 наносекунд) и число контактов (72, 168 или 184). В 2001 г. начинается выпуск модулей памяти на 1 Гбайт и опытных образцов модулей на 2 Гбайта . В 2009 г. модули 2 гб распространены. Начала производства модулей по 4 гб.

2. Кэш-память

Кэш-памятью управляет специальное устройство - контроллер, который, анализируя выполняемую программу, пытается предвидеть, какие данные и команды вероятнее всего понадобятся в ближайшее время процессору, и подкачивает их в кэш-память. При этом возможны как "попадания" , так и "промахи" . В случае попадания, то есть, если в кэш подкачаны нужные данные, извлечение их из памяти происходит без задержки. Если же требуемая информация в кэше отсутствует, то процессор считывает её непосредственно из оперативной памяти. Соотношение числа попаданий и промахов определяет эффективность кэширования.

Кэш-память реализуется на микросхемах статической памяти SRAM (Static RAM), более быстродействующих, дорогих и малоёмких, чем DRAM (SDRAM). Современные микропроцессоры имеют встроенную кэш-память , так называемый кэш первого уровня размером 8, 16 или 32 Кбайт. Кроме того, на системной плате компьютера может быть установлен кэш второго уровня ёмкостью 256, 512 Кбайт и выше.

3. Специальная память

К устройствам специальной памяти относятся постоянная память (ROM), перепрограммируемая постоянная память (Flash Memory), память CMOS RAM , питаемая от батарейки, видеопамять и некоторые другие виды памяти.

Прежде всего в постоянную память записывают программу управления работой самого процессора. В ПЗУ находятся программы управления дисплеем, клавиатурой, принтером, внешней памятью, программы запуска и остановки компьютера, тестирования устройств.

Важнейшая микросхема постоянной или Flash-памяти - модуль BIOS. Роль BIOS двоякая: с одной стороны это неотъемлемый элемент аппаратуры, а с другой строны - важный модуль любой операционной системы.

BIOS (Basic Input/Output System - базовая система ввода-вывода) - совокупность программ, предназначенных для автоматического тестирования устройств после включения питания компьютера и загрузки операционной системы в оперативную память.

Содержимое CMOS изменяется специальной программой Setup , находящейся в BIOS (англ. Set-up - устанавливать, читается "сетап").

Для хранения графической информации используется видеопамять .

Существует много различных видов оперативной памяти, но их все можно подразделить на две основные подгруппы - статическая память (Static RAM) и динамическая память (Dynamic RAM).

Эти два типа памяти отличаются, прежде всего, различной в корне технологической реализацией - SRAM будет хранить записанные данные до тех пор, пока не запишут новые или не отключат питание, а DRAM может хранить данные лишь небольшое время, после которого данные нужно восстановить (регенерировать), иначе они будут потеряны.

Рассмотрим достоинства и недостатки SRAM и DRAM:

1. Память типа DRAM, в силу своей технологии, имеет гораздо большую плотность размещения данных, чем SRAM.

2. DRAM гораздо дешевле SRAM,

3. но последняя производительнее и надежнее, поскольку всегда готова к считыванию.

СТАТИЧЕСКАЯ RAM

В современных компьютерах SRAM используется как кэш второго уровня и имеет сравнительно небольшой объем (обычно 128...1024 Кб). В кэше она используется именно потому, что к нему предъявляются очень серьезные требования в плане надежности и производительности. Основную же память компьютера составляют микросхемы динамической памяти.

Статическую память делят на синхронную и асинхронную. Асинхронная память уже не используется в персональных компьютерах, она была вытеснена синхронной еще со времен 486-ых компьютеров.

Применение статической памяти не ограничивается кэш-памятью в персональных компьютерах. Серверы, маршрутизаторы, глобальные сети, RAID-массивы, коммутаторы - вот устройства, где необходима высокоскоростная SRAM.

SRAM - очень модифицируемая технология - существует множество ее типов, которые отличаются электрическими и архитектурными особенностями. В обычной синхронной SRAM происходит небольшая задержка, когда память переходит из режима чтения в режим записи.

Поэтому в 1997 г. несколько компаний представили свои технологии статической RAM без такой задержки. Это технологии ZBT (Zero-Bus Turnaround - нуль-переключение шины) SRAM от IDT, и похожая NoBL (No Bus Latency - шина без задержек). ДИНАМИЧЕСКАЯ RAM(вся память за исключением сегмента данных-64кб,стекопамяти-16кб,собственным телом программ)

Память типа DRAM гораздо шире распространена в вычислительной технике благодаря двум своим достоинствам перед SRAM - дешевизне и плотности хранения данных. Эти две характеристики динамической памяти компенсируют в некоторой степени ее недостатки - невысокое быстродействие и необходимость в постоянной регенерации данных.

Сейчас существуют около 25-ти разновидностей DRAM, так как производители и разработчики памяти пытаются угнаться за прогрессом в области центральных процессоров.

основные типы динамической памяти - от старых Conventional и FPM DRAM до еще не воплощенных в жизнь QDR, DDR SDRAM, RDRAM.

Оперативная память имеет 3 раздела:

  • 640 кб. DOS – осн. ОЗУ
  • 1мб основные модули Windows – верхняя ОЗУ
  • оставшиеся модули – расширенная ОЗУ

18. МОДУЛЬ ПАМЯТИ DIMM. ДРУГИЕ ТИПЫ МОДУЛЕЙ ПАМЯТИ.

Оперативная память компьютера относится к одному из важнейших элементов компьютера, определяющих производительность и функциональные возможности всей системы. Оперативная память представлена определенным количеством микросхем ОЗУ на материнской плате. Если сравнительно недавно микросхемы ОЗУ подключались через специальные панельки - разъемы, позволявшие менять отдельные микросхемы без пайки, то в настоящее время архитектура компьютера предусматривает их размещение на небольших платах-модулях. Такие модули памяти устанавливаются в специальные разъемы-слоты на материнской плате. Одним из вариантов такого решения явились SIMM-модули (SIMM - single in-line memory modules).

Миниатюрные SIMM-модули, или просто SIMM, представляют собой блоки оперативной памяти разной емкости. Широкое распространение нашли SIMM на 4, 8, 16, 32 и даже 64 Мбайт.

SIMM бывают двух разных типов: на 30 pin и 72 pin, где pin ("пин") означает число контактов подключения к специализированному разъему ОЗУ на материнской плате. При этом 30 pin и 72 pin SIMM - не взаимозаменяемые элементы.

