­ Основные характеристики мониторов. Основные характеристики мониторов

­ Виды мониторов

v Мониторы на электронно-лучевой трубке .

Электронно-лучевая трубка представляет собой электронный вакуумный прибор в стеклянной колбе, в горловине которого находится электронная пушка, а на дне - экран, покрытый люминофором.

Нагреваясь, электронная пушка испускает поток электронов, которые с большой скоро-стью движутся к экрану. Поток электронов (электронный луч) проходит через фокусирую-щую и отклоняющую катушки, которые направляют его в определенную точку, покрытого люминофором экрана. Под воздействием ударов электронов люминофор излучает свет, который видит пользователь, сидящий перед экраном компьютера.

v Жидкокристаллические мониторы

LCD (Liquid crystal display) мониторы сделаны из вещества, которое находится в жидком состоянии, но при этом обладает некоторыми свойствами, присущими кристаллическим телам. Фактически это жидкости, обладающие анизотропией свойств, связанных с упорядоченностью в ориентации молекул. Молекулы жидких кристаллов под воздействием электричества могут изменять свою ориентацию и вследствие этого изменять свойства светового луча проходящего сквозь них. Основываясь на этом открытии и в результате дальнейших исследований, стало возможным обнаружить связь между повышением электрического напряжения и изменением ориентации молекул кристаллов для обеспечения создания изображения. Первое свое применение жидкие кристаллы нашли в дисплеях для калькуляторов и в кварцевых часах, а затем их стали использовать в мониторах для портативных компьютеров.

v Сенсорные мониторы

В этих типах мониторов общение с компьютером осуществляется путём прикосновения пальцем к определённому месту чувствительного экрана. Сенсорные экраны часто встречаются в современных цифровых камерах. Существует множество разных типов сенсорных экранов, которые работают на разных физических принципах. Например: на стекло нанесены горизонтальные проводники, на мембрану - вертикальные, при прикосновении к экрану проводники соприкасаются. Контроллер определяет, какие проводники замкнулись, и передаёт в микропроцессор соответствующие координаты.

v Плазменные мониторы

Эта технология носит название PDP (Plasma display panels) и FED (Field emission display). Работа плазменных мониторов очень похожа на работу неоновых ламп, которые сделаны в виде трубки, заполненной инертным газом низкого давления. Плазменные экраны создаются путем заполнения пространства между двумя стеклянными поверхностями инертным газом, например аргоном или неоном. Фактически, каждый пиксель на экране работает как обычная флуоресцентная лампа. Высокая яркость и контрастность наряду с отсутствие дрожания являются большими преимуществами таких мониторов. Кроме того, угол по отношению к нормали, под которым можно увидеть нормальное изображение на плазменных мониторах существенно больше чем 45°.

v OLED-монитор

Для создания органических светодиодов (OLED) используются тонкопленочные многослойные структуры, состоящие из слоев нескольких полимеров. При подаче на анод положительного относительно катода напряжения, поток электронов протекает через прибор от катода к аноду. Таким образом катод отдает электроны в эмиссионный слой, а анод забирает электроны из проводящего слоя, или другими словами анод отдает дырки в проводящий слой. Эмиссионный слой получает отрицательный заряд, а проводящий слой положительный.

Под действием электростатических сил электроны и дырки движутся навстречу друг к другу и при встрече рекомбинируют. Это происходит ближе к эмиссионному слою, потому что в органических полупроводниках дырки обладают большей подвижностью, чем электроны. При рекомбинации происходит понижение энергии электрона, которое сопровождается испусканием (эмиссией) электромагнитного излучения в области видимого света. Поэтому слой и называется эмиссионным. Прибор не работает при подаче на анод отрицательного относительно катода напряжения. В этом случае дырки движутся к аноду, а электроны в противоположном направлении к катоду, и рекомбинации не происходит. В качестве материала анода обычно используется оксид индия легированный оловом. Он прозрачный для видимого света и имеет высокую работу выхода, которая способствует инжекции дырок в полимерный слой. Для изготовления катода часто используют металлы, такие как алюминий и кальций, так как они обладают низкой работой выхода, способствующей инжекции электронов в полимерный слой.

v Виртуальный ретинальный монитор

Система обнаруживает глаз и проецирует на него изображение. Три лазерных луча (красный, синий и зеленый) рисуют изображение непосредственно на сетчатке пользователя. При использовании VRD качество изображения аналогично качеству современных настольных мониторов. Причем, в отличие от используемых в настоящее время дисплеев для носимых компьютеров, VRD транслирует изображение с компьютера, не блокируя того, что находится перед глазами. Передаваемый компьютерный образ просто парит перед глазом, а пользователь видит все, что происходит вокруг.

­ Основные характеристики мониторов:

  • Ш Размер экрана монитора - измеряется в дюймах (1 дюйм - 2,54 см) и обычно составляет 14, 15, 17, 19, 20, 21 дюйм. Чем больше размер экрана монитора, тем комфортней за ним работать, особенно тем, кто занимается компьютерной графикой ;
  • Ш Максимальная частота регенерации изображения - показывает, сколько раз в течение секунды монитор может полностью сменить изображение. Частоту регенерации измеряют в герцах (Гц) и минимально допустимым значением для комфортной работы за экраном монитора считают зна-чение 75 Гц, (75 раз в секунду) нормой - 85 Гц (85 раз в секунду) и комфортным - 100 Гц (100 раз в секунду) и более ;

Класс защиты (соответствие санитарно-гигиеническим требованиям) .

В мониторе на основе электронно-лучевой трубки точки изображения отображаются с помощью луча (потока электронов), который заставляет светиться поверхность экрана, покрытую люминофором. Луч обегает экран построчно, слева направо и сверху вниз. Полный цикл отображения картинки называют «кадром». Чем быстрее монитор отображает и перерисовывает кадры, тем более устойчивой кажется картинка, меньше заметно мерцание и меньше устают наши глаза.

Устройство ЭЛТ-монитора. 1 -Электронные пушки. 2 - Электронные лучи. 3 - Фокусирующая катушка. 4 - Отклоняющие катушки. 5 - Анод. 6 - Маска, благодаря которой красный луч попадает на красный люминофор, и т. д. 7 - Красные, зелёные и синие зёрна люминофора. 8 - Маска и зёрна люминофора (увеличенно).

ЖК

Жидкокристаллические дисплеи были разработаны в 1963 году в исследовательском центре Дэвида Сарнова компании RCA (Принстон, штат Нью-Джерси).

Устройство

Конструктивно дисплей состоит из ЖК-матрицы (стеклянной пластины, между слоями которой и располагаются жидкие кристаллы), источников света для подсветки, контактного жгута и обрамления (корпуса), чаще пластикового, с металлической рамкой жёсткости. Каждый пиксель ЖК-матрицы состоит из слоя молекул между двумя прозрачными электродами, и двух поляризационных фильтров, плоскости поляризации которых (как правило) перпендикулярны. Если бы жидких кристаллов не было, то свет, пропускаемый первым фильтром, практически полностью блокировался бы вторым фильтром. Поверхность электродов, контактирующая с жидкими кристаллами, специально обработана для изначальной ориентации молекул в одном направлении. В TN-матрице эти направления взаимно перпендикулярны, поэтому молекулы в отсутствие напряжения выстраиваются в винтовую структуру. Эта структура преломляет свет таким образом, что до второго фильтра плоскость его поляризации поворачивается и через него свет проходит уже без потерь. Если не считать поглощения первым фильтром половины неполяризованного света, ячейку можно считать прозрачной. Если же к электродам приложено напряжение, то молекулы стремятся выстроиться в направлении электрического поля, что искажает винтовую структуру. При этом силы упругости противодействуют этому, и при отключении напряжения молекулы возвращаются в исходное положение. При достаточной величине поля практически все молекулы становятся параллельны, что приводит к непрозрачности структуры. Варьируя напряжение, можно управлять степенью прозрачности. Если постоянное напряжение приложено в течение долгого времени, жидкокристаллическая структура может деградировать из-за миграции ионов. Для решения этой проблемы применяется переменный ток или изменение полярности поля при каждой адресации ячейки (так как изменение прозрачности происходит при включении тока, вне зависимости от его полярности). Во всей матрице можно управлять каждой из ячеек индивидуально, но при увеличении их количества это становится трудновыполнимо, так как растёт число требуемых электродов. Поэтому практически везде применяется адресация по строкам и столбцам. Проходящий через ячейки свет может быть естественным - отражённым от подложки (в ЖК-дисплеях без подсветки). Но чаще применяют искусственный источник света, кроме независимости от внешнего освещения это также стабилизирует свойства полученного изображения. Таким образом, полноценный монитор с ЖК-дисплеем состоит из высокоточной электроники, обрабатывающей входной видеосигнал, ЖК-матрицы, модуля подсветки, блока питания и корпуса с элементами управления. Именно совокупность этих составляющих определяет свойства монитора в целом, хотя некоторые характеристики важнее других.

