Разложить по строке матрицу. Теорема (разложение определителя по строке или столбцу)

При нахождении определителей второго, третьего порядка можно пользоваться стандартными формулами (2 - разница произведения диагональных элементов, 3 - правило треугольника). Однако для вычисления определителя четвертого, пятого порядка и старших гораздо быстрее разложить их по элементам строки или столбца, содержащего больше всего нулей и свести к расчету нескольких определителей на единицу меньшего порядка.

Схемы знаков при минорах для детерминантов 3-го - 5-го порядка приведены ниже.

Их не трудно запомнить, если знать следующие правила:
Дополнение к элементам главной диагонали идут со знаком «+» , а на параллельных диагоналям чередуются «-», «+», «-», ...
Дополнение к элементам нечетных столбцов и строк начинаются с знака «+» , а дальше чередуются «-», «+» , для парных начинаются со знака «-» , а дальше поочередно меняются «+», «-»,...
Вторым правилом пользуется большинство студентов, поскольку оно привязано к столбца или строки по которому осуществляется расписание определителя.

Перейдем к рассмотрению примеров разложения определителя и изучению особенностей этого метода.

Разложить определитель третьего порядка по элементам первой строки и второго столбца

Проводим разложение определителя по элементам первой строки

Подобным образом выполняем вычисления разложения по элементам второго столбца

Оба значения одинаковы, а значит расчеты проведены правильно. Если у Вас получится что определители полученные расписанием по строке и столбцу не совпадают - значит где-то допущена ошибка при вычислениях и нужно перечислить или найти ее.

Найти определитель четвертого порядка методом разложения

Проводим разложение по элементам третьей строки (выделена красным) так как в ней больше всего нулевых элементов.

Определители, входящие в расписание находим по правилу треугольников

Найденные значения подставляем и посчитываем

На этом примере метод разложения показал свою эффективность и простоту. Стандартные правила оказались бы слишком громоздкими в вычислениях.

Найти определитель пятого порядка методом разложения

Лекция 1.

Определение матрицы. Определители второго и третьего порядков, их основные свойства. Миноры и алгебраические дополнения, разложение определителя по строке (столбцу). Методы вычисления определителей. Понятие об определителе n -го порядка.

Определение 1.1 . Матрицей называется прямоугольная таблица чисел.

Обозначения:А – матрица, - элемент матрицы, номер строки, в которой стоит данный элемент, номер соответствующего столбца; m – число строк матрицы, n – число ее столбцов.

Определение 1.2 . Числа m и n называются размерностями матрицы.

Определение 1.3. Матрица называется квадратной , если m = n . Число n в этом случае называют порядком квадратной матрицы.

Каждой квадратной матрице можно поставить в соответствие число, определяемое единственным образом с использованием всех элементов матрицы. Это число называется определителем.

Определение 1.4. Определителем второго порядка называется число, полученное с помощью элементов квадратной матрицы 2-го порядка следующим образом:

.

При этом из произведения элементов, стоящих на так называемой главной диагонали матрицы (идущей из левого верхнего в правый нижний угол) вычитается произведение элементов, находящихся на второй, или побочной, диагонали.

Примеры.

1. 2.

Определение 1.5 . Определителем третьего порядка называется число, определяемое с помощью элементов квадратной матрицы 3-го порядка следующим образом:

Замечание. Для того, чтобы легче запомнить эту формулу, можно использовать так называемое правило треугольников. Оно заключается в следующем: элементы, произведения которых входят в определитель со знаком «+», располагаются так:

образуя два треугольника, симметричных относительно главной диагонали. Элементы, произведения которых входят в определитель со знаком «-», располагаются аналогичным образом относительно побочной диагонали:

Примеры.

2.

Определение1. 6 . Транспонированием матрицы называется операция, в результате которой меняются местами строки и столбцы с сохранением порядка их следования. В результате получается матрица А` , называемая транспонированной по отношению к матрице А , элементы которой связаны с элементами А соотношением a ` ij = a ji .

Основные свойства определителей.