Внешний вид модуля DIMM

Модули типа DIMM наиболее распространены в виде 168-контактных модулей, устанавливаемых в разъём вертикально и фиксируемых защёлками. В портативных устройствах широко применяются SO DIMM - разновидность DIMM малого размера (англ. SO - small outline), они предназначены в первую очередь для портативных компьютеров.

Внешний вид модуля RIMM

Модули типа RIMM менее распространены, в таких модулях выпускается память типа Direct RDRAM. Они представлены 168/184-контактными прямоугольными платами, которые обязательно должны устанавливаться только в парах, а пустые разъёмы на материнской плате занимаются специальными заглушками. Это связано с особенностями конструкции таких модулей.

19. ВНЕШНЯЯ ПАМЯТЬ. РАЗНОВИДНОСТИ УСТРОЙСТВ ВНЕШНЕЙ ПАМЯТИ.

Внешняя память (ВЗУ) предназначена для длительного хранения программ и данных, и целостность её содержимого не зависит от того, включен или выключен компьютер. В отличие от оперативной памяти, внешняя память не имеет прямой связи с процессором. Информация от ВЗУ к процессору и наоборот циркулирует примерно по следующей цепочке:

Взу óОЗУ ó Кэш ó Процессор

В состав внешней памяти компьютера входят:

  • накопители на жёстких магнитных дисках;
  • накопители на гибких магнитных дисках;
  • накопители на компакт-дисках;
  • накопители на магнито-оптических компакт-дисках;
  • накопители на магнитной ленте (стримеры) и др.

1. Накопители на гибких магнитных дисках

Дискета состоит из круглой полимерной подложки, покрытой с обеих сторон магнитным окислом и помещенной в пластиковую упаковку, на внутреннюю поверхность которой нанесено очищающее покрытие. В упаковке сделаны с двух сторон радиальные прорези, через которые головки считывания/записи накопителя получают доступ к диску.
Способ записи двоичной информации на магнитной среде называется магнитным кодированием. Он заключается в том, что магнитные домены в среде выстраиваются вдоль дорожек в направлении приложенного магнитного поля своими северными и южными полюсами. Обычно устанавл

ивается однозначное соответствие между двоичной информацией и ориентацией магнитных доменов.

Информация записывается по концентрическим дорожкам (трекам ), которые делятся на секторы . Количество дорожек и секторов зависит от типа и формата дискеты. Сектор хранит минимальную порцию информации, которая может быть записана на диск или считана. Ёмкость сектора постоянна и составляет 512 байтов.

В настоящее время наибольшее распространение получили дискеты со следующими характеристиками: диаметр 3,5 дюйма (89 мм), ёмкость 1,44 Мбайт, число дорожек 80, количество секторов на дорожках 18.

Дискета устанавливается в накопитель на гибких магнитных дисках (англ. floppy-disk drive ), автоматически в нем фиксируется , после чего механизм накопителя раскручивается до частоты вращения 360 мин -1 . В накопителе вращается сама дискета, магнитные головки остаются неподвижными. Дискета вращается только при обращении к ней. Накопитель связан с процессором через контроллер гибких дисков.

В последнее время появились трехдюймовые дискеты, которые могут хранить до 3 Гбайт информации. Они изготовливаются по новой технологии Nano2 и требуют специального оборудования для чтения и записи.

2. Накопители на жестких магнитных дисках

Если гибкие диски - это средство переноса данных между компьютерами, то жесткий диск - информационный склад компьютера .

Как и у дискеты, рабочие поверхности платтеров разделены на кольцевые концентрические дорожки, а дорожки - на секторы. Головки считывания-записи вместе с их несущей конструкцией и дисками заключены в герметически закрытый корпус, называемый модулем данных. При установке модуля данных на дисковод он автоматически соединяется с системой, подкачивающей очищенный охлажденный воздух. Поверхность платтера имеет магнитное покрытие толщиной всего лишь в 1,1 мкм, а также слой смазки для предохранения головки от повреждения при опускании и подъёме на ходу. При вращении платтера над ним образуется воздушный слой, который обеспечивает воздушную подушку для зависания головки на высоте 0,5 мкм над поверхностью диска.

Винчестерские накопители имеют очень большую ёмкость: от 10 до 100 Гбайт. У современных моделей скорость вращения шпинделя (вращающего вала) обычно составляет 7200 об/мин, среднее время поиска данных 9 мс, средняя скорость передачи данных до 60 Мбайт/с. В отличие от дискеты, жесткий диск вращается непрерывно . Все современные накопители снабжаются встроенным кэшем (обычно 2 Мбайта), который существенно повышает их производительность. Винчестерский накопитель связан с процессором через контроллер жесткого диска.

4. Накопители на компакт-дисках

Здесь носителем информации является CD-ROM (Сompact Disk Read-Only Memory - компакт диск, из которого можно только читать).

CD-ROM представляет собой прозрачный полимерный диск диаметром 12 см и толщиной 1,2 мм, на одну сторону которого напылен светоотражающий слой алюминия, защищенный от повреждений слоем прозрачного лака. Толщина напыления составляет несколько десятитысячных долей миллиметра.

Информация на диске представляется в виде последовательности впадин (углублений в диске) и выступов (их уровень соответствует поверхности диска), расположеных на спиральной дорожке, выходящей из области вблизи оси диска. На каждом дюйме (2,54 см) по радиусу диска размещается 16 тысяч витков спиральной дорожки. Для сравнения - на поверхности жесткого диска на дюйме по радиусу помещается лишь несколько сотен дорожек. Емкость CD достигает 780 Мбайт . Информация наносится на диск при его изготовлении и не может быть изменена.

CD-ROM обладают высокой удельной информационной емкостью, что позволяет создавать на их основе справочные системы и учебные комплексы с большой иллюстративной базой. Один CD по информационной емкости равен почти 500 дискетам. Cчитывание информации с CD-ROM происходит с достаточно высокой скоростью, хотя и заметно меньшей, чем скорость работы накопителей на жестком диске. CD-ROM просты и удобны в работе, имеют низкую удельную стоимость хранения данных, практически не изнашиваются, не могут быть поражены вирусами, c них невозможно случайно стереть информацию.

В отличие от магнитных дисков, компакт-диски имеют не множество кольцевых дорожек, а одну - спиральную, как у грампластинок. В связи с этим, угловая скорость вращения диска не постоянна. Она линейно уменьшается в процессе продвижения читающей лазерной головки к краю диска.