Подсветка

Сами по себе жидкие кристаллы не светятся. Чтобы изображение на жидкокристаллическом дисплее были видимым, нужен источник света. Источник может быть внешним (например, Солнце), либо встроенным (подсветка). Обычно лампы встроенной подсветки располагаются позади слоя жидких кристаллов и просвечивают его насквозь (хотя встречается и боковая подсветка, например, в часах).

  • Внешнее освещение
  • Монохромные дисплеи наручных часов и мобильных телефонов большую часть времени использует внешнее освещение (от Солнца, ламп комнатного освещения и т.д.). Обычно позади слоя пикселей из жидких кристаллов находится зеркальный или матовый отражающий слой. Для использования в темноте такие дисплеи снабжаются боковой подсветкой. Существуют также трансфлективные дисплеи, в которых отражающий (зеркальный) слой является полупрозрачным, а лампы подсветки располагаются позади него.

  • Подсветка лампами накаливания
  • В прошлом в некоторых наручных часах с монохромным ЖК-дисплеем использовалась сверхминиатюрная лампа накаливания. Но из-за высокого энергопотребления лампы накаливания являются невыгодными. Кроме того, они не подходят для использования, например, в телевизорах, так как выделяют много тепла (перегрев вреден для жидких кристаллов) и часто перегорают.
  • Подсветка газоразрядными ("плазменными") лампами
  • В течение первого десятилетия XXI века подавляющее большинство LCD-дисплеев имело подсветку из одной или нескольких газоразрядных ламп (чаще всего с холодным катодом - CCFL). В этих лампах источником света является плазма, возникающая при электрическом разряде через газ. Такие дисплеи не следует путать с плазменными дисплеями, в которых каждый пиксель сам светится и является миниатюрной газоразрядной лампой.
  • Светодиодная (LED) подветка
  • На границе первого и второго десятилетий XXI века получили распространение ЖК-дисплеи, имеющие подсветку из одного или небольшого числа светодиодов (LED). Такие ЖК-дисплеи (в торговле нередко называемые LED-дисплеями) не следует путать с настоящими LED-дисплеями, в которых каждый пиксель сам светится и является миниатюрным светодиодом.

Преимущества и недостатки

В настоящее время ЖК-мониторы являются основным, бурно развивающимся направлением в технологии мониторов. К их преимуществам можно отнести: малые размер и масса в сравнении с ЭЛТ. У ЖК-мониторов, в отличие от ЭЛТ, нет видимого мерцания, дефектов фокусировки лучей, помех от магнитных полей, проблем с геометрией изображения и четкостью. Энергопотребление ЖК-мониторов в зависимости от модели, настроек и выводимого изображения может как совпадать с потреблением ЭЛТ и плазменных экранов сравнимых размеров, так и быть существенно - до пяти раз - ниже. Энергопотребление ЖК-мониторов на 95 % определяется мощностью ламп подсветки или светодиодной матрицы подсветки (англ. backlight - задний свет) ЖК-матрицы. Во многих мониторах 2007 года для настройки пользователем яркости свечения экрана используется широтно-импульсная модуляция ламп подсветки частотой от 150 до 400 и более герц. С другой стороны, ЖК-мониторы имеют и некоторые недостатки, часто принципиально трудноустранимые, например:

  • В отличие от ЭЛТ, могут отображать чёткое изображение лишь в одном («штатном») разрешении. Остальные достигаются интерполяцией с потерей чёткости. Причем слишком низкие разрешения (например 320*200) вообще не могут быть отображены на многих мониторах.
  • Многие из ЖК-мониторов имеют сравнительно малый контраст и глубину чёрного цвета. Повышение фактического контраста часто связано с простым усилением яркости подсветки, вплоть до некомфортных значений. Широко применяемое глянцевое покрытие матрицы влияет лишь на субъективную контрастность в условиях внешнего освещения.
  • Из-за жёстких требований к постоянной толщине матриц существует проблема неравномерности однородного цвета (неравномерность подсветки) - на некоторых мониторах есть неустранимая неравномерность передачи яркости (полосы в градиентах), связанная с использованием блоков линейных ртутных ламп.
  • Фактическая скорость смены изображения также остаётся ниже, чем у ЭЛТ и плазменных дисплеев. Технология overdrive решает проблему скорости лишь частично.
  • Зависимость контраста от угла обзора до сих пор остаётся существенным минусом технологии.
  • Массово производимые ЖК-мониторы плохо защищены от повреждений. Особенно чувствительна матрица, незащищённая стеклом. При сильном нажатии возможна необратимая деградация. Также существует проблема дефектных пикселей. Предельно допустимое количество дефектных пикселей, в зависимости от размеров экрана, определяется в международном стандарте ISO 13406-2 (в России - ГОСТ Р 52324-2005). Стандарт определяет 4 класса качества ЖК-мониторов. Самый высокий класс - 1, вообще не допускает наличия дефектных пикселей. Самый низкий - 4, допускает наличие до 262 дефектных пикселей на 1 миллион работающих.
  • Пиксели ЖК-мониторов деградируют, хотя скорость деградации наименьшая из всех технологий отображения, за исключением лазерных дисплеев, не подверженных ей.

Перспективной технологией, которая может заменить ЖК-мониторы, часто считают OLED-дисплеи (матрица с органическими светодиодами), однако она встретила сложности в массовом производстве, особенно для матриц с большой диагональю.

Плазменные мониторы

Плазменная панель представляет собой матрицу газонаполненных ячеек, заключенных между двумя параллельными стеклянными пластинами, внутри которых расположены прозрачные электроды, образующие шины сканирования, подсветки и адресации. Разряд в газе протекает между разрядными электродами (сканирования и подсветки) на лицевой стороне экрана и электродом адресации на задней стороне.

OLED-мониторы

Органический светодиод (англ. Organic Light-Emitting Diode (OLED) - органический светоизлучающий диод) - полупроводниковый прибор, изготовленный из органических соединений, который эффективно излучает свет, если пропустить через него электрический ток. На его основе и изготовлены OLED-мониторы. Предполагается, что производство таких дисплеев будет гораздо дешевле, нежели производство жидкокристаллических дисплеев.