Сформулируем и докажем основные свойства определителей 2-го и 3-го порядка (доказательство проведем для определителей 3-го порядка).

Свойство 1. Определитель не изменяется при транспонировании, т.е.

Доказательство.

Замечание. Следующие свойства определителей будут формулироваться только для строк. При этом из свойства 1 следует, что теми же свойствами будут обладать и столбцы.

Свойство 2 . При умножении элементов строки определителя на некоторое число весь определитель умножается на это число, т.е.

.

Доказательство.

Свойство 3. Определитель, имеющий нулевую строку, равен 0.

Доказательство этого свойства следует из свойства 2 при k = 0.

Свойство 4. Определитель, имеющий две равные строки, равен 0.

Доказательство.

Свойство 5 . Определитель, две строки которого пропорциональны, равен 0.

Доказательство следует из свойств 2 и 4.

Свойство 6 . При перестановке двух строк определителя он умножается на –1.

Доказательство.

Свойство 7.

Доказательство этого свойства можно провести самостоятельно, сравнив значения левой и правой частей равенства, найденные с помощью определения 1.5.

Свойство 8. Величина определителя не изменится, если к элементам одной строки прибавить соответствующие элементы другой строки, умноженные на одно и то же число.

Доказательство следует из свойств 7 и 5.

Разложение определителя по строке.

Определение1. 7 . Минором элемента определителя называется определитель, полученный из данного путем вычеркивания строки и столбца, в которых стоит выбранный элемент.

Обозначение: выбранный элемент определителя, его минор.

Пример. Для

Определение1. 8. Алгебраическим дополнением элемента определителя называется его минор, если сумма индексов данного элемента i + j есть число четное, или число, противоположное минору, если i + j нечетно, т.е.

Рассмотрим еще один способ вычисления определителей третьего порядка – так называемое разложение по строке или столбцу. Для этого докажем следующую теорему:

Теорема 1.1 . Определитель равен сумме произведений элементов любой его строки или столбца на их алгебраические дополнения, т.е.

где i =1,2,3.

Доказательство.

Докажем теорему для первой строки определителя, так как для любой другой строки или столбца можно провести аналогичные рассуждения и получить тот же результат.

Найдем алгебраические дополнения к элементам первой строки:

Тогда

Таким образом, для вычисления определителя достаточно найти алгебраические дополнения к элементам какой-либо строки или столбца и вычислить сумму их произведений на соответствующие элементы определителя. полученных r попарными перестановками элементов из множества1,2,…, n .

Замечание 1. Свойства определителей 3-го порядка справедливы и для определителей n -го порядка.

Замечание 2. На практике определители высоких порядков вычисляют с помощью разложения по строке или столбцу. Это позволяет понизить порядок вычисляемых определителей и в конечном счете свести задачу к нахождению определителей 3-го порядка.

Пример. Вычислим определитель 4-го порядка с помощью разложения по 2-му столбцу. Для этого найдем и :

Следовательно,

Определение1. 7 . Минором элемента определителя называется определитель, полученный из данного путем вычеркивания строки и столбца, в которых стоит выбранный элемент.

Обозначение: выбранный элемент определителя, его минор.

Пример. Для

Определение1. 8. Алгебраическим дополнением элемента определителя называется его минор, если сумма индексов данного элемента i+j есть число четное, или число, противоположное минору, если i+j нечетно, т.е.

Рассмотрим еще один способ вычисления определителей третьего порядка – так называемое разложение по строке или столбцу. Для этого докажем следующую теорему:

Теорема 1.1 . Определитель равен сумме произведений элементов любой его строки или столбца на их алгебраические дополнения, т.е.

где i=1,2,3.

Доказательство.

Докажем теорему для первой строки определителя, так как для любой другой строки или столбца можно провести аналогичные рассуждения и получить тот же результат.

Найдем алгебраические дополнения к элементам первой строки:

Таким образом, для вычисления определителя достаточно найти алгебраические дополнения к элементам какой-либо строки или столбца и вычислить сумму их произведений на соответствующие элементы определителя.