Для работы с CD-ROM нужно подключить к компьютеру накопитель CD-ROM (рис. 2.9), преобразующий последовательность углублений и выступов на поверхности CD-ROM в последовательность двоичных сигналов. Для этого используется считывающая головка с микролазером и светодиодом. Глубина впадин на поверхности диска равна четверти длины волны лазерного света. Если в двух последовательных тактах считывания информации луч света лазерной головки переходит с выступа на дно впадины или обратно, разность длин путей света в этих тактах меняется на полуволну, что вызывает усиление или ослабление совместно попадающих на светодиод прямого и отраженного от диска света.

Если в последовательных тактах считывания длина пути света не меняется, то и состояние светодиода не меняется. В результате ток через светодиод образует последовательность двоичных электрических сигналов, соответствующих сочетанию впадин и выступов на дорожке.

Различная длина оптического пути луча света в двух последовательных тактах считывания информации соответствует двоичным единицам. Одинаковая длина соответствует двоичным нулям.

Сегодня почти все персональные компьютеры имеют накопитель CD-ROM. Но многие мультимедийные интерактивные программы слишком велики, чтобы поместиться на одном CD. На смену технологии СD-ROM стремительно идет технология цифровых видеодисков DVD . Эти диски имеют тот же размер, что и обычные CD, но вмещают до 17 Гбайт данных , т.е. по объему заменяют 20 стандартных дисков CD-ROM. На таких дисках выпускаются мультимедийные игры и интерактивные видеофильмы отличного качества, позволяющие зрителю просматривать эпизоды под разными углами камеры, выбирать различные варианты окончания картины, знакомиться с биографиями снявшихся актеров, наслаждаться великолепным качеством звука.

4. Накопитель на магнито-оптических компакт-дисках DVD

4,7 17 50-hd dvd 200 blue ray

Накопитель WARM (Write And Read Many times), позволяет производить многократную запись и считывание.

5. Накопители на магнитной ленте (стримеры)

Стримеры позволяют записать на небольшую кассету с магнитной лентой огромное количество информации. Встроенные в стример средства аппаратного сжатия позволяют автоматически уплотнять информацию перед её записью и восстанавливать после считывания, что увеличивает объём сохраняемой информации.

Недостатком стримеров является их сравнительно низкая скорость записи, поиска и считывания информации.

  1. Флешка

Кристалл на который записывается информация –32гб

20. ЖИДКОКРИСТАЛЛИЧЕСКИЕ МОНИТОРЫ. МОНИТОРЫ, ПОСТОРЕННЫЕ НА ОСНОВЕ ЭЛТ

Видеосистема компьютера состоит из трех компонент:

монитор (называемый также дисплеем);

видеоадаптер ;

программное обеспечение (драйверы видеосистемы).

Видеоадаптер посылает в монитор сигналы управления яркостью лучей и синхросигналы строчной и кадровой развёрток. Монитор преобразует эти сигналы в зрительные образы. А программные средства обрабатывают видеоизображения - выполняют кодирование и декодирование сигналов, координатные преобразования, сжатие изображений и др.

Подавляющее большинство мониторов сконструированы на базе электронно-лучевой трубки (ЭЛТ) , и принцип их работы аналогичен принципу работы телевизора. Мониторы бывают алфавитно-цифровые и графические, монохромные и цветного изображения. Современные компьютеры комплектуются, как правило, цветными графическими мониторами.

1. Монитор на базе электронно-лучевой трубки

Основной элемент дисплея - электронно-лучевая трубка . Её передняя, обращенная к зрителю часть с внутренней стороны покрыта люминофором - специальным веществом, способным излучать свет при попадании на него быстрых электронов .

Люминофор наносится в виде наборов точек трёх основных цветов - красного , зелёного и синего . Эти цвета называют основными, потому что их сочетаниями (в различных пропорциях) можно представить любой цвет спектра.

Наборы точек люминофора располагаются по треугольным триадам. Триада образует пиксел - точку, из которых формируется изображение (англ. pixel - picture element, элемент картинки).

Расстояние между центрами пикселов называется точечным шагом монитора . Это расстояние существенно влияет на чёткость изображения. Чем меньше шаг, тем выше чёткость. Обычно в цветных мониторах шаг составляет 0,24 мм. При таком шаге глаз человека воспринимает точки триады как одну точку "сложного" цвета.

На противоположной стороне трубки расположены три (по количеству основных цветов) электронные пушки. Все три пушки "нацелены" на один и тот же пиксел, но каждая из них излучает поток электронов в сторону "своей" точки люминофора. Чтобы электроны беспрепятственно достигали экрана, из трубки откачивается воздух, а между пушками и экраном создаётся высокое электрическое напряжение, ускоряющее электроны. Перед экраном на пути электронов ставится маска - тонкая металлическая пластина с большим количеством отверстий, расположенных напротив точек люминофора. Маска обеспечивает попадание электронных лучей только в точки люминофора соответствующего цвета.

Величиной электронного тока пушек и, следовательно, яркостью свечения пикселов, управляет сигнал, поступающий с видеоадаптера.

На ту часть колбы, где расположены электронные пушки, надевается отклоняющая система монитора, которая заставляет электронный пучок пробегать поочерёдно все пикселы строчку за строчкой от верхней до нижней, затем возвращаться в начало верхней строки и т.д.

Количество отображённых строк в секунду называется строчной частотой развертки. А частота, с которой меняются кадры изображения, называется кадровой частотой развёртки. Последняя не должна быть ниже 85 Гц, иначе изображение будет мерцать .

2. Жидкокристаллические мониторы

Все шире используются наряду с традиционными ЭЛТ-мониторами. Жидкие кристаллы - это особое состояние некоторых органических веществ, в котором они обладают текучестью и свойством образовывать пространственные структуры, подобные кристаллическим. Жидкие кристаллы могут изменять свою структуру и светооптические свойства под действием электрического напряжения. Меняя с помощью электрического поля ориентацию групп кристаллов и используя введённые в жидкокристаллический раствор вещества, способные излучать свет под воздействием электрического поля, можно создать высококачественные изображения, передающие более 15 миллионов цветовых оттенков.

Большинство ЖК-мониторов использует тонкую плёнку из жидких кристаллов, помещённую между двумя стеклянными пластинами. Заряды передаются через так называемую пассивную матрицу - сетку невидимых нитей, горизонтальных и вертикальных, создавая в месте пересечения нитей точку изображения (несколько размытого из-за того, что заряды проникают в соседние области жидкости).

Активные матрицы вместо нитей используют прозрачный экран из транзисторов и обеспечивают яркое, практически не имеющее искажений изображение. Экран при этом разделен на независимые ячейки, каждая из которых состоит из четырех частей (для трёх основных цветов и одна резервная). Количество таких ячеек по широте и высоте экрана называют разрешением экрана. Современные ЖК-мониторы имеют разрешение 642х480, 1280х1024 или 1024х768. Таким образом, экран имеет от 1 до 5 млн точек, каждая из которых управляется собственным транзистором. По компактности такие мониторы не знают себе равных. Они занимают в 2 - 3 раза меньше места, чем мониторы с ЭЛТ и во столько же раз легче; потребляют гораздо меньше электроэнергии и не излучают электромагнитных волн, воздействующих на здоровье людей.