Принцип действия

Для создания органических светодиодов (OLED) используются тонкопленочные многослойные структуры, состоящие из слоев нескольких полимеров. При подаче на анод положительного относительно катода напряжения, поток электронов протекает через прибор от катода к аноду. Таким образом катод отдает электроны в эмиссионный слой, а анод забирает электроны из проводящего слоя, или другими словами анод отдает дырки в проводящий слой. Эмиссионный слой получает отрицательный заряд, а проводящий слой положительный. Под действием электростатических сил электроны и дырки движутся навстречу друг к другу и при встрече рекомбинируют. Это происходит ближе к эмиссионному слою, потому что в органических полупроводниках дырки обладают большей подвижностью, чем электроны. При рекомбинации происходит понижение энергии электрона, которое сопровождается испусканием (эмиссией) электромагнитного излучения в области видимого света. Поэтому слой и называется эмиссионным. Прибор не работает при подаче на анод отрицательного относительно катода напряжения. В этом случае дырки движутся к аноду, а электроны в противоположном направлении к катоду, и рекомбинации не происходит. В качестве материала анода обычно используется оксид индия, легированный оловом. Он прозрачный для видимого света и имеет высокую работу выхода, которая способствует инжекции дырок в полимерный слой. Для изготовления катода часто используют металлы, такие как алюминий и кальций, так как они обладают низкой работой выхода, способствующей инжекции электронов в полимерный слой.

Преимущества

В сравнении c плазменными дисплеями

  • меньшие габариты и вес
  • более низкое энергопотребление при той же яркости
  • возможность длительное время показывать статическую картинку без выгорания экрана

В сравнении c жидкокристаллическими дисплеями

  • меньшие габариты и вес
  • отсутствие необходимости в подсветке
  • отсутствие такого параметра как угол обзора - изображение видно без потери качества с любого угла
  • мгновенный отклик (на порядок выше, чем у LCD) - по сути полное отсутствие инерционности
  • более качественная цветопередача (высокий контраст)
  • возможность создания гибких экранов
  • большой диапазон рабочих температур (от?40 до +70 °C)

Яркость. OLED-дисплеи обеспечивают яркость излучения от нескольких кд/м2 (для ночной работы) до очень высоких яркостей - свыше 100 000 кд/м2, причем их яркость может регулироваться в очень широком динамическом диапазоне. Так как срок службы дисплея обратно пропорционален его яркости, для приборов рекомендуется работа при более умеренных уровнях яркости до 1000 кд/м2.

Контрастность. Здесь OLED также лидер. OLED-дисплеи обладают контрастностью 1000000:1 (Контрастность LCD до 2000:1, CRT до 5000:1)

Углы обзора. Технология OLED позволяет смотреть на дисплей с любой стороны и под любым углом, причем без потери качества изображения. Впрочем, современные ЖК дисплеи (за исключением основанных на TN+Film матрицах) также сохраняют приемлемое качество картинки при больших углах обзора.

Энергопотребление.

Недостатки


Главная проблема для OLED - время непрерывной работы должно быть более 15 тыс. часов. Одна проблема, которая в настоящее время препятствует широкому распространению этой технологии, состоит в том, что «красный» OLED и «зелёный» OLED могут непрерывно работать на десятки тысяч часов дольше, чем «синий» OLED. Это визуально искажает изображение, причем время качественного показа неприемлемо для коммерчески жизнеспособного устройства. Хотя сегодня «синий» OLED всё-таки добрался до отметки в 17,5 тыс. часов (примерно 2 года) непрерывной работы.

При этом для дисплеев телефонов, фотокамер, планшетов и иных малых устройств достаточно в среднем около 5 тысяч часов непрерывной работы, в связи с быстрыми темпами устаревания аппаратуры и еe неактуальности после нескольких последующих лет. Поэтому в них OLED успешно применяется уже сегодня.

Можно считать это временными трудностями становления новой технологии, поскольку разрабатываются новые долговечные люминофоры. Также растут мощности по производству матриц. Потребность в преимуществах, демонстрируемых органическими дисплеями с каждым годом растёт. Этот факт позволяет заключить, что в скором времени дисплеи произведeнные по OLED технологиям, с высокой вероятностью станут доминантными на рынке электроники народного потребления.

Проекционные мониторы

Проекционным монитором мы назвали систему, состоящую из проектора и поверхности для проецирования.

Проектор

Проектор - световой прибор, перераспределяющий свет лампы с концентрацией светового потока на поверхности малого размера или в малом объёме. Проекторы являются в основном оптико-механическими или оптическо-цифровыми приборами, позволяющими при помощи источника света проецировать изображения объектов на поверхность, расположенную вне прибора - экран.

В паре с компьютером используется именно мультимедийный проектор (также используется термин «Цифровой проектор»).На вход устройства подаётся видеосигнал в реальном времени (аналоговый или цифровой). Устройство проецирует изображение на экран. Возможно при этом наличие звукового канала.

Говоря о проекторах, стоит упомянуть так назыввемый пико-проектор. Это проектор небольшого, карманного размера. Часто выполнен в форм-факторе сотового телефона и имеет аналогичный размер. Термин «пико-проектор» также может означать миниатюрный проектор, встроенный в фотокамеру, мобильный телефон, PDA и другую мобильную технику.

Существующие карманные проекторы позволяют получать проекции размером до 100 дюймов по диагонали, яркостью до 40 люмен. У мини-проекторов, выполненных как самостоятельное устройство, часто имеется отверстие с резьбой для стандартного штатива и почти всегда - встроенные кард-ридеры или флеш-память, что позволяет работать без источника сигнала. Для снижения энергопотребления в пико-проекторах применяются светодиоды.

Всё о 3D

Только современные технологии способны формировать на экране кинотеатра, телевизора или компьютерного монитора трехмерную картинку. Мы расскажем, как работают эти технологии

Футуристический вертолет проходит низко над головами зрителей, закованные в экзоброню роботизованные морпехи сметают все на своем пути, здоровенный космический шаттл сотрясает воздух ревом двигателей – так близко и устрашающе реально, что непроизвольно вжимаешь голову в плечи. Недавно вышедший на экраны «Аватар» Джеймса Камерона или трехмерная компьютерная игра заставляют зрителя, сидящего в кресле перед экраном, чувствовать себя участником фантастического действа... Совсем скоро инопланетные монстры будут прогуливаться в каждом доме, где есть современный домашний кинотеатр. Но каким же образом плоский экран способен показывать объемную картинку?

Человек в трехмерном пространстве

Один и тот же объект левым и правым глазом мы видим под разными углами, таким образом формируются два изображения – стереопара. Мозг соединяет обе картинки в одну, которая интерпретируется сознанием как объемная. Различия в перспективе позволяют мозгу определить размер объекта и расстояние до него. На основании всей этой информации человек получает пространственное представление с правильными пропорциями.

Как возникает объемное изображение

Для того чтобы картинка на экране казалась объемной, каждый глаз зрителя, как в жизни, должен видеть несколько отличающееся изо­бражение, из которых мозг сложит единую трехмерную картину.

Первые фильмы в формате 3D, созданные с учетом этого принципа, появились на экранах кинотеатров еще в 50-е годы. По­скольку набирающее популярность телевидение уже тогда составляло серьезную конкуренцию киноиндустрии, дельцы от кинематографа хотели заставить людей оторваться от диванов и направиться в кино, прельщая их визуальными эффектами, которые в то время не мог обеспечить ни один телевизор: цветным изображением, широким экраном, многоканальным звуком и, разумеется, трехмерностью. Эффект объема при этом создавался несколькими разными способами.


Анаглифический метод
(ана­глиф – по-гречески «рельефный»). На ранних этапах 3D-кинема­то­графа в прокат выпускались только черно-белые 3D-фильмы. В каждом соответствующим образом оснащенном кинотеатре для их показа использовались два кинопроектора. Один проецировал фильм через красный фильтр, другой выводил на экран слегка смещенные по горизонтали кинокадры, пропуская их через зеленый фильтр. Посетители надевали легкие картонные очки, в которые вместо стекол были уcтановлены кусочки красной и зеленой прозрачной пленки, благодаря чему каждый глаз видел только нужную часть изобра­жения, а зрители воспринимали «объемную» картинку. Однако оба кинопроектора при этом должны быть направлены строго на экран и работать абсолютно синхронно. В противном случае неизбежно раздвоение изображения и, как следствие, головные боли вместо удовольствия от просмотра – у зрителей.

Подобные очки хорошо подходят и для современных цветных 3D-фильмов, в частности, записанных методом Dolby 3D. В этом случае достаточно одного проектора с установленными перед объективом световыми фильтрами. Каждый из фильтров пропускает для левого и правого глаза красный и синий свет. Одно изображение имеет синеватый, другое – красноватый оттенок. Световые фильтры в очках пропускают только соответствующие, предназначенные для определенного глаза кадры. Однако данная технология позволяет добиться лишь незначительного 3D-эффекта, с малой глубиной.


Затворный метод.
Оптимален для просмотра цветных фильмов. В отличие от анаглифического этот метод предусматривает попеременную демонстрацию проектором изображений, предназначенных для левого и правого глаза. Благодаря тому, что чередование изображений осуществляется с высокой частотой – от 30 до 100 раз в секунду – мозг выстраивает целостную пространственную картину и зритель видит на экране цельное трехмерное изображение. Ранее данный метод назывался NuVision, в настоящее время он чаще именуется XpanD.

Для просмотра 3D-фильмов по этому методу используются затворные очки, в которые вместо стекол или фильтров установлены два оптических затвора. Эти небольшие светопропускающие ЖК-матрицы способны по команде от контроллера менять прозрачность – то затемняясь, то просветляясь в зависимости от того, на какой глаз в данный момент не­обходимо подать изображение.

Затворный метод используется не только в кинотеатрах: применяется он и в телевизорах, и в компьютерных мониторах. В кинотеатре подача команд осуществляется с помощью ИК-передатчика. Некоторые модели затворных очков 90-х годов, предназначенных для ПК, подключались к компьютеру с помощью кабеля (современные модели имеют беспроводной интерфейс).

Недостаток данного метода в том, что затворные очки являются сложным электронным устройством, потребляющим электроэнергию. Следовательно, они имеют достаточно высокую (особенно по сравнению с картонными очками) стоимость и значительный вес.

Поляризационный метод. В сфере кино данное решение носит название RealD. Его суть в том, что проектор попеременно демонстрирует кинокадры, в которых световые волны имеют разное направление поляризации светового потока. В необходимых для просмотра специальных очках установлены фильтры, пропускающие только световые волны, поляризованные определенным образом. Так оба глаза получают изображения с различной информацией, на основании которой мозг формирует объемную картинку.

Поляризационные очки несколько тяжелее картонных, но поскольку они работают без источника электроэнергии, то весят и стоят значительно меньше, чем затворные. Однако наряду с поляризационными фильтрами, устанавливаемыми на кинопроекторы и в очки, для показа 3D-фильмов по этому методу требуется дорогой экран со специальным покрытием.

На данный момент предпочтение окончательно не отдано ни одному из названных методов. Стоит, однако, отметить, что с двумя проекторами (по анаглифическому методу) работает все меньшее количество кинотеатров.

Как создаются 3D-фильмы

Использование сложных технических приемов требуется уже на этапе съемки, а не только в процессе просмотра 3D-фильмов. Для создания иллюзии трехмерности каждую сцену необходимо снимать одновременно двумя камерами, с разных ракурсов. Как и глаза человека, обе камеры размещают близко друг к другу, на одинаковой высоте.

3D-технологии для домашнего применения

Для просмотра 3D-фильмов на DVD до сих пор используются простые картонные очки, наследие далеких 50-х. Этим объясняется и скромный результат – плохая цветопередача и недостаточная глубина изображения.

Однако даже современные 3D-технологии привязаны к специальным очкам, и такое положение вещей, по всей видимости, изменится не скоро. Хотя в 2008 году компания Philips и представила прототип 42-дюймового жидко­кристаллического 3D-телевизора, не требующего использования очков, данная технология достигнет своей рыночной зрелости минимум через 3–4 года.

А вот о выпуске 3D-телевизоров, работающих в тандеме с очками, на международной выставке IFA 2009 объявили сразу несколько производителей. К примеру, Panasonic намерен уже к середине 2010 года выпустить модели телевизоров с поддержкой 3D, так же, как Sony и Loewe, делая ставку на затворный метод. Компании JVC, Philips и Toshiba также стремятся взойти на «3D-подиум», однако они отдают предпочтение поляризационному методу. LG и Samsung разрабатывают свои устройства на основе обеих технологий.

Контент для 3D

Основным источником трехмерного видеоконтента являются Blu-ray-диски. Контент передается на источник изображения через интерфейс HDMI. Для этого телевизор и проигрыватель должны поддерживать соответствующие технологии, а также недавно принятый стандарт HDMI 1.4 – одновременную передачу двух потоков данных формата 1080p обеспечивает только он. Пока что устройства с поддержкой HDMI 1.4 можно пересчитать по пальцам.

3D-технологии на ПК

Первоначально просмотр трехмерного изображения на компьютере был доступен только с помощью очков или специальных шлемов виртуальной реальности. И те и другие были оснащены двумя цветными ЖК-дисплеями – для каждого из глаз. Качество результирующего изображения при использовании данной технологии зависело от качества применяемых ЖК-экранов.

Однако данные устройства обладали целым рядом недостатков, которые отпугивали большинство покупателей. Кибершлем фирмы Forte, появившийся в середине 90-х, был громоздким, неэффективным и напоминал средневековое орудие пытки. Скромного разрешения в 640х480 точек для компьютерных программ и игр было явно недостаточно. И хотя позднее были выпущены более совершенные очки, к примеру модель LDI-D 100 фирмы Sony, но даже они были достаточно тяжелыми и вызывали сильный дискомфорт.

Выдержав почти десятилетнюю паузу, технологии формирования стереоизображения на экране монитора вышли на новый этап своего развития. Не может не радовать то обстоятельство, что по крайней мере один из двух крупных производителей графических адаптеров, фирма NVIDIA, разработал нечто инновационное. Комплекс 3D Vision стоимостью около 6 тыс. руб. включает в себя затворные очки и ИК-передатчик. Однако для создания пространственной картинки при помощи этих очков требуется соответствующее аппаратное обеспечение: ПК должен быть оснащен мощной видеоплатой NVIDIA. А для того чтобы псевдотрехмерная картинка не мерцала, монитор с разрешением в 1280х1024 точки должен обеспечивать частоту обновления экрана минимум в 120 Гц (по 60 Гц на каждый глаз). Первым ноутбуком, оснащенным данной технологией, стал ASUS G51J 3D.

В настоящее время доступны также так называемые 3D-профили более чем для 350 игр, которые можно скачать с веб-сайта NVIDIA (www.nvidia.ru). В их число входят как современные игры жанра экшн, к примеру Borderlands, так и выпущенные ранее.

В продолжение темы компьютерных игр, альтернативой затворному 3D является поляризационный метод. Для его реализации нужен монитор с поляризационным экраном, например Hyundai W220S. Объемное изображение становится доступно при наличии любой мощной видеокарты ATI или NVIDIA. Однако при этом разрешение снижается с 1680x1050 до 1680x525 точек, поскольку используется чересстрочный вывод кадров. Какие из игр поддерживают поляризационный метод, можно узнать в Интернете по адресу: www.ddd.com.

3D-фотоаппарат

Уже сегодня есть возможность получать трехмерные фотографии: фотокамера Fujifilm Finepix Real 3D W1 с помощью двух объективов и двух матриц способна фиксировать фотографии и даже короткие видеоролики с трехмерным пространственным эффектом. В качестве аксессуара для камеры предлагается цифровая фоторамка, демонстрирующая фото в формате 3D. Тот, кто захочет распечатать свои трехмерные снимки, может обратиться в онлайновый фотосервис Fuji. Стоимость одного отпечатка составляет около 5 евро, а срок доставки заказа из Великобритании, где печатаются фотографии, – почти две недели.

