Разрешающая способность оптических приборов. Большая энциклопедия нефти и газа

Используя даже идеальную оптическую систему (такую, для которой отсутствуют дефекты и аберрации), невозможно получить стигматическое изображение точечного источника, что объясняется волновой природой света. Изображение любой светящейся точки в монохроматическом свете представляет собой дифракционную картину, т. е. точечный источник отображается в виде центрального светлого пятна, окруженного чередующимися темными и светлыми кольцами.

Согласнокритерию Рэлея, изображения двух близлежащих одинаковых точечных источников или двух близлежащих спектральных линий с равными интенсивностями и одинаковыми симметричными контурами разрешимы (разделены для восприятия), если центральный максимум дифракционной картины от одного источника (линии) совпадает с первым минимумом дифракционной картины от другого (рис. 265, а). При выполнении критерия Рэлея интенсивность «провала» между максимумами составляет 80% интенсивности в максимуме, что является достаточным для разрешения линий  1 и  2 . Если критерий Рэлея нарушен, то наблюдается одна линия (рис. 265, б).

1. Разрешающая способность объектива. Если на объектив падает свет от двух удаленных точечных источников S 1 и S 2 (например, звезд) с некоторым угловым расстоянием , то вследствие дифракции световых волн на краях диафрагмы, ограни­чивающей объектив, в его фокальной плоскости вместо двух точек наблюдаются максимумы, окруженные чередующимися темными и светлыми кольцами (рис. 266).Можно доказать, что две близлежащие звезды, наблюдаемые в объективе в монохроматическом свете, разрешимы, если угловое расстояние между ними

где  - длина волны света, D - диаметр объектива.

Разрешающей способностью (разрешающей силой) объектива называется величина

где  - наименьшее угловое расстояние между двумя точками, при котором они еще оптическим прибором разрешаются.

Согласно критерию Рэлея, изображения двух одинаковых точек разрешимы, когда центральный максимум дифракционной картины для одной точки совпадает с первым минимумом дифракционной картины для другой (рис. 266). Из рисунка следует, что при выполнении критерия Рэлея угловое расстояние  между точками должно быть равно , т. е. с учетом (183.1)



Следовательно, разрешающая способность объектива

т. е. зависит от его диаметра и длины волны света.

Из формулы (183.2) видно, что для увеличения разрешающей способности оптичес­ких приборов нужно либо увеличить диаметр объектива, либо уменьшить длину волны. Поэтому для наблюдения более мелких деталей предмета используют ультрафиолето­вое излучение, а полученное изображение в данном случае наблюдается с помощью флуоресцирующего экрана либо фиксируется на фотопластинке. Еще большую разрешающую способность можно было бы получить с помощью рентгеновского излучения, но оно обладает большой проникающей способностью и проходит через вещество не преломляясь; следовательно, в данном случае невозможно создать преломляющие линзы. Потоки электронов (при определенных энергиях) обладают примерно такой же длиной волны, как и рентгеновское излучение. Поэтому электронный микроскоп имеет очень высокую разрешающую способность.

Разрешающей способностью спектрального прибора называют безразмерную ве­личину

где  - абсолютное значение минимальной разности длин волн двух соседних спект­ральных линий, при которой эти линии регистрируются раздельно.

2. Разрешающая способность дифракционной решетки. Пусть максимум т- го поряд­ка для длины волны  2 наблюдается под углом , т. е., согласно (180.3), d sin=m  2 . При переходе от максимума к соседнему минимуму разность хода меняется на /N (см. (180.4)), где N - число щелей решетки. Следовательно,минимум  1 , наблюдаемый под углом min , удовлетворяет условию d sin min =m  1 + 1 /N . По критерию Рэлея,  = min , т. е. m  2 =m  1 + 1 /N или  2 / ( 2  1)=mN. Tax как  1 и  2 близки между собой, т. е.  2 – 1 = то, согласно (183.3),

Таким образом, разрешающая способность дифракционной решетки пропорциональна порядку m спектра и числу N щелей, т. е. при заданном числе щелей увеличивается при переходе к большим значениям порядка m интерференции. Современные дифракционные решетки обладают довольно высокой разрешающей способностью (до 210 5).

Дисперсия Света

Как уже говорилось, свет, проходя через трехгранную призму, преломляется и при выходе из призмы отклоняется от своего первоначального направления к основанию призмы. Величина отклонения луча зависит от показателя преломления вещества призмы, и, как показывают опыты, показатель преломления зависит от частоты света. Зависимость показателя преломления вещества от частоты (длины волн) света называется дисперсией. Очень просто наблюдать явление дисперсии при пропускании белого света через призму (рис. 102). При выходе из призмы белый свет разлагается на семь цветов: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый. Меньше всех отклоняется красный свет, больше - фиолетовый. Это говорит о том, что стекло имеет для фиолетового света наибольший показатель преломления, а для красного - наименьший. Свет с разными длинами волн распространяется в среде с разными скоростями: фиолетовый с наименьшей, красный - наибольшей, так как n= c/v ,

В результате прохождения света через прозрачную призму получается упорядоченное расположение монохроматических электромагнитных волн оптического диапазона - спектр.

Все спектры делятся на спектры испускания и спектры поглощения. Спектр испускания создается светящимися телами. Если на пути лучей, падающих на призму, поместить холодный, неизлучающий газ, то на фоне непрерывного спектра источника появляются темные линии.

При этом получим спектр поглощения газа. Немецкий физик Г. Кирхгоф (1824-1887) открыл закон, согласно которому спектральный состав света, который излучается телами в горячем состоянии, поглощается ими в холодном состоянии (атомы данного элемента поглощают те длины волн, которые излучают при высокой температуре).

Спектры испускания делятся насплошные, линейчатые и полосатые. Сплошной спектр дают раскаленные твердые и жидкие тела. Линейчатый спектр - это совокупность определенных спектральных линий (на черном фоне). Такой спектр дают возбужденные газы, находящиеся в атомарном состоянии. Изолированные атомы данного химического элемента излучают строго определенные длины волн. Полосатый спектр представляет собой отдельные спектральные полосы, разделенные темными промежутками. В отличие от линейчатых спектров полосатые спектры создаются не атомами, а молекулами, не связанными или слабо связанными друг с другом.

ЭЛЕКТРОННАЯ ТЕОРИЯ ДИСПЕРСИИ СВЕТА

Из макроскопической электромагнитной теории Максвелла следует, что абсолютный показатель преломления среды

где  - диэлектрическая проницаемость среды,  - магнитная проницаемость. В оп­тической области спектра для всех веществ 1, поэтому

Из формулы (186.1) выявляются некоторые противоречия с опытом: величина n , являясь переменной, остается в то же время равной определенной постоянной . Кроме того, значения n , получаемые из этого выражения, не согласуются с опытными значениями. Трудности объяснения дисперсии света с точки зрения электромагнитной теории Максвелла устраняются электронной теорией Лоренца. В теории Лоренца дисперсия света рассматривается как результат взаимодействия электромагнитных волн с заряженными частицами, входящими в состав вещества и совершающими вынужденные колебания в переменном электромагнитном поле волны.

Применим электронную теорию дисперсии света для однородного диэлектрика, предположив формально, что дисперсия света является следствием зависимости от частоты световых волн. Диэлектрическая проницаемость вещества, по определению (см. (88.6) и (88.2)), равна

где { - диэлектрическая восприимчивость среды, 0 - электрическая постоянная, Р - мгновенное значение поляризованности. Следовательно,

т.е. зависит от Р . В данном случае основное значение имеет электронная поляризация, т.е. вынужденные колебания электронов под действием электрической составляющей поля волны, так как для ориентационной поляризации молекул частота колебаний в световой волне очень высока ( 10 15 Гц).

В первом приближении можно считать, что вынужденные колебания совершают только внешние, наиболее слабо связанные с ядром электроны -оптические электроны. Для простоты рассмотрим колебания только одного оптического электрона. Наведенный дипольный момент электрона, совершающего вынужденные колебания, равен р=ех, где е - заряд электрона, х - смещение электрона под действием электрического поля световой волны. Если концентрация атомов в диэлектрике равна n 0 , то мгновенное значение поляризованности

Из (186.2) и (186.3) получим

Следовательно, задача сводится к определению смещения х электрона под действием внешнего поля Е. Поле световой волны будем считать функцией частоты , т. е. изменяющимся по гармоническому закону: Е = Е 0 cost.

Уравнение вынужденных колебаний электрона (см. §147) для простейшего случая (без учета силы сопротивления, обусловливающей поглощение энергии падающей волны) запишется в виде

где т, - масса i- го заряда.

Из выражений (186.8) и (186.9) вытекает, что показатель преломления n зависит от частоты внешнего поля, т. е. полученные зависимости действительно подтверждают явление дисперсии света, хотя и при указанных выше допущениях, которые в даль­нейшем надо устранить. Из выражений (186.8) и (186.9) следует, что в области от = 0 до = 0 n 2 больше единицы и возрастает с увеличением (нормальная дисперсия); при = 0 n 2 = ±; в области от = 0 до = n 2 меньше единицы и возрастает от –до 1 (нормальная дисперсия). Перейдя от n 2 к n , получим, что график зависимости n от имеет вид, изображенный на рис. 270. Такое поведение n вблизи 0 - результат допущения об отсутствии сил сопротивления при колебаниях электронов. Если принять в расчет и это обстоятельство, то график функции n () вблизи 0 задастся штриховой линией АВ. Область АВ - область аномальной дисперсии (n убывает при возрастании ), остальные участки зависимости n от описывают нормальную дисперсию (n возрастает с возрастанием ).

Российскому физику Д. С. Рождественскому (1876-1940) принадлежит классичес­кая работа по изучению аномальной дисперсии в парах натрия. Он разработал ин­терференционный метод для очень точного измерения показателя преломления паров и экспериментально показал, что формула (186.9) правильно характеризует зависи­мость n от, а также ввел в нее поправку, учитывающую квантовые свойства света и атомов.

Cтраница 1


Разрешающая способность оптических приборов и, в частности, микроскопов ограничивается явлением дифракции. Изображение частиц меньших размеров будет иметь вид дифракционного кружка, форма которого практически не зависит от формы частиц. При специальном способе наблюдения эти дифракционные картины, однако, могут быть замечены и, следовательно, факт существования частиц, их положение и движение могут быть установлены. Вопросы наблюдения и исследования таких малых частиц в коллоидных растворах и аэрозолях и составляют предмет ультрамикроскопии.  


Ограничения разрешающей способности оптических приборов связаны с дифракционными явлениями и аберрациями элементов оптических систем.  


На разрешающую способность оптического прибора влияет кроме разрешающей способности глаза степень коррекции системы.  

Чем определяется разрешающая способность оптических приборов.  

Об увеличении разрешающей способности оптических приборов: Докл.  

Обычно под разрешающей способностью оптического прибора понимают способность различать (шит разрешать) в изображении объекта два близких элемента - две близкие светящиеся точки Б обычном оптическом приборе или две близкие монохроматические линии в спектре, полученном с помощью спектрального прибора.  

Что понимают под разрешающей способностью оптического прибора и от чего она зависит.  

Почему явление дифракции ограничивает разрешающую способность оптических приборов, например телескопа.  

Согласно критерию Рэлея, максимальная разрешающая способность оптического прибора соответствует условию, когда главный максимум дифракционной картины от одного точечного объекта точно совпадает с первым минимумом дифракционной картины от другого близко расположенного с первым точечного объекта. Этому условию отвечает минимальное угловое разрешение оптического прибора.  

Из формулы (183.2) видно, что для увеличения разрешающей способности оптических приборов нужно либо увеличить диаметр объектива, либо уменьшить длину яолны. Поэтому для наблюдения более мелких деталей предмета используют ультрафиолетовое излучение, а полученное изображение в данном случае наблюдается с помощью флуоресцирующего экрана либо фиксируется на фотопластинке. Еще большую разрешающую способность можно было бы получить с помощью рентгеновского излучения, но оно обладает большой проникающей способностью и проходит через вещество не преломляясь; следовательно, в данном случае невозможно создать преломляющие линзы. Потоки электронов (при определенных энергиях) обладают примерно такой же длиной волны, как и рентгеновское излучение.  

Из формулы (183.2) видно, что для увеличения разрешающей способности оптических приборов нужно либо увеличить диаметр объектива, либо уменьшить длину волны. Поэтому для наблюдения более мелких деталей предмета употребляют ультрафиолетовое излучение, а полученное изображение в данном случае наблюдается с помощью флуоресцирующего экрана либо фиксируется на фотопластинке. Еще большую разрешающую способность можно было бы получить с помощью рентгеновского излучения, но оно обладает большой проникающей способностью и проходит через вещество не преломляясь; следовательно, в данном случае невозможно создать преломляющие линзы. Потоки электронов (при определенных энергиях) обладают примерно такой же длиной волны, как и рентгеновское излучение.  

Еще один интересный вопрос, очень важный с технической точки зрения: какова разрешающая способность оптических приборов. Когда мы создаем микроскоп, мы хотим целиком видеть тот объект, который находится в поле нашего зрения. Это означает, например, что, глядя на бактерию, на боках которой имеются два пятнышка, мы хотим различить оба пятнышка на увеличенном изображении. Могут подумать, что для этого нужно только получить достаточное увеличение, ведь всегда можно добавить еще линзы и достичь большего увеличения, а если конструктор ловкий, то он устранит сферические и хроматические аберрации; вот вроде бы и нет причин, почему бы не увеличить желаемое изображение до любых размеров. Но предел возможностей микроскопа связан не с тем, что невозможно добиться увеличения более чем в 2000 раз.  