21. ПРИНТЕРЫ. ПЛОТТЕР. СКАНЕР

Существуют тысячи наименований принтеров. Но основных видов принтеров три: матричные, лазерные и струйные.

· Матричные принтеры используют комбинации маленьких штырьков, которые бьют по красящей ленте, благодаря чему на бумаге остаётся отпечаток символа. Каждый символ, печатаемый на принтере, формируется из набора 9, 18 или 24 игл, сформированных в виде вертикальной колонки. Недостатками этих недорогих принтеров являются их шумная работа и невысокое качество печати.

· Лазерные принтеры работают примерно так же, как ксероксы. Компьютер формирует в своей памяти "образ" страницы текста и передает его принтеру. Информация о странице проецируется с помощью лазерного луча на вращающийся барабан со светочувствительным покрытием, меняющим электрические свойства в зависимости от освещённости.

После засветки на барабан, находящийся под электрическим напряжением, наносится красящий порошок - тонер, частицы которого налипают на засвеченные участки поверхности барабана. Принтер с помощью специального горячего валика протягивает бумагу под барабаном; тонер переносится на бумагу и "вплавляется" в неё, оставляя стойкое высококачественное изображение. Цветные лазерные принтеры пока очень дороги.

· Струйные принтеры генерируют символы в виде последовательности чернильных точек . Печатающая головка принтера имеет крошечные сопла, через которые на страницу выбрызгиваются быстросохнущие чернила. Эти принтеры требовательны к качеству бумаги. Цветные струйные принтеры создают цвета, комбинируя чернила четырех основных цветов - ярко-голубого, пурпурного, желтого и черного.

Принтер связан с компьютером посредством кабеля принтера, один конец которого вставляется своим разъёмом в гнездо принтера, а другой - в порт принтера компьютера. Порт - это разъём, через который можно соединить процессор компьютера с внешним устройством .

Каждый принтер обязательно имеет свой драйвер - программу, которая способна переводить (транслировать) стандартные команды печати компьютера в специальные команды, требующиеся для каждого принтера.

Плоттеры используются для получения сложных конструкторских чертежей, архитектурных планов, географических и метеорологических карт, деловых схем. Плоттеры рисуют изображения с помощью пера.

Роликовые плоттеры прокручивают бумагу под пером, а планшетные плоттеры перемещают перо через всю поверхность горизонтально лежащей бумаги.

Плоттеру, так же, как и принтеру, обязательно нужна специальная программа - драйвер , позволяющая прикладным программам передавать ему инструкции: поднять и опустить перо, провести линию заданной толщины и т.п.

Если принтеры выводят информацию из компьютера, то сканеры, наоборот, переносят информацию с бумажных документов в память компьютера. Существуют ручные сканеры , которые прокатывают по поверхности документа рукой, и планшетные сканеры , по внешнему виду напоминающие копировальные машины.

Статическая оперативная память с произвольным доступом (SRAM, static random access memory) -- полупроводниковая оперативная память, в которой каждый двоичный или троичный разряд хранится в схеме с положительной обратной связью, позволяющей поддерживать состояние сигнала без постоянной перезаписи, необходимой в динамической памяти (DRAM). Тем не менее, сохранять данные без перезаписи SRAM может только пока есть питание, то есть SRAM остается энергозависимым типом памяти. Произвольный доступ (RAM -- random access memory) -- возможность выбирать для записи/чтения любой из битов (тритов) (чаще байтов (трайтов), зависит от особенностей конструкции), в отличие от памяти с последовательным доступом (SAM -- sequental access memory).

Двоичная SRAM

Рис. 1.

Типичная ячейка статической двоичной памяти (двоичный триггер) на КМОП-технологии состоит из двух перекрёстно (кольцом) включённых инверторов и ключевых транзисторов для обеспечения доступа к ячейке (рис. 1.). Часто для увеличения плотности упаковки элементов на кристалле в качестве нагрузки применяют поликремниевые резисторы. Недостатком такого решения является рост статического энергопотребления.

Линия WL (Word Line) управляет двумя транзисторами доступа. Линии BL и BL (Bit Line) -- битовые линии, используются и для записи данных и для чтения данных.

Запись. При подаче «0» на линию BL или BL параллельно включенные транзисторные пары (M5 и M1) и (M6 и M3) образуют логические схемы 2ИЛИ, последующая подача «1» на линию WL открывает транзистор M5 или M6, что приводит к соответствующему переключению триггера.

Чтение. При подаче «1» на линию WL открываются транзисторы M5 и M6, уровни записанные в триггере выставляются на линии BL и BL и попадают на схемы чтения.

Восьмитранзисторная ячейка двоичной SRAM описана в .

Переключение триггеров через транзисторы доступа является неявной логической функцией приоритетного переключения, которая в явном виде, для двоичных триггеров, строится на двухвходовых логических элементах 2ИЛИ-НЕ или 2И-НЕ. Схема ячейки с явным переключением является обычным RS-триггером. При явной схеме переключения линии чтения и записи разделяются, отпадает нужда в транзисторах доступа (по 2 транзистора на 1 ячейку), но в самой ячейке требуются двухзатворные транзисторы.

В настоящее время появилась (!) усовершенствованная схема с отключаемой сигналом записи обратной связью, которая не требует транзисторов нагрузки и соответственно избавлена от высокого потребления энергии при записи.

Троичная SRAM

Рис. 2. Проект троичной SRAM на трёхразрядных однозначных троичных триггерах

Один логический элемент 2ИЛИ-НЕ состоит из двух двухзатворных транзисторов, три -- из шести, плюс три транзистора доступа, всего -- девять транзисторов на одну трёхразрядную ячейку памяти.

Преимущества

· Быстрый доступ. SRAM -- это действительно память произвольного доступа, доступ к любой ячейке памяти в любой момент занимает одно и то же время.

· Простая схемотехника -- SRAM не требуются сложные контроллеры.

· Возможны очень низкие частоты синхронизации, вплоть до полной остановки синхроимпульсов.

Недостатки

· Высокое энергопотребление.

· Невысокая плотность записи (шесть элементов на бит , вместо двух у DRAM).

· Вследствие чего -- дороговизна килобайта памяти.

Тем не менее, высокое энергопотребление не является принципиальной особенностью SRAM, оно обусловлено высокими скоростями обмена с данным видом внутренней памяти процессора. Энергия потребляется только в момент изменения информации в ячейке SRAM.

Применение

SRAM применяется в микроконтроллерах и ПЛИС, в которых объём ОЗУ невелик (единицы килобайт), зато нужны низкое энергопотребление (за счёт отсутствия сложного контроллера динамической памяти), предсказываемое с точностью до такта время работы подпрограмм и отладка прямо на устройстве.

В устройствах с большим объёмом ОЗУ рабочая память выполняется как DRAM. SRAM"ом же делают регистры и кеш-память.

DRAM (dynamic random access memory) -- тип энергозависимой полупроводниковой памяти с произвольным доступом (RAM), также запоминающее устройство, наиболее широко используемое в качестве ОЗУ современных компьютеров.

Физически память DRAM состоит из ячеек, созданных в полупроводниковом материале, в каждой из которых можно хранить определённый объём данных, от 1 до 4 бит. Совокупность ячеек такой памяти образуют условный «прямоугольник», состоящий из определённого количества строк и столбцов. Один такой «прямоугольник» называется страницей, а совокупность страниц называется банком. Весь набор ячеек условно делится на несколько областей.

Как запоминающее устройство, DRAM-память представляет собой модуль различных конструктивов, состоящий из электрической платы, на которой расположены микросхемы памяти и разъём, необходимый для подключения модуля к материнской плате.


Рис. 3. Рис. 3.1

Физически DRAM-память представляет собой набор запоминающих ячеек, которые состоят из конденсаторов и транзисторов, расположенных внутри полупроводниковых микросхем памяти.

При отсутствии подачи электроэнергии к памяти этого типа происходит разряд конденсаторов, и память опустошается (обнуляется). Для поддержания необходимого напряжения на обкладках конденсаторов ячеек и сохранения их содержимого, их необходимо периодически подзаряжать, прилагая к ним напряжения через коммутирующие транзисторные ключи. Такое динамическое поддержание заряда конденсатора является основополагающим принципом работы памяти типа DRAM. Конденсаторы заряжают в случае, когда в «ячейку» записывается единичный бит, и разряжают в случае, когда в «ячейку» необходимо записать нулевой бит.

Важным элементом памяти этого типа является чувствительный усилитель (англ. sense amp), подключенный к каждому из столбцов «прямоугольника». Он, реагируя на слабый поток электронов, устремившихся через открытые транзисторы с обкладок конденсаторов, считывает всю страницу целиком. Именно страница является минимальной порцией обмена с динамической памятью, потому что обмен данными с отдельно взятой ячейкой невозможен.

Регенерация

В отличие от статической памяти типа SRAM (англ. static random access memory), которая является конструктивно более сложным и более дорогим типом памяти и используется в основном в кэш-памяти, память DRAM изготавливается на основе конденсаторов небольшой ёмкости, которые быстро теряют заряд, поэтому информацию приходится обновлять через определённые промежутки времени во избежание потерь данных. Этот процесс называется регенерацией памяти. Он реализуется специальным контроллером, установленным на материнской плате или же на кристалле центрального процессора. На протяжении времени, называемого шагом регенерации, в DRAM перезаписывается целая строка ячеек, и через 8-64 мс обновляются все строки памяти.

Процесс регенерации памяти в классическом варианте существенно тормозит работу системы, поскольку в это время обмен данными с памятью невозможен. Регенерация, основанная на обычном переборе строк, не применяется в современных типах DRAM. Существует несколько более экономичных вариантов этого процесса -- расширенный, пакетный, распределённый; наиболее экономичной является скрытая (теневая) регенерация.

память компьютерный триггер кэш

Триггеры

Триггер (триггерная система) -- класс электронных устройств, обладающих способностью длительно находиться в одном из двух или более устойчивых состояний и чередовать их под воздействием внешних сигналов. Каждое состояние триггера легко распознаётся по значению выходного напряжения.

По характеру действия триггеры относятся к импульсным устройствам -- их активные элементы (транзисторы, лампы) работают в ключевом режиме, а смена состояний длится очень короткое время.

ОЗУ, собранное на триггерах, называется статической памятью с произвольным доступом или просто статической памятью. Достоинство этого вида памяти -- скорость. Поскольку триггеры собраны на вентилях, а время задержки вентиля очень мало, то и переключение состояния триггера происходит очень быстро. Данный вид памяти не лишён недостатков. Во-первых, группа транзисторов, входящих в состав триггера, обходится дороже, даже если они вытравляются миллионами на одной кремниевой подложке. Кроме того, группа транзисторов занимает гораздо больше места, поскольку между транзисторами, которые образуют триггер, должны быть вытравлены линии связи. Используется для сверхбыстрого ОЗУ.

Общие сведения. Статическая память (Static Random Access Memory – SRAM) способна сколь угодно долго хранить данные в отсутствие обращений (при наличии питающего напряжения), т.е. в статическом режиме. Ячейки статической памяти строятся на элементах с двумя устойчивыми состояниями (на бистабильных ячейках или триггерах). По сравнению с динамическими емкостными элементами памяти они проще в управлении и не требуют регенерации, однако являются более сложными в схемном отношении и занимают больше места на кристалле. Быстродействие и энергопотребление статической памяти определяются технологией изготовления и схемотехникой запоминающих ячеек. Самая экономичная КМОП-память (CMOS Memory) пригодна для длительного хранения данных при питании от маломощной батареи. Она применяется в памяти конфигурации персональных компьютеров. Время доступа КМОП-памяти составляет более 100 нс. Самая быстродействующая статическая память имеет время доступа в несколько наносекунд (и даже десятых долей наносекунды). Такая память способна функционировать на частоте системной шины совместно с процессором, не требуя от него тактов ожидания.

Типовой объем памяти современных микросхем SRAM достигает 1 Мбит и более. Существуют три разновидности микросхем статической памяти: Async SRAM, Sync Burst SRAM и Pipelined Burst SRAM. Относительно высокая удельная стоимость хранения данных при низкой плотности упаковки не позволяет использовать SRAM в качестве основной памяти компьютеров.

Во избежание увеличения стоимости в компьютерах устанавливается небольшой объем высокоскоростной статической памяти SRAM, которая используется в качестве кэша. Кэш-память способна работать на тактовых частотах, близких или равных тактовым частотам процессора. Поэтому она непосредственно используется процессором при чтении и записи, что позволяет сократить количество его простоев и увеличить быстродействие компьютера в целом. Контроллер кэша предугадывает потребности процессора в данных и предварительно загружает необходимые данные в высокоскоростную кэш-память. При выдаче процессором адреса памяти данные передаются не из медленной оперативной памяти, а из кэша.