3D-сканер

3D-сканеры умеют сканировать по крайней мере сейчас небольшие предметы и сохранять их «объемные» изображения в виде файлов на жестком диске. При этом съемка объекта, как правило, производится двумя камерами. В зависимости от своей величины объект съемки либо вращается на специальной платформе, либо камеры движутся вокруг него. Цена и дата появления 3D-сканеров на массовом рынке еще не определены.

Монитор

Одной из важных составных частей персонального компьютера является его видеосистема, в которую входят следующие элементы:

· монитор;

· плата видеоадаптера;

· набор программ-драйверов.

Все современные мониторы можно разделить на два класса:

· мониторы с электронно-лучевой трубкой (ЭЛТ);

· жидкокристаллические мониторы (ЖК – мониторы).

В свою очередь среди каждого класса выделяют цветные и монохромные мониторы .

Для формирования цвета точки на экране монитора обычно используются три основных цвета: красный (Red), зеленый (Green), синий (Blue) и сигнал интенсивности или яркости (Intensity), т.е. так называемая палитра IRGB . Все остальные цвета получаются путем смешивания трех основных.

В зависимости от вида сигнала, который управляет пучком электронов, мониторы с ЭЛТ делятся на аналоговые и цифровые .

Принцип действия жидкокристаллических мониторов состоит в том, что при подаче напряжение на жидкий кристалл, он изменяет свой цвет.

Преимущество жидкокристаллического монитора заключается в том, что при его работе отсутствуют вредные излучения. Недостаток состоит, прежде всего, в его высокой стоимости и низком быстродействии.

Среди жидкокристаллических мониторов различают:

· мониторы с подсветкой;

· мониторы без подсветки;

Мониторы без подсветки могут работать только при достаточном внешнем освещении. При этом четкость у них ниже, чем у мониторов с подсветкой. Однако мониторы с подсветкой стоят дороже и время расхода внутренних батарей у них очень быстрое.

ЖК мониторы делятся на:

· мониторы с активной матрицей;

· мониторы с пассивной матрицей.

Контрастность мониторов с активной матрицей значительно выше, чем у мониторов с пассивной матрицей, поэтому для человеческого глаза оптимальнее работать с монитором на активной матрице, но стоимость их значительно выше.

Монитор компьютера может работать в двух режимах: текстовом и графическом. В текстовом режиме экран дисплея разбивается на 25 строк по 80 символов в каждой строке. Этот режим служит для вывода заранее заданных символов. К этим символам относятся большие и малые латинские буквы, буквы русского алфавита, цифры и другие различные символы.

В графическом режиме на экран дисплея изображение выводится по точкам (пикселям). В таком режиме можно рисовать рисунки, создавать таблицы, строить графики и т.д. Разумеется, в этом режиме можно также выводить и текстовую информацию, но быстродействие тогда будет ниже, чем при работе в текстовом режиме.

Отличительная характеристика графического режима состоит в том, что для этого режима требуется значительно больше видеопамяти, чем для символьного.

Основные характеристики мониторов

Разрешающая способность монитора определяется числом точек, которое воспроизводится по горизонтали и вертикали экрана, например, 800х600пикселов. Чем выше разрешающая способность, тем четче изображение на экране, однако, само изображение при этом уменьшается.

Следующая характеристика это размер экрана по диагонали. Существует несколько стандартных размеров экрана монитора, измеряемых в дюймах: 14, 15, 17, 19, 20, 21. Оптимальный размер монитора для человеческого глаза составляет 15 - 17 дюймов. Однако следует заметить, что с увеличением размера экрана на один тип, стоимость монитора увеличивается на 20-30%.

Частота кадров измеряется в герцах и определяет сколько раз за одну секунду обновляется изображение экрана. Человеческий глаз воспринимает смену изображений с частотой 25 Гц как непрерывное движение. Однако чем выше частота кадров, тем устойчивее изображение и тем меньше утомляется человеческий глаз. Рекомендуемая частота кадров должна быть не менее 75 Гц.

Четкость изображение на экране помимо разрешающей способности зависит и от зернистости экрана , т.е. от размера точек люминофора. Чем меньше размеры точек люминофора, тем выше четкость изображения.

Обычно говорят не о размерах самих точек, а о расстоянии между ними . Этот параметр может находиться в диапазоне 0,41 - 0,22 мм. Однако для хороших моделей диапазон составляет 0,28 - 0,22 мм.

Работа монитора с ЭЛТ сопровождается различными излучениями, такими как: рентгеновское, инфракрасное излучения, радиоизлучение, а также вокруг монитора создается электростатические поля. Поэтому на старых моделях мониторов требуется использовать специальные защитные экраны (фильтры).

В настоящее время выпускаются в основном мониторы с низким уровнем излучения - так называемые мониторы Low Radiation . Эти мониторы отвечают спецификации MPRII, выработанной Шведским национальным советом по измерениям и тестированию. Однако, начиная с 1991 г. Шведской конфедерацией профессиональных работников введены еще более жесткие стандарты: ТСО91, ТСО92, ТСО95, ТСО99 и т.д.

Все современные мониторы, как правило, удовлетворяют стандарту энергосбережения Energy Star (их обычно называют “зеленные” мониторы). Согласно этому стандарту монитор должен потреблять в среднем не более 30 Вт, не использовать токсичных материалов и допускать 100-процентную утилизацию после истечения срока службы.

В соответствие со стандартом Energy Star установлено 4 режима потребления мощности для монитора:

· On (рабочий режим с максимальной нагрузкой);

· Standby (режим ожидания);

· Suspend (приостановка работы);

· Off (отключение).

В режиме On компьютер активно работает и потребляет максимальную энергию. В режиме Standby отключается видеосигнал, а контрастность и яркость удерживаются на минимальном уровне. Нажатие любой клавиши или движение мышью возвращает монитор в рабочее состояние. Потребление энергии в режиме Standby снижается на 20%. В режиме Suspend высокое напряжение в мониторе отключается (т.е. отключается ЭЛТ). В рабочий режим монитор может вернуться только спустя несколько секунд. Потребление энергии в режиме Suspend снижается примерно на 70%. И последний режим Off обеспечивает максимум сохранения энергии (до 95%). В этом режиме в мониторе отключены практически все блоки.

Видеоадаптер

Видеоадаптер служит для преобразования цифрового сигнала, который обрабатывает компьютер, в видеосигнал, поступающий на монитор.

В настоящее время встречаются следующие типы видеоадаптеров :

1. VGA (Video Graphics Array) - обеспечивает разрешающую способность 640х480 точек и отображает не менее 16 цветов (4-битная палитра, т.е. 2 4 =16 ).

2. SVGA (Super VGA) - обеспечивает разрешающую способность 800х600 точек и отображает не менее 256 цветов.

3. VESA - получили распространение в последнее время и отличаются более жесткими требованиями к видеосистеме. Обеспечивает минимальную разрешающую способность 1280х1024 точек и отображает 16,7 млн. цветов (24-битная палитра).

В настоящее время основными видеорежимами, в которых работают мониторы и, соответственно, видеоадаптеры являются High Color и True Color . В режиме High Color видеоадаптер отображает 32 000 цветов, в режиме True Color видеоадаптер отображает 16,7 млн. цветов.

У современных видеоадаптеров, как правило, имеется графический акселератор , который повышает быстродействие видеосистемы за счет сокращения количества информации, передаваемой по системной шине компьютера, т.е. он значительно разгружает ее. Часть изображения может создаваться этими устройствами без загрузки основного процессора.

Практическое задание

1. Определите модель монитора вашего персонального компьютера и запишите ее в отчет (последовательность ответов см. 4. Создание отчета).

2. Проведите классификацию монитора вашего персонального компьютера, запишите ее в отчет.

3. Укажите, поддерживает ли ваш монитор стандарт Energy Star .

4. Укажите, какому стандарту безопасности соответствует монитор вашего персонального компьютера.

5. Определите и запишите в отчет размер экрана вашего монитора по диагонали.

6. Включите и загрузите свой персональный компьютер.

7. Откройте папку Мой компьютер , а затем папку Панель управления .

8. Используя папки Система и Экран , определите и запишите в отчет текущее разрешение вашего монитора.

9. С помощью программы тестирования мониторов определите и запишите в отчет максимально возможное разрешение вашего монитора.

10. Определите и запишите в отчет текущую цветовую палитру вашего монитора.

11. Определите и запишите в отчет максимально возможную цветовую палитру вашего монитора.

12. Определите и запишите в отчет частоту кадров вашего монитора.

13. Определите и запишите в отчет максимально возможную частоту кадров вашего монитора.

14. Определите и запишите в отчет модель вашего видеоадаптера.

15. Определите и запишите в отчет объем видеопамяти, используемой видеоадаптером.

16. Определите и запишите в отчет, какие ресурсы использует видеоадаптер.

17. Определите и запишите в отчет, какой драйвер используется видеоадаптером.

Создание отчета

После выполнение практического задания студент должен составить отчет, в котором должны быть отражены следующие положения:

· номер и название лабораторной работы;

· цель и план занятия;

· ответы на вопросы, изложенные в практическом задании:

1) Модель монитора.

2) Классификация монитора.

3) Поддержка стандарта Energy Star .

4) Стандарту безопасности монитора.

5) Размер экрана монитора.

6) Текущее разрешение монитора.

7) Максимально возможное разрешение монитора.

8) Цветовая палитра монитора.

9) Частота кадров монитора.

10) Максимально возможная частота кадров монитора.

11) Модель видеоадаптера.

12) Объем используемой видеопамяти.

13) Ресурсы видеоадаптера.

14) Драйвер видеоадаптера.

Письменно ответьте на следующие вопросы:

1. Сколько режимов работы существует у монитора?

2. Какие типы видеоадаптеров вы знаете?

3. Какие основные характеристики мониторов вы знаете?

4. Сколько цветов используется палитра IRGB для создания цветного изображения?

5. Что означает стандарт Energy Star?

6. Какие стандарты безопасности вы знаете?

7. Сколько цветов (точное количество) позволяют воспроизводить 16-битная, 24-битная и 32-битная цветовые палитры?

После составления отчета студент сдает его преподавателю и защищает. После успешной защиты отчета студент переходит к выполнению следующей лабораторной работы. Не допускается выполнение и отчет следующих лабораторных работ, без успешной защиты предыдущей работы.

Основная литература

1. Филиппов М.В. Вычислительные машины, компьютерные сети и системы телекоммуникаций: Учебное пособие. – Волгоград: Изд-во ВФ МУПК, 2002. – 172 с.

2. Филиппов М.В. Информатика. Краткий курс: Учебное пособие. – Волгоград: Изд-во ВФ МУПК, 2001. – 172 с.

3. Информатика: Учебник/ Под ред. Н. В. Макаровой. –М.: Финансы и статистика, 1997.-768с.

4. Э.А. Якубайтис. Информационные сети и системы. Справочная книга. –М.: Финансы и статистика, 1996.

5. Компьютерные технологии обработки информации /Под ред. С. В. Назарова. –М.: Финансы и статистика, 1997.

Дополнительная литература

6. Колесник А. П. Компьютерные системы в управлении финансами. –М.: Финансы и статистика, 1994.

7. Информационные системы в экономике: Учебник / Под ред. В. В. Дика. - М: Финансы и статистика. – 272с.

8. Экономическая информатика и вычислительная техника / Под ред. В. В. Евдокимова. – СПб: Питер Паблишинг, 1997.

9. Экономическая информатика и вычислительная техника. Учебник для студентов экономических специальностей вузов/под ред. В.П.Косарева, А.Ю. Королева - М., Финансы и статистика, 1996 г.

10. Б.М. Каган. Электронные вычислительные машины и системы. - М.: Энергоатомиздат, 1985.

11. Б. Нанс. Компьютерные сети. –М.: БИНОМ, 1996.

12. А.А. Горчаков, И.В. Орлова. Компьютерные экономико-математические модели: Учеб. пособие для вузов.- М.: Компьютер, ЮНИТИ, 1995.- 136 с.


Похожая информация.


В сегодняшней статье я постараюсь вам рассказать о мониторах . О том, какие они имеют особенности, типы подключения, основные характеристики и другую информацию о мониторах. Итак...

Заглянув в Интернет, мы найдем множество предложений о продаже мониторов. В тоже время и каждый производитель старается угодить как можно большему количеству потребителей, предлагая рынку все новые модели (а порой набивая старые мониторы ненужными функциями, которые рядовому потребителю совершенно не нужны). Прогулявшись по компьютерным магазинам, мы также встретим огромное разнообразие мониторов, и в каждом магазине вас будут убеждать купить ту или иную модель, причем не просто убеждать, а обосновывать ее преимущества опциями, и их незаменимостью, которые могут являться весьма спорными с точки зрения специалистов. Однако, к сожалению, возразить большинство из нас на это ничем не сможет, а между тем, монитор – эта наименее подверженная обновлению часть компьютера. И подобно тому, как продавцы читают статьи, как продать товар (да-да, они читают!), я предлагаю Вам вооружиться знаниями о том, как выбрать монитор , который будет соответствовать Вашим требованиям.

Основные характеристики мониторов

1. Размер экрана монитора

Монитор 4:3 .................................. Монитор 16:10

В последнее время почти все мониторы на прилавках магазинов продаются в широкоформатном (соотношение сторон по горизонтали и вертикали 16:10) исполнении, а мониторы в традиционном соотношении сторон 4:3 почти исчезли. Но в этом есть свои плюсы: в приложениях не нужно будет «прятать» панели инструментов (сужая тем самым полезное пространство), несколько окон без труда уместятся у вас на дисплее, а просмотр фильмов дома станет напоминать поход в кинотеатр.

3. Матрица монитора

Для того чтобы получать удовольствие от достижений цивилизации, вовсе не обязательно понимать, как работает то или иное устройство. Поэтому вдаваться в технические особенности мы не будем. Здесь следует написать, что тип матрицы – это совокупность особенностей воздействия на жидкие кристаллы монитора для получения изображения. На сегодняшний день в продаже имеются ЖК мониторы с тремя типами матриц: S-IPS, TN-film и PVA/MVA. Если Вы профессионально занимаетесь фотографией или дизайном, то я рекомендую Вам выбрать монитор с S-IPS, или хотя бы E-IPS – матрицей, которые обеспечивают лучшую цветопередачу и лучшие углы обзора, однако купить монитор с такой матрицей дешевле чем за 400-550 у.е. (200 у.е. с E-IPS) не получится. Матрицы PVA/MVA в свою очередь обладают лучшей контрастностью, а купить монитор с такой матрицей Вы сможете минимум за 200 у.е. (20-дюймовый жк монитор). Но не стоит расстраиваться, так как почувствовать, а, следовательно, и оценить эти не дешевые преимущества, сможет только хороший специалист, который наверняка заранее знает, какой он хочет купить монитор. Рядовому потребителю лучше выбрать монитор с матрицей TN-film, т.к. это будет наиболее оптимальным с точки зрения сочетания цена-качество. К тому же многие мировые производители мониторов в последние несколько лет направляли значительные средства на улучшение характеристик мониторов с этой наиболее популярной матрицей (90% продаж мониторов) и на данный момент достигнуты значительные результаты.