Пример. Вычислим определитель с помощью разложения по первому столбцу. Заметим, что при этом искать не требуется, так как следовательно, и Найдем и Следовательно,

Определители более высоких порядков .

Определение1. 9 . Определитель n-го порядка

есть сумма n! членов каждый из которых соответствует одному из n! упорядоченных множеств полученных r попарными перестановками элементов из множества 1,2,…,n.

Замечание 1. Свойства определителей 3-го порядка справедливы и для определителей n-го порядка.

Замечание 2. На практике определители высоких порядков вычисляют с помощью разложения по строке или столбцу. Это позволяет понизить порядок вычисляемых определителей и в конечном счете свести задачу к нахождению определителей 3-го порядка.

Пример. Вычислим определитель 4-го порядка с помощью разложения по 2-му столбцу. Для этого найдем и :

Следовательно,

Теоре́ма Лапла́са - одна из теорем линейной алгебры. Названа в честь французского математика Пьера-Симона Лапласа (1749 - 1827), которому приписывают формулирование этой теоремы в 1772 году , хотя частный случай этой теоремы о разложении определителя по строке (столбцу) был известен ещё Лейбницу.

олнение минора определяется следующим образом:

Справедливо следующее утверждение.

Число миноров, по которым берётся сумма в теореме Лапласа, равно числу способов выбрать столбцов из , то есть биномиальному коэффициенту .

Так как строки и столбцы матрицы равносильны относительно свойств определителя, теорему Лапласа можно сформулировать и для столбцов матрицы.

Разложение определителя по строке (столбцу) (Следствие 1)

Широко известен частный случай теоремы Лапласа - разложение определителя по строке или столбцу. Он позволяет представить определитель квадратной матрицы в виде суммы произведений элементов любой её строки или столбца на их алгебраические дополнения.

Пусть - квадратная матрица размера . Пусть также задан некоторый номер строки либо номер столбца матрицы . Тогда определитель может быть вычислен по следующим формулам.

Задание. Вычислить определитель , разложив его по элементам какой-то строки или какого-то столбца.

Решение. Предварительно выполним элементарные преобразования над строками определителя, сделав как можно больше нулей либо в строке, либо в столбце. Для этого вначале от первой строки отнимем девять третьих, от второй - пять третьих и от четвертой - три третьих строки, получаем:

Полученный определитель разложим по элементам первого столбца:

Полученный определитель третьего порядка также разложим по элементам строки и столбца, предварительно получив нули, например, в первом столбце. Для этого от первой строки отнимаем две вторые строки, а от третьей - вторую:

Ответ.

12. Слау 3 порядка

1. Правило треугольника

Схематически это правило можно изобразить следующим образом:

Произведение элементов в первом определителе, которые соединены прямыми, берется со знаком "плюс"; аналогично, для второго определителя - соответствующие произведения берутся со знаком "минус", т.е.

2. Правило Саррюса

Справа от определителя дописывают первых два столбца и произведения элементов на главной диагонали и на диагоналях, ей параллельных, берут со знаком "плюс"; а произведения элементов побочной диагонали и диагоналей, ей параллельных, со знаком "минус":

3. Разложение определителя по строке или столбцу

Определитель равен сумме произведений элементов строки определителя на их алгебраические дополнения. Обычно выбирают ту строку/столбец, в которой/ом есть нули. Строку или столбец, по которой/ому ведется разложение, будет обозначать стрелкой.

Задание. Разложив по первой строке, вычислить определитель

Решение.

Ответ.

4.Приведение определителя к треугольному виду

С помощью элементарных преобразований над строками или столбцами определитель приводится к треугольному виду и тогда его значение, согласно свойствам определителя, равно произведению элементов стоящих на главной диагонали.

Пример

Задание. Вычислить определитель приведением его к треугольному виду.

Решение. Сначала делаем нули в первом столбце под главной диагональю. Все преобразования будет выполнять проще, если элемент будет равен 1. Для этого мы поменяем местами первый и второй столбцы определителя, что, согласно свойствам определителя, приведет к тому, что он сменит знак на противоположный: