Почему непозиционные системы счисления потеряли свое значение. Непозиционные системы счисления. Типы систем счисления

Система счисления - это способ изображения чисел и соответствующие ему правила действия над числами . Разнообразные системы счисления, которые существовали раньше и которые используются в наше время, можно разделить на непозиционные и позиционные . Знаки, используемые при записи чисел , называются цифрами.

В непозиционных системах счисления значение цифры не зависит от положения в числе .

Примером непозиционной системы счисления является римская система (римские цифры). В римской системе в качестве цифр используются латинские буквы:

Пример 1. Число CCXXXII складывается из двух сотен, трех десятков и двух единиц и равно двумстам тридцати двум.

В римских числах цифры записываются слева направо в порядке убывания. В таком случае их значения складываются. Если же слева записана меньшая цифра, а справа - большая, то их значения вычитаются.

Пример 2.

VI = 5 + 1 = 6; IV = 5 – 1 = 4.

Пример 3.

MCMXCVIII = 1000 + (–100 + 1000) +

+ (–10 + 100) + 5 + 1 + 1 + 1 = 1998.

В позиционных системах счисления величина, обозначаемая цифрой в записи числа, зависит от ее позиции . Количество используемых цифр называется основанием позиционной системы счисления.

Система счисления, применяемая в современной математике, является позиционной десятичной системой . Ее основание равно десяти, т.к. запись любых чисел производится с помощью десяти цифр:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Позиционный характер этой системы легко понять на примере любого многозначного числа. Например, в числе 333 первая тройка означает три сотни, вторая - три десятка, третья - три единицы.

Для записи чисел в позиционной системе с основанием n нужно иметь алфавит из n цифр. Обычно для этого при n < 10 используют n первых арабских цифр, а при n > 10 к десяти арабским цифрам добавляют буквы. Вот примеры алфавитов нескольких систем:

Если требуется указать основание системы, к которой относится число, то оно приписывается нижним индексом к этому числу. Например:

101101 2 , 3671 8 , 3B8F 16 .

В системе счисления с основанием q (q -ичная система счисления) единицами разрядов служат последовательные степени числа q . q единиц какого-либо разряда образуют единицу следующего разряда. Для записи числа в q -ичной системе счисления требуется q различных знаков (цифр), изображающих числа 0, 1, ..., q – 1. Запись числа q в q -ичной системе счисления имеет вид 10.

Развернутая форма записи числа

Пусть Aq - число в системе с основанием q , аi - цифры данной системы счисления, присутствующие в записи числа A , n + 1 - число разрядов целой части числа, m - число разрядов дробной части числа:

Развернутой формой числа А называется запись в виде:

Например, для десятичного числа:

В следующих примерах приводится развернутая форма шестнадцатеричного и двоичного чисел:

В любой системе счисления ее основание записывается как 10.

Если все слагаемые в развернутой форме недесятичного числа представить в десятичной системе и вычислить полученное выражение по правилам десятичной арифметики, то получится число в десятичной системе, равное данному. По этому принципу производится перевод из недесятичной системы в десятичную. Например, перевод в десятичную систему написанных выше чисел производится так:

Перевод десятичных чисел в другие системы счисления

Перевод целых чисел

Целое десятичное число X требуется перевести в систему с основанием q : X = (a n a n-1 a 1 a 0) q . Нужно найти значащие цифры числа: . Представим число в развернутой форме и выполним тождественное преобразование:

Отсюда видно, что a 0 есть остаток от деления числа X на число q . Выражение в скобках - целое частное от этого деления. Обозначим его за X 1. Выполняя аналогичные преобразования, получим:

Следовательно, a 1 есть остаток от деления X 1 на q . Продолжая деление с остатком, будем получать последовательность цифр искомого числа. Цифра an в этой цепочке делений будет последним частным, меньшим q .

Сформулируем полученное правило: для того чтобы перевести целое десятичное число в систему счисления с другим основанием, нужно :

1) основание новой системы счисления выразить в десятичной системе счисления и все последующие действия производить по правилам десятичной арифметики;

2) последовательно выполнять деление данного числа и получаемых неполных частных на основание новой системы счисления до тех пор, пока не получим неполное частное, меньшее делителя;

3) полученные остатки, являющиеся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления;

4) составить число в новой системе счисления, записывая его, начиная с последнего частного.

Пример 1. Перевести число 37 10 в двоичную систему.

Для обозначения цифр в записи числа используем символику: a 5 a 4 a 3 a 2 a 1 a 0

Отсюда: 37 10 = l00l0l 2

Пример 2. Перевести десятичное число 315 в восьмеричную и в шестнадцатеричную системы:

Отсюда следует: 315 10 = 473 8 = 13B 16 . Напомним, что 11 10 = B 16 .

Десятичную дробь X < 1 требуется перевести в систему с основанием q : X = (0, a –1 a –2 … a –m+1 a –m) q . Нужно найти значащие цифры числа: a –1 , a –2 , …, a –m . Представим число в развернутой форме и умножим его на q :

Отсюда видно, что a –1 X на число q . Обозначим за X 1 дробную часть произведения и умножим ее на q :

Следовательно, a –2 есть целая часть произведения X 1 на число q . Продолжая умножения, будем получать последовательность цифр. Теперь сформулируем правило: для того чтобы перевести десятичную дробь в систему счисления с другим основанием, нужно :

1) последовательно умножать данное число и получаемые дробные части произведений на основание новой системы до тех пор, пока дробная часть произведения не станет равной нулю или не будет достигнута требуемая точность представления числа в новой системе счисления;

2) полученные целые части произведений, являющиеся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления;

3) составить дробную часть числа в новой системе счисления, начиная с целой части первого произведения.

Пример 3. Перевести десятичную дробь 0,1875 в двоичную, восьмеричную и шестнадцатеричную системы.

Здесь в левом столбце находится целая часть чисел, а в правом - дробная.

Отсюда: 0,1875 10 = 0,0011 2 = 0,14 8 = 0,3 16

Перевод смешанных чисел , содержащих целую и дробную части, осуществляется в два этапа. Целая и дробная части исходного числа переводятся отдельно по соответствующим алгоритмам. В итоговой записи числа в новой системе счисления целая часть отделяется от дробной запятой (точкой).

Двоичные вычисления

Согласно принципу Джона фон Неймана, компьютер производит вычисления в двоичной системе счисления. В рамках базового курса достаточно ограничиться рассмотрением вычислений с целыми двоичными числами. Для выполнения вычислений с многозначными числами необходимо знать правила сложения и правила умножения однозначных чисел. Вот эти правила:

Принцип перестановочности сложения и умножения работает во всех системах счисления. Приемы выполнения вычислений с многозначными числами в двоичной системе аналогичны десятичной. Иначе говоря, процедуры сложения, вычитания и умножения “столбиком” и деления “уголком” в двоичной системе производятся так же, как и в десятичной.

Рассмотрим правила вычитания и деления двоичных чисел. Операция вычитания является обратной по отношению к сложению. Из приведенной выше таблицы сложения следуют правила вычитания:

0 - 0 = 0; 1 - 0 = 1; 10 - 1 = 1.

Вот пример вычитания многозначных чисел:

Полученный результат можно проверить сложением разности с вычитаемым. Должно получиться уменьшаемое число.

Деление - операция обратная умножению. В любой системе счисления делить на 0 нельзя. Результат деления на 1 равен делимому. Деление двоичного числа на 10 2 ведет к перемещению запятой на один разряд влево, подобно десятичному делению на десять. Например:

Деление на 100 смещает запятую на 2 разряда влево и т.д. В базовом курсе можно не рассматривать сложные примеры деления многозначных двоичных чисел. Хотя способные ученики могут справиться и с ними, поняв общие принципы.

Представление информации, хранящейся в компьютерной памяти в ее истинном двоичном виде, весьма громоздко из-за большого количества цифр. Имеется в виду запись такой информации на бумаге или вывод ее на экран. Для этих целей принято использовать смешанные двоично-восьмеричную или двоично-шестнадцатеричную системы.

Существует простая связь между двоичным и шестнадцатеричным представлением числа. При переводе числа из одной системы в другую одной шестнадцатеричной цифре соответствует четырехразрядный двоичный код. Это соответствие отражено в двоично-шестнадцатеричной таблице:

Двоично-шестнадцатеричная таблица

Такая связь основана на том, что 16 = 2 4 и число различных четырехразрядных комбинаций из цифр 0 и 1 равно 16: от 0000 до 1111. Поэтому перевод чисел из шестнадцатеричных в двоичные и обратно производится путем формальной перекодировки по двоично-шестнадцатеричной таблице .

Вот пример перевода 32-разрядного двоичного кода в 16-ричную систему:

1011 1100 0001 0110 1011 1111 0010 1010 BC16BF2A

Если дано шестнадцатеричное представление внутренней информации, то его легко перевести в двоичный код. Преимущество шестнадцатеричного представления состоит в том, что оно в 4 раза короче двоичного . Желательно, чтобы ученики запомнили двоично-шестнадцатеричную таблицу. Тогда действительно для них шестнадцатеричное представление станет эквивалентным двоичному.

В двоично-восьмеричной системе каждой восьмеричной цифре соответствует триада двоичных цифр. Эта система позволяет сократить двоичный код в 3 раза.

Системы счисления - что это? Даже не зная ответа на этот вопрос, каждый из нас поневоле в своей жизни пользуется системами счисления и не подозревает об этом. Именно так, во множественном числе! То есть не одной, а несколькими. Прежде чем привести примеры непозиционных систем счисления, давайте разберемся в этом вопросе, поговорим и о позиционных системах тоже.

Потребность в счете

С древности люди имели потребность в счете, то есть интуитивно осознавали, что нужно каким-то образом выразить количественное видение вещей и событий. Мозг подсказывал, что необходимо использовать предметы для счета. Наиболее удобными всегда были пальцы на руках, и это понятно, ведь они всегда в наличии (за редкими исключениями).

Вот и приходилось древним представителям рода человеческого загибать пальцы в прямом смысле - обозначать количество убитых мамонтов, например. Названий у таких элементов счета еще не было, а лишь визуальная картинка, сопоставление.

Современные позиционные системы счисления

Система счисления - это метод (способ) преставления количественных значений и величин посредством определенных знаков (символов или букв).

Необходимо понимать, что такое позиционность и непозиционность в счете, прежде чем приводить примеры непозиционных систем счисления. Позиционных систем счисления множество. Сейчас используют в различных областях знаний следующие: двоичную (включает только два значимых элемента: 0 и 1), шестеричную (количество знаков - 6), восьмеричную (знаков - 8), двенадцатеричную (двенадцать знаков), шестнадцатеричную (включает шестнадцать знаков). Причем каждый ряд знаков в системах начинается с нуля. основаны на использовании двоичных кодов - двоичной позиционной системы счисления.

Десятичная система счисления

Позиционностью считается наличие в различной степени значимых позиций, на которых располагаются знаки числа. Лучше всего это можно продемонстрировать на примере десятичной системы счисления. Ведь именно ею мы привыкли пользоваться с самого детства. Знаков в этой системе десять: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Возьмем число 327. В нем имеются три знака: 3, 2, 7. Каждый из них расположен на своей позиции (месте). Семерка занимает позицию, отведенную под единичные значения (единицы), двойка - десятки, а тройка - сотни. Так как число трехзначное, следовательно, позиций в нем всего три.

Исходя из вышесказанного, такое трехзначное десятичное число можно описать следующим образом: три сотни, два десятка и семь единиц. Причем значимость (важность) позиций отсчитывается слева направо, от слабой позиции (единицы) к более сильной (сотни).

Нам очень удобно себя чувствовать в десятичной позиционной системе счисления. У нас на руках десять пальцев, на ногах - также. Пять плюс пять - так, благодаря пальцам, мы с детства легко представляем себе десяток. Вот почему бывает легко детям учить таблицу умножения на пять и на десять. А еще так просто научиться считать денежные банкноты, которые чаще всего кратны (то есть делятся без остатка) на пять и на десять.

Другие позиционные системы счисления

К удивлению многих, следует сказать, что не только в десятичной системе счета наш мозг привык делать некие расчеты. До сих пор человечество пользуется шестеричной и двенадцатеричной системами счисления. То есть в такой системе существует только шесть знаков (в шестеричной): 0, 1, 2, 3, 4, 5. В двенадцатеричной их двенадцать: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, А, В, где А - обозначает число 10, В - число 11 (так как знак должен быть один).

Посудите сами. Мы считаем время шестерками, не так ли? Один час - шестьдесят минут (шесть десятков), одни сутки - это двадцать четыре часа (два раза по двенадцать), год - двенадцать месяцев и так далее... Все временные интервалы легко укладываются в шести- и двенадцатеричные ряды. Но мы настолько к этому привыкли, что даже не задумываемся при отсчете времени.

Непозиционные системы счисления. Унарная

Необходимо определиться в том, что это такое - непозиционная система счисления. Это такая знаковая система, в которой нет позиций для знаков числа, или принцип "прочтения" числа от позиции не зависит. В ней также существуют свои правила записи или вычислений.

Приведем примеры непозиционных систем счисления. Вернемся к древности. Люди нуждались в счете и придумали наиболее простое изобретение - узелки. Непозиционной системой счисления является узелковая. Один предмет (мешок риса, бык, и пр.) отсчитывали, например, при покупке или продаже и завязывали узелок на веревочке.

В итоге на веревке получалось столько узелков, сколько мешков риса куплено (как пример). Но также это могли быть насечки на деревянной палочке, на каменной плите и т.д. Такая система счисления стала называться узелковой. У нее существует второе название - унарная, или единичная ("уно" на латыни означает "один").

Становится очевидным, что данная система счисления - непозиционная. Ведь о каких позициях может идти речь, когда она (позиция) всего одна! Как ни странно, в некоторых уголках Земли до сих пор в ходу унарная непозиционная система счисления.

Также к непозиционным системам счисления относят:

  • римскую (для написания чисел используются буквы - латинские символы);
  • древнеегипетскую (похожа на римскую, также использовались символы);
  • алфавитную (использовались буквы алфавита);
  • вавилонскую (клинопись - использовали прямой и превернутый "клин");
  • греческую (также относят к алфавитной).

Римская система счисления

Древняя римская империя, а также ее наука, была очень прогрессивной. Римляне дали миру множество полезных изобретений науки и искусства, в том числе свою систему счета. Две сотни лет назад римские числа использовали для обозначения сумм в деловых документах (таким образом избегали подделки).

Пример непозиционной системы счисления, она известна нам сейчас. Также римская система активно используется, но не для математических расчетов, а для узко направленных действий. Например, с помощью римских чисел принято обозначать исторические даты, века, номера томов, разделов и глав в книжных изданиях. Часто используют римские знаки для оформления циферблатов часов. А также римская нумерация является примером непозиционной системы счисления.

Римляне обозначали цифры буквами латиницы. Причем числа они записывали по определенным правилам. Существует перечень ключевых символов в римской системе счисления, с помощью них записывались все числа без исключения.

Правила составления чисел

Требуемое число получалось путем сложения знаков (букв латиницы) и вычисления их суммы. Рассмотрим, как символически записываются знаки в римской системе и как нужно их "считывать". Перечислим основные законы формирования чисел в римской непозиционной системе счисления.

  1. Число четыре - IV, состоит из двух знаков (I, V - один и пять). Оно получается путем вычитания меньшего знака из большего, если он стоит левее. Когда меньший знак расположен справа, необходимо складывать, тогда получится число шесть - VI.
  2. Необходимо складывать два одинаковых знака, стоящих рядом. Например: СС - это 200 (С - 100), или ХХ - 20.
  3. Если первый знак числа меньше второго, то третьим в этом ряду может быть символ, значение которого еще меньше первого. Чтобы не запутаться, приведем пример: CDX - 410 (в десятичной).
  4. Некоторые крупные числа могут быть представлены разными способами, что является одним из минусов римской системы счета. Приведем примеры: MVM (римская система) = 1000 + (1000 - 5) = 1995 (десятичная система) или MDVD = 1000 + 500 + (500 - 5) = 1995. И это еще не все способы.

Приемы арифметики

Непозиционная система счисления - это иногда сложный набор правил формирования чисел, их обработки (действий над ними). Арифметические операции в непозиционных системах счисления - дело непростое для современных людей. Не завидуем древнеримским математикам!

Пример сложения. Попробуем сложить два числа: XIX + XXVI = XXXV, это задание выполняется в два действия:

  1. Первое - берем и складываем меньшие доли чисел: IX + VI = XV (I после V и I перед X "уничтожают" друг друга).
  2. Второе - складываем большие доли двух чисел: X + XX = XXX.

Вычитание выполняется несколько сложнее. Уменьшаемое число требуется разбить на составные элементы, а после этого в уменьшаемом и вычитаемом сократить дублируемые символы. Из числа 500 вычтем 263:

D - CCLXIII = CCCCLXXXXVIIIII - CCLXIII = CCXXXVII.

Умножение римских чисел. Кстати, необходимо упомянуть, что у римлян не имелось знаков арифметичеких операций, они просто словами обозначали их.

Множимое число умножать нужно было на каждый отдельный символ множителя, получалось несколько произведений, которые необходимо было сложить. Таким способом производят умножение многочленов.

Что касается деления, то этот процесс в римской системе счисления был и остается наиболее сложным. Тут применялись древние римские счеты - абак. Чтобы работать с ним людей специально обучали (и не всякому человеку удавалось такую науку освоить).

О недостатках непозиционных систем

Как было сказано выше, в непозиционных системах счисления существуют свои недостатки, неудобства в использовании. Унарная достаточна проста для простого счета, но для арифметики и сложных вычислений она не годится вовсе.

В римской отсутствуют единые правила формирования больших чисел и возникает путаница, а также в ней очень сложно производить вычисления. Кроме того, самым которое могли записать древние римляне с помощью своего метода, было 100000.

Введение

Тема реферата по курсу «Информатика-1» - «Системы счисления».

Цель написания реферата: Ознакомится с понятием системы счисления и классификацией; переводом чисел из одной системы счисления в другую.

Понятие системы счисления. Позиционные и непозиционные системы счисления

целый число алгебраический двоичный

Системой счисления называют систему приемов и правил, позволяющих устанавливать взаимно-однозначное соответствие между любым числом и его представлением в виде совокупности конечного числа символов. Множество символов, используемых для такого представления, называют цифрами.

Система счисления:

даёт представления множества чисел (целых и/или вещественных);

даёт каждому числу уникальное представление (или, по крайней мере, стандартное представление);

отражает алгебраическую и арифметическую структуру чисел.

Системы счисления подразделяются на позиционные и непозиционные. В непозиционных системах любое число определяется как некоторая функция от численных значений совокупности цифр, представляющих это число. Цифры в непозиционных системах счисления соответствуют некоторым фиксированным числам. Пример непозиционной системы - римская система счисления.

Исторически первыми системами счисления были именно непозиционные системы. Одним из основных недостатков является трудность записи больших чисел. Запись больших чисел в таких системах очень громоздкая и алфавит системы чрезвычайно велик.

В вычислительной технике непозиционные системы не применяются. 3

Систему счисления называют позиционной, если одна и та же цифра может принимать различные численные значения в зависимости от номера разряда этой цифры в совокупности цифр, представляющих заданное число. Пример такой системы - арабская десятичная система счисления.

Основание позиционной системы счисления определяет ее название. В вычислительной технике применяются двоичная, восьмеричная, десятичная и шестнадцатеричная системы.

В настоящее время позиционные системы счисления более широко распространены, чем непозиционные. Это объясняется тем, что они позволяют записывать большие числа с помощью сравнительно небольшого числа знаков. Еще более важное преимущество позиционных систем - это простота и легкость выполнения арифметических операций над числами, записанными в этих системах.

Приведем примеры, где можно встретить употребление позиционных систем счисления:

двоичная в дискретной математике, информатике, программировании;

десятичная - используется повсеместно;

двенадцатеричная - счёт дюжинами;

шестнадцатеричная - используется в программировании, информатике;

шестидесятеричная - единицы измерения времени, измерение углов и, в частности, координат, долготы и широты.

Т.В. Сарапулова, И.Е. Трофимов

НЕПОЗИЦИОННЫЕ И СМЕШАННЫЕ
СИСТЕМЫ СЧИСЛЕНИЯ

направления 230700.62 «Прикладная информатика» в качестве методических указаний для самостоятельной работы
по дисциплине «Информационные системы и технологии»

Кемерово 2012


Рецензенты:

1. Прокопенко Евгения Викторовна, кандидат физико-математических наук, доцент кафедры прикладных информационных технологий.

2. Соколов Игорь Александрович, кандидат технических наук, доцент, заведующий кафедрой прикладных информационных технологий, председатель УМК направления 230700.62 «Прикладная информатика».

Сарапулова Татьяна Викторовна, Трофимов Иван Евгеньевич. Непозиционные и смешанные системы счисления: метод. указания для самостоятельной работы по дисциплине «Информационные системы и технологии» [электронный ресурс] : для студентов направления подготовки бакалавров 230700.62 «Прикладная информатика»/ Т. В. Сарапулова, И. Е. Трофимов. – Электрон. дан. – Кемерово: КузГТУ, 2012. – 1 электрон. опт. диск (CD-ROM) ; зв. ; цв. ; 12 см. – Систем. требования: ОЗУ 64 Мб; Windows XP/Vista/7 ; (CD-ROM-дисковод). – Загл. с экрана.

Методические указания предназначены для самостоятельного изучения непозиционных и смешанных систем счисления. В состав указаний входят теоретическая база и контрольные вопросы.

Ó Сарапулова Т.В, Трофимов И.Е.


ВВЕДЕНИЕ.. 4

1. НЕПОЗИЦИОННЫЕ СИСТЕМЫ СЧИСЛЕНИЯ.. 5

1.1. Римская система счисления. 6

1.2. Система остаточных классов (СОК) 6

1.3. Система счисления Штерна-Броко. 8

2. СМЕШАННЫЕ СИСТЕМЫ СЧИСЛЕНИЯ.. 9

2.1. Система счисления майя. 10

2.2. Факториальная система счисления. 10

2.3. Фибоначчиева система счисления. 11


Целью данной самостоятельной работы является изучение непозиционных и смешанных систем счисления.

ВВЕДЕНИЕ

Одним из обязательных требований к специалисту в области информационных технологий является знание принципов работы с числами. На ранних ступенях развития общества люди почти не умели считать. Они различали совокупности двух и трех предметов; всякая совокупность, содержавшая большее число предметов, объединялась в понятие «много». Предметы при счете сопоставлялись обычно с пальцами рук и ног. По мере развития цивилизации потребность человека в счете стала необходимой. Первоначально натуральные числа изображались с помощью некоторого количества черточек или палочек, затем для их изображения стали использовать буквы или специальные знаки.

Проведём границу между числом и цифрой. Число – это некоторая абстрактная сущность для описания количества. Цифры – это знаки, используемые для записи чисел. Цифры бывают разные, самыми распространёнными являются арабские цифры, представляемые известными нам знаками от нуля (0) до девяти (9); менее распространены римские цифры, мы их можем иногда встретить на циферблате часов или в обозначении века (XIX век).

Итак, запомним: число это некая абстрактная мера количества , цифра это знак (рисунок) для записи числа .

Всё множество способов записи чисел с помощью цифр можно разделить на три части:

1. позиционные системы счисления;

2. смешанные системы счисления;

3. непозиционные системы счисления.

Денежные знаки – это яркий пример смешанной системы счисления. Сейчас в России используются монеты и купюры следующих номиналов: 1 коп., 5 коп., 10 коп., 50 коп., 1 руб., 2 руб., 5 руб., 10 руб., 50 руб., 100 руб., 500 руб., 1000 руб. и 5000 руб. Чтобы получить некоторую сумму в рублях, нам нужно использовать определенное количество денежных знаков различного достоинства. Предположим, что мы покупаем пылесос, который стоит 6379 руб. Чтобы расплатиться, нам потребуется шесть купюр по тысяче рублей, три купюры по сто рублей, одна пятидесятирублёвая купюра, две десятки, одна пятирублёвая монета и две монеты по два рубля. Если мы запишем количество купюр или монет начиная с 1000 руб. и заканчивая одной копейкой, заменяя нулями пропущенные номиналы, то мы получим число, представленное в смешанной системе счисления; в нашем случае – 603121200000.

В непозиционной же системе счисления величина числа не зависит от положения цифры в представлении числа. Ярким примером непозиционной системы счисления является римская система. Не смотря на свой почтенный возраст, данная система до сих пор используется, хотя и не является общеупотребимой.

НЕПОЗИЦИОННЫЕ СИСТЕМЫ СЧИСЛЕНИЯ

В непозиционных системах счисления величина, которую обозначает цифра, не зависит от положения в числе. При этом система может накладывать ограничения на положение цифр.

С глубокой древности люди повсеместно использовали непозиционные системы счисления. Для подсчета животных, населения, запасов использовались различные буквы, пиктограммы и прочие геометрические фигуры. Со временем непозиционные системы стали менее популярны и в современном мире мы встречаем типичного представителя непозиционных систем – римскую систему счисления, уже скорее как экзотическое письмо, нежели реально действующую систему. Причиной отказа от непозиционных систем счисления стало появление позиционных систем, давших возможность использовать значительно меньшие цифровые алфавиты для обозначения даже очень больших чисел и, что еще важнее, обеспечивающих простое выполнение арифметических операций над числами.

Римская система счисления

Каноническим примером фактически непозиционной системы счисления является римская система, в которой в качестве цифр используются латинские буквы:

I обозначает 1, V – 5, X – 10, L – 50, C – 100, D – 500, M – 1000.

Например, II = 1 + 1 = 2, здесь символ I обозначает 1 независимо от места в числе.

Заметьте, что символ нуля в данной системе счисления, как и в других непозиционных системах, отсутствует за ненадобностью.

О происхождении римских цифр достоверных сведений нет. Цифра V могла первоначально служить изображением кисти руки, а цифра Х могла составиться из двух пятерок. В римской нумерации явно прослеживаются следы пятеричной системы счисления.

На самом деле, римская система не является полностью непозиционной , так как меньшая цифра, идущая перед большей, вычитается из неё, например:

VI = 6, т.е. 5 + 1, в то время как IV = 4, т.е. 5 – 1;

XL = 40, т.е. 50 – 10, в то время как LX = 60, т.е. 50 + 10.

Подряд одна и та же цифра в римской системе ставится не более трех раз: LXX = 70; LXXX = 80; число 90 записывается ХС (а не LXXXX).

Первые 12 чисел записываются в римских цифрах так: I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII.

Другие же числа записываются, например, как: XXVIII = 28; XXXIX = 39; CCCXCVII = 397; MDCCCXVIII = 1818.

Задавшись вопросом о том, сколько же чисел можно записать в римской системе, мы быстро обнаружим, что их диапазон простирается от 1 (I) до 3999 (MMMCMXCIX). Столь узкий диапазон чисел серьезно ограничивает применение системы в современной жизни, где счет идет на миллионы.

Сейчас римской системой счисления пользуются для обозначения юбилейных дат, нумерации некоторых страниц книги (например, страниц предисловия), глав в книгах, строф в стихотворениях и т.д.


Похожая информация.


Лабораторная работа №16

Системы счисления

Теоретическая часть

В основанием

<10 используют n первых арабских цифр, а при n>

Основание Название Алфавит
n=2 двоичная 0 1
n=3 троичная 0 1 2
n=4 четверичная 0 1 2 3
n=5 пятеричная 0 1 2 3 4
n=6 шестеричная 0 1 2 3 4 5
n=7 семеричная 0 1 2 3 4 5 6
n=8 восьмеричная 0 1 2 3 4 5 6 7
n=10 десятичная 0 1 2 3 4 5 6 7 8 9
n=16 шестнадцатеричная
Основание системы счисления
IV = 5 – 1 = 4 XL = 50 – 10 = 40

Рассмотрим числа:

Перевод из десятичной системы счисления в другие

Пример: Переведем число 75 из десятичной системы в двоичную, восьмеричную и шестнадцатеричную:

Ответ: 75 10 = 1 001 011 2 = 113 8 = 4B 16 .

Перевод в десятичную систему счисления

Перевод целых чисел из системы счисления с основанием q (недесятичной системы) в десятичную систему счисления выполняется по правилу: если все слагаемые в развернутой форме недесятичного числа представить в десятичной системе и вычислить полученное выражение по правилам десятичной арифметики, то получится число в десятичной системе, равное данному. Рассмотрим примеры:

112 3 = 1 · 3 2 + 1 · 3 1 + 2 · 3 0 = 9 + 3 + 2 = 14 10

101101 2 = 1 · 2 5 + 0 · 2 4 + 1 · 2 3 + 1 · 2 2 + 0 · 2 1 + 1 · 2 0 = 32 + 0 + 8 + 4 + 1 = 45 10

15FС 16 = 1 · 16 3 + 5 · 16 2 + 15(F) · 16 1 + 12(С) · 16 0 = 4096 + 1280 + 240 + 12 = 5628 10

Развернутая форма числа

Развернутая форма записи числа – это запись в виде разрядных слагаемых, записанных с помощью степени соответствующего разряда и основания степени.

Рассмотрим примеры:

32478 10 = 3·10000 + 2·1000 + 4·100 + 7·10 + 8 =

3·10 4 + 2·10 3 + 4·10 2 + 7·10 1 + 8·10 0

112 3 = 1·3 2 + 1·3 1 + 2·3 0

101101 2 = 1·2 5 + 0·2 4 + 1·2 3 + 1·2 2 + 0·2 1 + 1·2 0

15FC 16 = 1·16 3 + 5·16 2 + 15·16 1 + 12·16 0

С л о ж е н и е

Таблицы сложения легко составить, используя Правило Счета.

В ы ч и т а н и е

Пример 4. Вычтем единицу из чисел 10 2 , 10 8 и 10 16

Пример 5. Вычтем единицу из чисел 100 2 , 100 8 и 100 16 .


Пример 6. Вычтем число 59,75 из числа 201,25.

Ответ: 201,25 10 - 59,75 10 = 141,5 10 = 10001101,1 2 = 215,4 8 = 8D,8 16 .

Проверка. Преобразуем полученные разности к десятичному виду:

10001101,1 2 = 2 7 + 2 3 + 2 2 + 2 0 + 2 -1 = 141,5;

215,4 8 = 2 . 8 2 + 1 . 8 1 + 5 . 8 0 + 4 . 8 -1 = 141,5;

8D,8 16 = 8 . 16 1 + D . 16 0 + 8 . 16 -1 = 141,5.

У м н о ж е н и е

Выполняя умножение многозначных чисел в различных позиционных системах счисления, можно использовать обычный алгоритм перемножения чисел в столбик, но при этом результаты перемножения и сложения однозначных чисел необходимо заимствовать из соответствующих рассматриваемой системе таблиц умножения и сложения.

Д е л е н и е

Деление в любой позиционной системе счисления производится по тем же правилам, как и деление углом в десятичной системе. В двоичной системе деление выполняется особенно просто, ведь очередная цифра частного может быть только нулем или единицей.
Пример 9. Разделим число 30 на число 6.


Ответ: 30: 6 = 5 10 = 101 2 = 5 8 .

Пример 10. Разделим число 5865 на число 115.

Восьмеричная: 13351 8:163 8


Ответ: 5865: 115 = 51 10 = 110011 2 = 63 8 .
Проверка.
110011 2 = 2 5 + 2 4 + 2 1 + 2 0 = 51; 63 8 = 6 . 8 1 + 3 . 8 0 = 51.

Пример 11. Разделим число 35 на число 14.

Восьмеричная: 43 8: 16 8

Ответ: 35: 14 = 2,5 10 = 10,1 2 = 2,4 8 .

Проверка. Преобразуем полученные частные к десятичному виду:

10,1 2 = 2 1 + 2 -1 = 2,5;

2,4 8 = 2 . 8 0 + 4 .

Восьмеричная и шестнадцатеричная системы счисления

Двоичная система, удобная для компьютеров, для человека неудобна из-за ее громоздкости и непривычной записи.

Перевод чисел из десятичной системы в двоичную и наоборот выполняет машина. Однако, чтобы профессионально использовать компьютер, следует научиться понимать слово машины. Для этого и разработаны восьмеричная и шестнадцатеричная системы.

Числа в этих системах читаются почти так же легко, как десятичные, требуют соответственно в три (восьмеричная) и в четыре (шестнадцатеричная) раза меньше разрядов, чем в двоичной системе (ведь числа 8 и 16 - соответственно, третья и четвертая степени числа 2).

Например:

Например,

Как пеpевести пpавильную десятичную дpобь в любую другую позиционную систему счисления?

Для перевода правильной десятичной дpоби F в систему счисления с основанием q необходимо F умножить на q , записанное в той же десятичной системе, затем дробную часть полученного произведения снова умножить на q, и т. д., до тех пор, пока дpобная часть очередного пpоизведения не станет pавной нулю, либо не будет достигнута требуемая точность изображения числа F в q -ичной системе. Представлением дробной части числа F в новой системе счисления будет последовательность целых частей полученных произведений, записанных в порядке их получения и изображенных одной q -ичной цифрой. Если требуемая точность перевода числа F составляет k знаков после запятой, то предельная абсолютная погрешность при этом равняется q -(k+1) / 2.

Пример. Переведем число 0,36 из десятичной системы в двоичную, восьмеричную и шестнадцатеричную:

Практическая работа.

1. Перевести данное число из десятичной системы счисления в двоичную, восьмеричную и шестнадцатеричную системы счисления.

в) 712,25 (10) ;

г) 670,25 (10) ;

2. Перевести данное число в десятичную систему счисления.

а) 1001110011 (2) ;

б) 1001000 (2) ;

в) 1111100111,01 (2) ;

г) 1010001100,101101 (2) ;

д) 413,41 (8) ;

е) 118,8C (16) .

3. Сложить числа.

а) 1100001100 (2) +1100011001 (2) ;

б) 110010001 (2) +1001101 (2) ;

в) 111111111,001 (2) +1111111110,0101 (2) ;

г) 1443,1 (8) +242,44 (8) ;

д) 2B4,C (16) +EA,4 (16) .

Лабораторная работа №16

Системы счисления

Теоретическая часть

Позиционные Системы Счисления

В позиционных системах счисления величина, обозначаемая цифрой в записи числа, зависит от ее позиции. Количество используемых цифр называется основанием позиционной системы счисления.

Система счисления, применяемая в современной математике, является позиционной десятичной системой . Ее основание равно 10, т.к. запись чисел производится с помощью 10 цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Позиционный характер этой системы легко понять на примере любого многозначного числа. Например, в числе 333 первая 3 означает 3 сотни, вторая – 3 десятка, третья – 3 единицы (значение каждой цифры зависит от того места, которое эта цифра занимает).

Для записи чисел в позиционной системе с основанием n нужно иметь алфавит из n цифр. Обычно для этого при n<10 используют n первых арабских цифр, а при n>10 к десяти арабским цифрам добавляют буквы. Вот примеры алфавитов нескольких систем:

Основание Название Алфавит
n=2 двоичная 0 1
n=3 троичная 0 1 2
n=4 четверичная 0 1 2 3
n=5 пятеричная 0 1 2 3 4
n=6 шестеричная 0 1 2 3 4 5
n=7 семеричная 0 1 2 3 4 5 6
n=8 восьмеричная 0 1 2 3 4 5 6 7
n=10 десятичная 0 1 2 3 4 5 6 7 8 9
n=16 шестнадцатеричная 0 1 2 3 4 5 6 7 8 9 A B C D E F

Если требуется указать основание системы, к которой относится число, то оно приписывается нижним индексом к этому числу: 101101 2 , 3671 8 , 3B8F 16

Запишем первые 17 чисел в двоичной и восьмеричной системах счисления:

Основание системы счисления

Непозиционные Системы Счисления

Кроме позиционных, существуют и другие – непозиционные системы счисления, построенные на иных принципах.

В непозиционных системах счисления от положения цифры в записи числа не зависит величина, которую она обозначает. Общеизвестным примером такой системы является римская система (римские цифры). В римской системе в качестве цифр используются латинские буквы:

Если же слева записана меньшая цифра, а справа большая, то их значения вычитаются:

IV = 5 – 1 = 4 XL = 50 – 10 = 40

Рассмотрим числа:

а) LXXXVII = (50 + 30) + (5 + 2) = 87. В данном примере цифра Х, участвуя 3 раза, каждый раз означает одну и ту же величину – 10 единиц.

б) MCMXCVI = 1000 + (1000 - 100) + (100 - 10) + (5 + 1) = 1996

Римские цифры мы часто встречаем и сейчас, например, на циферблатах часов, в книгах при нумерации глав, в обозначении веков. Однако, в математической практике они не применяются. Позиционные системы удобны тем, что позволяют записывать большие числа с помощью сравнительно небольшого количества знаков. Еще более важное преимущество позиционных систем – это простота и легкость выполнения арифметических операций над числами. Попробуйте для сравнения перемножить два трехзначных числа, записав их римскими цифрами.