4. Разрешение экрана. Что такое битые пиксели?

Весь экран ЖК монитора разбит на маленькие точки (которые называют пикселями или зернами), из которых и складывается изображение. Естественно, чем меньше размер каждой точки, тем качественнее будет изображение. Разрешение – это количество пикселей, которые отображаются монитором по вертикали и горизонтали. Для 19-дюймовых мониторов не должно составлять менее 1280×960 точек, для 22-дюймовых – не менее 1600×1050 точек, размер точки должен составлять не более 0,3 мм, а размер точки менее 0,278 мм является очень хорошим показателем.

В силу технических особенностей жидкокристаллического монитора, некоторые пиксели могут не менять цвет, т.е. быть постоянно черными, белыми или цветными. Такие пиксели называются «битыми». Наличие трех «битых» пикселей не является гарантийным случаем, поэтому перед тем, как купить монитор поинтересуйтесь у продавца, осуществляет ли он перед продажей проверку на такие «битые» пиксели. Во избежание недоразумений после покупки, настоятельно рекомендуем проверить монитор на наличии битых пикселей, т.к. не очень удобно смотреть на 1, 2 или 3 постоянно светящиеся точки во время работы, или просмотре фильма. Причем напомним, что это Ваше законное право!

5. Время отклика матрицы

Время отклика матрицы – это минимальное время, за которое один кадр может смениться другим. Чем меньше время отклика – тем лучше (и, соответственно, монитор дороже). Если это время будет слишком большим, то изображение будет смазываться (так как монитор не будет успевать менять картинки). Чтобы выбрать монитор с необходимым и достаточным временем отклика, давайте размышлять логически: если скорость изменения картинок в фильме составляет 25 кадров в секунду, то самым большим допустимым временем реакции вашего монитора может быть 40мс (1 сек/25 кадров=1000мс/25=40 мс). У современных мониторов с матрицей TN-film этот показатель составляет обычно не более 8мс (в среднем 5мс – и это очень хороший показатель). Для матриц PVA/MVA этот показатель составляет обычно не более 25 мс (этого тоже достаточно). Существует также утверждение, что для игрового компьютера предпочтительнее выбрать монитор со временем отклика 2мс. Конечно, быстрая реакция монитора – это важно, но разницу при использовании мониторов с 2 мс и 5 мс достаточно сложно ощутить.

.

6. Разъемы подключения монитора

VGA DVI .......................................... HDMI

Монитор может быть подключен к компьютеру через цифровой (DVI) или аналоговый (VGA-вход, D-Sub) вход. Во втором случае преобразование аналогового сигнала происходит благодаря специальным схемам. В случае же наличия цифрового входа между компьютером и монитором осуществляется прямая связь без необходимости преобразования, что несомненно лучше и картинка получается более четкой. Есть еще один очень редкий в мониторах разъем, HDMI (мультимедийный интерфейс высокой чёткости) — позволяет передавать видеоданные высокого разрешения и многоканальные цифровые аудио-сигналы. Имея данный разъем вы с легкостью можете подключить к монитору любое современное , например: игровую приставку, проигрыватель дисков.

7. Яркость и контрастность

Яркость монитора показывает количество света, излучаемого полностью белым экраном монитора. Контрастность определяют как соотношение яркости самых светлых и самых темных участков. Не вдаваясь в технические особенности, следует сказать, что монитор будет настолько контрастным, насколько глубоко на нем может быть отображен черный цвет. Рекомендую Вам выбирать монитор с яркостью от 250 до 400 кд/м 2 (канделл на метр квадратный), при этом контрастность не должна быть меньше 500:1. Оптимальная контрастность лежит в диапазоне 700:1 до 1000:1.
Почти все производители и продавцы предлагают также купить монитор с заявленной контрастностью 5000:1, 8000:1 и так далее. Данные цифры достигаются искусственным путем и на качество цветопередачи практически никак не влияют. Поэтому эту цифру можно упустить.

8. Углы обзора монитора

Всем известно, что ЖК мониторы имеют ограниченный угол обзора. В зависимости от нашего положения к монитору, изображение может менять цвета и становиться трудноотличимым. Если Вы планируете использовать компьютер один, то Вы всегда сможете настроить под себя положение монитора. Однако, например, просмотр фотографий или фильма с друзьями может быть затруднен на мониторах с небольшим углом обзора, поэтому я рекомендую выбирать монитор с углом обзора не менее 160 градусов по вертикали и горизонтали.

Обратите внимание на возможности регулировки монитора по вертикали и горизонтали. Иначе даже в мониторах с хорошим углом обзора изображение будет немного искажаться. Кроме того, большинство современных ЖК мониторов имеют возможность крепления на стену, что позволяет значительно освободить рабочее пространство. Иногда крепление на стену включено в первоначальный комплект поставки. Перед тем как купить монитор, рекомендую вам подумать, будете ли Вы вешать монитор на стену (так делают менее 5 % пользователей), или лучше выбрать монитор без этой опции и переплачивать за это дополнение не стоит (тем более Вы всегда сможете купить крепление на стену отдельно)?

9. Внешность монитора

Что касается цвета дисплея, то никаких рекомендаций по поводу какой монитор выбрать – давать не буду, ведь сам дизайн это дело вкуса каждого из нас. Следует написать, что чаще всего в продаже можно встретить ЖК мониторы черного и серебристого цветов. Некоторые модели выпускаются в белом оформлении.

Иногда также покупатели мониторов интересуются, в чем разница между глянцевой и матовой поверхностью монитора, и какая из них лучше. Глянец имеет более яркую картинку, однако любой свет будет отражаться от такого монитора, что будет не совсем удобно при работе, поэтому он предпочтителен для работы в темном помещении (например, в компьютерном клубе). А вот ЖК мониторы с матовой поверхностью (с антибликовым покрытием) имеют менее сочную картинку, зато не создают дискомфорт при работе. Здесь уже дело вкуса каждого.

Хочу также отметить, я например всегда при покупке монитора, выбирал, чтобы ободок вокруг дисплея имел серебристый цвет. Это связано с тем, что в таком исполнении, не так устают глаза, поскольку перепад от картинки на экране к рамке не такой резкий, как например в случае с черной рамкой. Но это уже сугубо индивидуально, как я уже говорил. Надеюсь написал доступно 🙂 .

10. Дополнительные опции монитора

Перед тем как обращать внимание на наличие в мониторе различных дополнений, следует хорошенько подумать, готовы ли Вы за это переплачивать, либо лучше купить монитор без излишеств. Среди дополнений производители обычно предлагают USB и FireWire-порты, встроенный ТВ-тюнер и динамики. Наличие USB и FireWire-портов удобно для подключения внешних устройств (плееров, внешних дисков, веб-камер и т.д.) напрямую к монитору.

Встроенный ТВ-тюнер и динамики превращают Ваш монитор в . Однако у мониторов с таким дополнением есть недостатки: при поломке акустики Вам придется нести в ремонт весь монитор, да и провести обновление таких встроенных колонок уже нельзя. Конечно, осуществить срочный ремонт компьютеров и мониторов сегодня не проблема, но именно монитор – наименее подверженная обновлению часть компьютера.

Покупая монитор, рекомендуем Вам также обратить внимание на гарантийный срок, предоставляемый производителем, а также уточнить у продавца, где будет осуществляться сервисное обслуживание данного монитора (так как от поломки монитора никто не застрахован).

Но есть и другие важные показатели при выборе:

  • тип матрицы;
  • диагональ;
  • поворот экрана;
  • разрешение;
  • развертка;
  • углы обзора;
  • яркость подсветки и контрастность;
  • время отклика;
  • изогнутость;
  • наличие разъемов;
  • безопасность.