Для сокращения времени ожидания и простоев процессора при считывании данных из низкоскоростной оперативной памяти в современных компьютерах предусмотрено до трех уровней кэша. При этом кэш-память первого и второго уровней может располагаться на одном кристалле с процессором. Использование синхронной работы с процессором и конвейерного пакетного режима сопутствует повышению быстродействия и эффективности кэш-памяти. Возможности и эффективность кэш-памяти предопределяет контроллер, который располагается в микросхемах (обычно North Bridge) системной логики или на плате процессора.

Таким образом, к основным особенностям статических ОЗУ следует отнести:

  • способность при включенном компьютере сколь угодно долго хранить данные (информацию) в отсутствие обращений. Такая способность обеспечивается бистабильными ячейками памяти с двумя устойчивыми состояниями, которые выполняются на биполярных или КМОП-структурах;
  • сравнительно высокое быстродействие микросхем на биполярных структурах (время доступа составляет единицы наносекунд), позволяющее работать синхронно с процессорами на частотах выше 500 МГц;
  • низкое энергопотребление КМОП-микросхем, обеспечивающее длительное хранение параметров системы ввода-вывода (BIOS);
  • сравнительно большие габариты микросхем и высокая стоимость , что связано с большим числом транзисторов и кластеризованным их размещением (используются кластеры из шести транзисторов);
  • типовой объем памяти микросхем SRAM достигает 1 Мбит и более;
  • основная область применения – кэш-память и память конфигурации компьютера.

Статическая память - SRAM (Static Random Access Memory), как и следует из ее названия, способна хранить информацию в статическом режиме - то есть сколь угодно долго при отсутствии обращений (но при наличии питающего напряжения). Ячейки статической памяти реализуются на триггерах - элементах с двумя устойчивыми состояниями. По сравнению с динамической памятью эти ячейки более сложны и занимают больше места в кристалле, однако они проще в управлении и не требуют регенерации. Быстродействие и энергопотребление статической памяти определяется технологией изготовления и схемотехникой запоминающих ячеек.
Самая экономичная статическая память КМОП (или CMOS Memory) в тоже время и самая медленная память такого типа, имеет время доступа более 100 наносекунд, но зато пригодна для длительного хранения информации при питании от маломощной батареи. Применяется CMOS память в персональных компьютерах для хранения данных о конфигурации и для реализации внутренних часов.
Самая быстродействующая статическая память имеет время доступа в несколько наносекунд, что позволяет ей работать на частоте системной шины процессора, не требуя от него тактов ожидания. Относительно высокая удельная стоимость хранения информации и высокое энергопотребление при низкой плотности упаковки элементов не позволяет использовать SRAM в качестве оперативной памяти компьютеров.
Статические запоминающие устройства (SRAM) имеют перед динамическими то преимущество, что у них время выборки практически равно времени цикла записи или чтения. Выполненная по той же технологии что и процессор, статическая память имеет высокое быстродействие. Главным ограничением в использовании статической памяти является стоимость. При равной емкости с динамической, статическая память примерно в четыре раза дороже. Поэтому данный вид памяти получил распространение в высокопроизводительных системах в качестве внешней (относительно процессора) кэш памяти. Соотношение цена/производительность в этих системах играет не столь существенную роль. Однако, с появлением микросхем статической памяти большой емкости и ее удешевлением произойдет изменение сложившегося стереотипа использования схем памяти и производители компьютеров, возможно, пойдут на замену динамической памяти статической, пока же элементы статической памяти используются в оперативной динамической памяти, как быстрый конвейерный буфер для подготовки данных к выдаче на шину данных каждый такт системной шины.
Структура микросхемы статической памяти
Элементом памяти в статических ОЗУ является триггер, выполненный на транзисторах. Структура микросхемы статической памяти (рис.1.) включает матрицу накопителя содержащую М x N элементов памяти.

Динамическая память (DRAM) - это тип памяти с произвольным доступом, используемый в вычислительных устройствах, и в первую очередь на ПК. DRAM хранит каждый бит данных в отдельном пассивном электронном компоненте, который находится внутри интегральной платы. Каждый электрический компонент имеет два состояния значения в одном бите, называемом 0 и 1. Он должен часто обновляться, иначе информация исчезает. DRAM имеет один конденсатор и один транзистор на бит, в отличие от статической памяти произвольного доступа (SRAM), которая требует 6 транзисторов. Используемые конденсаторы и транзисторы исключительно малы. Существуют миллионы конденсаторов и транзисторов, которые подходят к одному чипу памяти.

Будучи одной из форм технологии памяти, динамическая память ОЗУ возникла из разработок первых микропроцессоров и сопутствующих разработок интегральных схем. В середине 1960-х годов начали появляться в некоторых современных электронных продуктах, где ранее использовалась форма магнитной памяти в виде одного небольшого ферритового тороида для каждого элемента. Естественно, эта «основная» память была очень дорогой, а интегрированные версии были более привлекательными в долгосрочной перспективе.

Идея технологии DRAM появилась относительно рано на временной шкале полупроводниковых интегральных схем. Ранняя форма была применена в калькуляторе Toshiba, который был выпущен в 1966 году из дискретного компонента, а затем через два года идея была запатентована. Следующий этап разработки технологий произошел в 1969 году, когда Honeywell, который вошел на компьютерный рынок, попросил Intel изготовить динамическую память, используя три идеи транзисторных ячеек. Полученная ИС DRAM была названа Intel 1102 и появилась в начале 1970 года. Однако у устройства было несколько проблем, после чего Intel разработал новую технологию, которая работала более надежно.

Полученное новое устройство появилось в конце 1970 года и получило название Intel 1103. Технология продвинулась еще дальше, когда в 1973 году MOSTEK выпустил свой MK4096. Как показывает номер детали, устройство имело емкость 4 к. Главным его преимуществом было то, что он включал мультиплексированный подход к строкам и столбцам. Этот новый подход позволил вписаться в пакеты с меньшим количеством контактов. В результате преимущество в стоимости выросло по сравнению с предыдущими подходами при каждом увеличении объема памяти.

Это позволило технологии MOSTEK получить более 75 % доли мирового рынка. В конце концов MOSTEK проиграл японским производителям, поскольку они смогли производить более качественные устройства по более низкой цене.

DRAM — динамическая память, а SRAM — статическая память. Чипы DRAM на плате обновляются каждые несколько миллисекунд. Это делается путем перезаписи данных в модуль. Чипы, которые нуждаются в обновлении, являются энергозависимой памятью. DRAM напрямую обращается к памяти, запоминает память на короткий период и теряет свои данные при отключении питания.

SRAM — это которая является статической и не нуждается в обновлении. Поскольку она выполняется намного быстрее, то используется в регистрах и кеш-памяти. SRAM хранит данные и работает на более высоких скоростях, чем динамическая память c материнской платой, потому что это намного дешевле в производстве.

DRAM — это один из вариантов полупроводниковой памяти, которым разработчик системы может использовать при создании компьютера. Альтернативные варианты памяти включают статическое ОЗУ (SRAM), электрически стираемая программируемая память только для чтения (EEPROM), NOR Flash и NAND Flash. Во многих системах используется более одного типа памяти.

Типы печатных плат и системы считывания

Три основных типа печатных плат, которые содержат микросхемы памяти — это два встроенных модуля памяти (DIMM), однострочные модули памяти (SIMM) и модули памяти Rambus в линейке (RIMM).

Сегодня большинство материнских плат используют модули DIMM. Частота обновления модуля для DRAM составляет каждые несколько миллисекунд (1/1000 секунды). Это обновление выполняется контроллером памяти, расположенным на чипсете материнской платы. Поскольку логика обновления используется для автоматического обновления, плата DRAM является довольно сложной.

Существуют различные системы, используемые для обновления, но для всех методов требуется, чтобы счетчик отслеживал строку, которая должна быть обновлена следующим образом. Ячейки DRAM организованы в виде квадратного набора конденсаторов, обычно 1024 на 1024 ячеек. Когда ячейка находится в состоянии «прочитано», считывается целая строка, и обновление записывается обратно. Когда в состоянии «записи», целая строка «считывается», изменяется одно значение, а затем вся строка переписывается.

В зависимости от системы есть чипы DRAM, которые содержат счетчик в то время, как другие системы полагаются на логику обновления периферийного устройства. Время доступа составляет около 60 наносекунд, в то время как SRAM может достигать 10 наносекунд. Кроме того, время цикла DRAM намного длиннее, чем у SRAM. Время цикла короче, потому что ему не нужно останавливаться между обращениями и обновлениями.

DRAM является преемником SRAM. Дизайнеры памяти уменьшили количество элементов на бит и исключили дифференциальные разрядные линии, чтобы сохранить область чипа для создания DRAM. В результате ее дешевле производить, чем SRAM. Но SRAM сохраняет некоторые преимущества перед DRAM. Сравнение статической и динамической памяти:

  1. SRAM не нуждается в обновлении, поскольку работает по принципу переключения текущего потока в одном из двух направлений вместо того, чтобы удерживать заряд в месте хранения.
  2. Ее обычно используется для кеш-памяти, к которой можно получить доступ быстрее, чем DRAM.
  3. SRAM способна считывать и записывать байтовые разряды и быстрее считывает и записывает, чем DRAM, который записывает данные на уровне байта и читает на уровне многобайтовых страниц.
  4. Различия в мощности определяются в зависимости от того, находится ли система в активном или спящем режиме. DRAM требует меньше энергии, чем SRAM в активном состоянии, но SRAM потребляет значительно меньше энергии, в режиме ожидания.

Существует много типов или интерфейсов для связи с DRAM. Они включают в себя с быстрым режимом страницы (FPM DRAM), расширенные данные из DRAM (EDO RAM) и синхронную DRAM (SDRAM). SDRAM это общее название для типов DRAM, синхронизированных с тактовой частотой от микропроцессора. Они включают SDRAM с одной скоростью передачи данных (SDR), SDRAM с двойной скоростью передачи данных (DDR), DDR2 SDRAM, DDR3 SDRAM и DDR4 SDRAM.

Принцип работы RAM

Устройства динамической памяти имеют технологию MOS, лежащую в основе проектирования, изготовления и эксплуатации. Посмотрев, как работает память DRAM, можно видеть, что в базовой памяти RAM или DRAM используется конденсатор для хранения каждого бита данных и передающее устройство — MOSFET, которое действует как коммутатор.

Уровень заряда на конденсаторе ячейки памяти определяет, является ли этот конкретный бит логическим «1» или «0» — наличие заряда в конденсаторе указывает логику «1», а отсутствие заряда указывает логическое «0». Динамическое распределение памяти RAM имеет определенный формат, в результате чего он может быть плотно упакован на кремниевый чип, и это делает его очень дешевым. Две строки соединены с каждой динамической ячейкой RAM - линия Word (W / L) и линия бит (B / L), так что требуемая ячейка внутри матрицы может считывать или записывать данные.

Базовая ячейка

Показанная базовая ячейка памяти была бы одной из многих тысяч или миллионов таких ячеек в полном чипе памяти. Они могут иметь емкость 256 Мбит и более. Чтобы улучшить возможности записи и чтения и скорость, выполняют динамическое выделение памяти c разделением на подматрицы. Наличие нескольких подмассивов сокращает слова и битовые строки, и это сокращает время доступа к отдельным ячейкам. Например, динамическое ОЗУ 256 Мбит, DRAM может быть разделено на 16 меньших 16 Мбит массивов.

Линейные управляют входом линий передачи, в то время как битовые бины подключены к каналу FET и в итоге подключены к усилителям чувствительности. Существует два способа организации битовых строк:

  1. Сложенные битовые линии. Можно рассматривать пару соседних разрядных линий, как одну разрядную линию, сложенную пополам, с соединением на слоте, подключенным к совместно используемому усилителю. Этот формат обеспечивает дополнительную помехоустойчивость, но за счет компактности.
  2. Открытые битовые линии. В этой конфигурации линии помещаются между двумя подматрицами, тем самым, соединяя каждый усилитель сигнала с одной разрядной линией в каждом массиве. Это предлагает более компактное решение, чем свернутые битовые линии за счет помехоустойчивости.

Одна из проблем, связанных с этой схемой, заключается в том, что конденсаторы не удерживают свой заряд неограниченно, поскольку на конденсаторе имеется некоторая утечка. Было бы неприемлемо, чтобы память потеряла свои данные, и для преодоления этой проблемы периодически обновляются данные. Данные считываются и записываются, и это гарантирует, что всякая утечка будет преодолена, и данные будут восстановлены.

Одним из ключевых элементов памяти DRAM является тот факт, что данные периодически обновляются. Обычно производители указывают, что каждая строка должна обновляться каждые 64 мс. Этот временной интервал соответствует стандартам JEDEC для динамических периодов обновления RAM.

Существует множество способов, с помощью которых можно выполнить обновление. Некоторые процессорные системы обновляют каждую строку вместе каждые 64 мс. Другие системы обновляют по одной строке за раз, но это имеет тот недостаток, что при больших воспоминаниях частота обновления становится очень быстрой. Другие системы, особенно системы реального времени, в которых скорость имеет значение, принимают подход, когда часть полупроводниковой памяти одновременно зависит от внешнего таймера, управляющего работой остальной системы. Таким образом, это не мешает работе системы.

Независимо от того, какой метод используется, необходимо, чтобы счетчик мог отслеживать следующую строку в памяти DRAM, которая должна быть обновлена. Некоторые чипы включают счетчик, в противном случае для этой цели необходимо добавить дополнительное устройство. Может показаться, что схемы обновления, необходимые для памяти DRAM, усложнят общую схему памяти и делают ее более дорогой. Однако обнаружено, что дополнительная схема не является серьезной проблемой, если ее можно интегрировать в чип памяти. И также обнаружено, что эта память намного дешевле и имеет гораздо большую емкость, чем у другого основного соперника — статического ОЗУ (SRAM).

Отношение сигнал/шум

По мере увеличения размеров воспоминаний проблема соотношения сигнал/шум становится очень важной, поскольку может вызвать проблемы с повреждением данных. Это зависит от отношения емкости накопительного конденсатора в памяти DRAM к емкости линии Word или бит, на которую сбрасывается заряд, когда к ячейке обращаются. По мере увеличения плотности битов на микросхему отношение ухудшается, поскольку площадь ячейки уменьшается, из-за того, что на разрядную линию добавляется больше ячеек.

По этой причине важно хранить как высокое напряжение на емкостном конденсаторе, так и увеличить емкость запоминающего устройства DRAM для заданных областей в максимально возможной степени. Это очень важно, потому что чувствительность небольшого заряда на конденсаторе ячейки памяти является одной из самых сложных областей конструкции чипа памяти - DRAM. В результате этого некоторые сложные схемы были включены в чипы памяти.

Чипы памяти DRAM широко используются, и технология очень хорошо зарекомендовала себя. А чипы памяти и плагины доступны для расширения памяти компьютеров и многих других устройств. Хотя DRAM имеет свои недостатки, она по-прежнему широко используется, поскольку предлагает множество преимуществ с точки зрения размера затрат и удовлетворительной скорости, она не самая быстрая, но все же намного быстрее, чем некоторые другие типы памяти.

В семействе памяти DRAM существует несколько типов, включая асинхронные, синхронные, EDO, BEDO, FPM и другие. Помимо типа технологии памяти, она также может содержаться в нескольких типах пакетов IC. DRAM также доступен в форматах модулей и имеется несколько типов модулей памяти, включая модули DIMM, SIMM, RIMM и т. п. Таким образом, необходимо иметь представление обо всех различных типах DRAM и форматах, в которых память может быть получена, установлена и использована.

При изучении самой технологии памяти существует большое разнообразие различных типов DRAM. Асинхронный DRAM, является основным типом, на котором основаны все остальные типы. Асинхронные имеют соединения для питания, адресных входов и двунаправленных линий данных. Хотя этот тип DRAM является асинхронным, система запускается контроллером памяти, который синхронизирован, и это ограничивает скорость системы, чтобы умножить тактовую частоту. Тем не менее, сама работа DRAM не является синхронной.

Выделение памяти

Динамическое выделение памяти - это процесс, с помощью которого компьютерным программам и службам присваивается физическое или виртуальное пространство памяти. Фактически - это процесс резервирования частичной или полной части компьютерной памяти для выполнения программ и процессов. Распределение памяти достигается посредством процесса, известного как управление памятью через операционную систему и программные приложения.

Динамическое выделение памяти имеет два основных типа:

  1. Распределение статической памяти, программе выделяется память во время компиляции.
  2. Динамическое распределение памяти, программы распределяются с памятью во время выполнения.

Процесс распределения памяти очень похож на управление физической и виртуальной памятью. Программы и службы назначаются определенной памятью в соответствии с их требованиями при выполнении. Как только программа завершит свою работу, или простаивает, память освобождается и назначается другой программе или объединена в первичной памяти.

Оптимизация использования памяти

Динамическая память arduino выполнена в виде flash.Там где сама программа хранится и не может быть изменена, кроме случаев, когда пользователь загружает новую программу, называемую «эскизом», с компьютера, и сохраняет то, что загрузил, даже если питание отключено. Когда проверяют или загружают эскиз, ПК сообщит в окне, сколько флэш есть и сколько использовано, если включен «подробный режим» в настройках.

Каждый раз, когда загружается новый эскиз, он перезаписывает старый. Arduino одномоментно имеет только одну программу, и когда в Arduino подается питание, программа запускается навсегда. Большинство современных Arduinos имеют около 32 тыс. флэш-памяти, что довольно мало и ограничивает размер программ (эскизов), которые вам можно загрузить. Но SRAM - реальный предел для многих вещей. Пользователю действительно нужно быть осторожным в планировании, чтобы свести к минимуму то, что действительно нужно сохранить. И если пытаются использовать слишком много — Arduino просто не сработает. Пользователь даже не сможете выполнить самые минимальные отладочные действия, пока не будет перезагружен ПК.

SRAM — самый ценный товар памяти на Arduino. Хотя недостатки SRAM, вероятно, являются наиболее распространенными проблемами памяти на Arduino. Их трудно диагностировать. Если программа терпит неудачу необъяснимым образом, есть хорошие шансы, что пользователь разбил стек из-за нехватки SRAM. Есть ряд вещей, которые можно сделать для сокращения использования SRAM:

  1. Удалить неиспользуемые переменные.
  2. Зарезервировать строки.
  3. Переместите постоянные данные в PROGMEM.
  4. Уменьшение размеров буфера.
  5. Уменьшение негабаритных переменных.

Любая переменная, которую пользователь определяете либо в верхней части программы, внутри функции, либо даже «на лету» в чем-то вроде цикла for, скорее всего, будет использовать SRAM, хотя некоторые переменные никогда не хранятся в SRAM. Каждый раз, когда Arduino запускается с помощью включения или сброса, все его переменные повторно инициализируются по умолчанию, и ей необходимо повторно изучить среду, с которой она работает.

Работа с динамической памятью - важный важный аспект, который следует учитывать при разработке системы. На самом деле, есть третий вид памяти - EEPROM, который можно записать, и он будет сохранен в случае прерывания питания. Arduino может записывать 300 EEPROM в секунду, если пользователь будет неосторожен, то теоретически такая скорость может уничтожить ячейку памяти через 5 минут, а весь EEPROM - через два дня.