РАЗРЕШАЮЩАЯ СПОСОБНОСТЬ (разрешающая сила) оптических приборов - величина, характеризующая способность этих приборов давать раздельное изображение двух близких друг к другу точек объекта. Наименьшее линейное (или угловое) расстояние между двумя точками, начиная с к-рого их изображения сливаются и перестают быть различимыми, наз. линейным (или угловым) пределом разрешения. Обратная ему величина служит количественной мерой Р. с. оптич. приборов. Идеальное изображение точки как элемента предмета может быть получено от волновой сферич. поверхности. Реальные оптич. системы имеют входные и выходные зрачки (см. Диафрагма )конечных размеров, ограничивающие волновую поверхность. Благодаря дифракции света , даже в отсутствие аберраций оптических систем и ошибок изготовления, оптич. система изображает точку в монохроматич. свете в виде светлого пятна, окружённого попеременно тёмными и светлыми кольцами. Пользуясь теорией , можно вычислить наим. расстояние, разрешаемое оптич. системой, если известно, при каких распределениях освещённости приёмник (глаз, фотослой) воспринимает изображение раздельно. В соответствии с условием, введённым Дж. У. Рэлеем (J. W. Rayleigh, 1879), изображения двух точек можно видеть раздельно, если центр дифракц. пятна каждого из них пересекается с краем первого тёмного кольца другого (рис.).

Распределение освещённости E в изображении двух точечных источников света, расположенных так, что угловое расстояние между максимумами освещённости Df равно угловой величине радиуса центрального дифракционного пятна Dq (Df = Dq - условие Рэлея).

Если точки предмета самосветящиеся и излучают некогерентные лучи, выполнение соответствует тому, что наим. освещённость между изображениями разрешаемых точек составит 74% от освещённости в центре пятна, а угл. расстояние между центрами дифракц. пятен (максимумами освещённости) определится выражением Df = 1,21l/D , где l - длина волны света, D - диаметр входного зрачка оптич. системы. Если оптич. система имеет фокусное расстояние /, то линейная величина предела разрешения d = 1,21lf /D . Предел разрешения телескопов и зрительных труб выражают в угл. секундах и определяют по ф-ле d = 140/D (при l = 560 нм и D в мм) (о Р. с. микроскопов см. в ст. Микроскоп) . Приведённые ф-лы справедливы для точек, находящихся на оси идеальных оптич. приборов. Наличие аберраций и ошибок изготовления снижает Р. с. реальных оптич. систем. Р. с. реальной оптич. системы падает также при переходе от центра поля зрения к его краям. Р. с. оптич. прибора R оп, включающего комбинацию оптич. системы и приёмника (фотослой, катод электронно-оптического преобразователя и др.), связана с Р. с. оптич. системы R oc и приёмника R п приближённой ф-лой

Независимо от их специфики и предназначения, обязательно имеют одну общую физическую характеристику, которая называется «разрешающая способность». Данное физическое свойство является определяющим для всех без исключения оптических и Например, для микроскопа важнейшим параметром является не только увеличивающая способность его линз, но и разрешение, от которого напрямую зависит качество изображения исследуемого объекта. Если конструкция этого прибора не способна обеспечить раздельное восприятие мельчайших деталей, то полученное изображение будет некачественным даже при значительном увеличении.

Разрешающая способность оптических приборов - это величина, которая характеризует их способность различать наименьшие отдельные детали наблюдаемых или измеряемых объектов. Пределом разрешающей способности называется минимальное расстояние между соседними деталями (точками) объекта, при котором их изображения уже не воспринимаются в качестве отдельных элементов объекта, сливаясь воедино. Чем меньше это расстояние, тем, соответственно, выше разрешающая способность прибора.

Обратная пределу разрешения величина служит количественным показателем разрешающей способности. Этот важнейший параметр и определяет качество прибора и, соответственно, его цену. Вследствие дифракционного свойства световых волн, все изображения мелких элементов объекта имеют вид светлых пятен, окруженных системой концентрических интерференционных окружностей. Именно данное явление служит ограничением разрешающей способности любых оптических приборов.

Согласно теории английского физика 19-го века Рэлея, изображение двух близлежащих мелких элементов объекта еще могут быть различимы при совпадении их дифракционного максимума. Но даже такая разрешающая способность имеет свой предел. Она определяется расстоянием между этими мельчайшими деталями объектов. обычно определяется максимальным количеством раздельно воспринимаемых линий на один миллиметр изображения. Этот факт был установлен опытным путем.

Разрешающая способность приборов понижается при наличии аберраций (отклонений светового луча от заданного направления) и различных погрешностей изготовления оптических систем, что увеличивает габариты дифракционных пятен. Таким образом, чем меньше величина дифракционных пятен, тем выше разрешающая способность любой оптики. Это немаловажный показатель.

Разрешающая способность любого оптического прибора оценивается по его аппаратным функциям, отражающим все факторы, которые оказывают влияние на качество предоставляемого этим прибором изображения. К таким влияющим факторам, безусловно, следует в первую очередь отнести аберрацию и дифракцию - огибание световыми волнами препятствий и, как следствие, отклонение их от прямолинейного направления. Для определения разрешающей способности различных оптических приборов применяются специальные испытательные прозрачные или непрозрачные пластинки со стандартным рисунком, называемые мирами.