Матрица

Матрица – это элемент монитора, которая формирует картинку. Различают следующие ее виды:

  • OLED.

Основа у них одна – это жидкие кристаллы. В спецификации к монитору указываются буквы LED или WLED (светодиоды) – это всего лишь тип подсветки, которую используют все современные дисплеи. Она характеризуется небольшим уровнем энергопотребления и занимает мало места.

TFT TN – изжившая себя технология, которая появилась как замена для экранов с лучевой трубкой. Главные плюсы – дешевизна и быстрое время отклика. Но они нивелируются посредственным качеством картинки, на которое влияют плохие углы обзора.

На базе IPS (in-plane switching) матрицы построены экраны большинства устройств. Основное их преимущество – большие углы обзора, но стоимость таких панелей намного превышает бюджетные типы. Раньше разрыв в цене был более катастрофическим, сейчас же все устаканилось, даже время отклика пришло в норму.

VA (Vertical Align) матрицы разработали как альтернативу более дорогим IPS моделям, позволяющая снизить цену и время отклика. Они разделены на MVA и PVA, отличающиеся только компаниями, развивающие эту технологию. Последняя разработана компанией Samsung, которая снизила яркость черного цвета. VA имеют лучшую контрастность и цветопередачу, что обеспечивает равномерность черного по всей площади, без видимых засветов. Игровые мониторы этого типа имеют время отклика вплоть до 1 мс. Но под большим углом картинка становится слегка желтоватой и чуть менее контрастной – при работе в непосредственной близости это не так заметно. Поэтому VA панели наиболее универсальны и демократичны по стоимости.

PLS – чистая копия IPS – скрупулёзное рассмотрение не даст никаких различий. Цена – главный фактор в этом случае.

OLED – самая передовая технология в разработке матриц. Они появились недавно по астрономическим ценам. У нее отсутствует понятие яркости черного цвета, а контрастность приближена к бесконечности. Время отклика измеряется десятыми долями миллисекунд. Важная проблема – недолговечность вследствие быстрого выгорания пикселей.

Размер экрана

Подбираем диагональ монитора исходя из расстояния до рабочего места и задач, решающие пользователем. Наиболее распространены размеры в 21.5”, 24” и 27”. Большую длину лучше не брать, если вы сидите близко, так как для охвата взглядом необходимой части экрана, шея будет постоянно напряжена. На панели в 27” останавливаемся при 4К разрешении, для Full HD достаточно и меньшей диагонали.

Эргономический дизайн

Угол наклона и изменение высоты экрана – одни из важных характеристик. Ведь регулировка высоты компьютерного кресла не всегда приводит к комфортному взгляду на картинку. Тем более, если монитор имеет не лучшие параметры по обзору.

Большинство панелей характеризуются гибкой эргономикой. Возможность поворачивать экран на 90º позволяет лучше приспособиться к чтению электронных книг или просмотру фотографий в портретном режиме.

Разрешение

На сегодняшний день популярны следующие виды разрешений: Full HD, 2K, Quad HD, Ultra HD и 4К. Большая часть мониторов на рынке – первого типа (1920x1080 точек). У них невысокая цена, и не требуется современная конфигурация компьютера.

2K (2048x1080) и QHD (2560 х 1440) – нечто среднее и не так распространено.

Отличие последних двух небольшое (3840 х 2160 пикселей против 4096x2160). Все больше фильмов и игр выходят в этом разрешении, совместимость с которым поддерживают только последние модели комплектующих для ПК. Не надо бояться таких разрешений, так как ситуация постепенно меняется: планшеты с 4х ядерным процессором уже выдают качественную картинку через HDMI кабель.

Развертка монитора

Этот параметр более важен для экстремальных геймеров, чем для обычных пользователей. Игнорируйте его, если вы не фанат игр, так как стандартная частота обновления экрана в 60 Гц более чем достаточна. На рынке можно встретить панели с частотой 120 или 144 Гц – не каждая видеокарта сможет ее выдать при высоком разрешении, да и разница в стоимости велика.

Углы обзора

Это существенная характеристика для монитора с отсутствием эргономики, или если вы используете его для просмотра фильмов большой семьей. Идеальные значения - 178° по горизонтали и 178° по вертикали. Только в этом случае не искажаются цвета, и не нарушается контрастность.

Яркость и контрастность

В спецификации основной акцент делается на яркость подсветки (200 кд/м 2 , 250 кд/м 2 или 300 кд/м 2 ) и контрастность (статическая и динамическая). Динамическая нам не очень интересна, так как она говорит, во сколько раз включенный монитор светлее выключенного. Поэтому ищем значение статической контрастности, то есть с одинаковым уровнем подсвечивания. Для матрицы типа VA она равна 3000:1.

Эти два показателя тесно связаны между собой. Обращаем внимание на дисплеи с максимальными значениями яркости и статической контрастности, которые будут обеспечивать наилучшую сочность изображения.

Время отклика

У мониторов персональных компьютеров наблюдается задержка (отставание) в визуализации информации. Например, 2 мс GtG (Grey-to-Grey) означает, что за такое время пиксель на экране изменяет яркость свечения серого цвета с 10% до 90%. Оно влияет на скорость смены картинки на дисплее, которая особенно важна для динамичных игр. Рядовые пользователи этого не заметят. Обычно мониторы имеют время отклика от 1 до 8 мс. Если в качестве экрана использовать телевизор, то 20 мс считается хорошим уровнем.

Изогнутость

Пару лет назад появились изогнутые панели. Сейчас разнообразия стало больше, так как в след за Samsung такие модели изготавливают и другие фирмы, например, LG, Philips, HP, Asus, Iiyama, BenQ, Acer, Dell.

Есть ли толк от этих новшеств? Производители утверждают, что это обеспечивает наиболее комфортные условия для просмотра контента на экране, а радиус кривизны сопоставим с экраном в кинотеатре. Но погружение в реальность происходящего можно почувствовать только на большой диагонали, от 27”. А это стоит немалых денег. Габариты тоже увеличиваются: сложно сделать тонкие рамки и компактную заднюю стенку. Поэтому каждый решает сам, нужно ли ему это.

Разъемы

На данный момент актуальны следующие порты для связи с системным блоком компьютера: DVI, HDMI и DP. VGA кабель (аналоговый сигнал) в расчет не берем из-за низкого качества изображения.

Наибольшую пропускную способность имеет Display Port версии 1.4. (7680x4320 @60 Hz). Но сейчас это избыточно: 8К мониторов на рынке не найти.

Если количество точек на единицу площади составляет 4096 на 2160 при 60 Hz, то используется разъем HDMI 2.0b, версия 1.4 работает на частоте до 30 Hz.

DVI-D Dual Link подойдет до разрешений 2560х1600 при частоте обновления 60 Hz или 1920х1080 при 120 Hz.

Следует обратиться к спецификации графического адаптера и определить, какой из цифровых портов целесообразно использовать.

Безопасность

Главное при работе за монитором – максимально обезопасить свои глаза. Можно каждый час отвлекаться от него на несколько минут. Дополнительно разработали несколько автоматических режимов. Например, “Eye-saver” и “Eye Saver Mode” снижают насыщенность синего света от экрана, а технология “Flicker Free” нейтрализует мерцание, в результате чего снижается напряжение на зрение.

На выручку придет и более изогнутый экран. Он был разработан на основе формы глаза человека, повторяя его контур. Таким образом удается достичь меньшей усталости благодаря более редкой фокусировке на изображении.

Итак, исходя из соотношения цена-качество выбор пал на монитор, у которого:

  • матрица типа VA;
  • 24” диагональ;
  • есть возможность поворачивать экран;
  • разрешение Full HD;
  • частота обновления от 60 Гц;
  • максимальные углы обзора в 178º;
  • яркость 300 кд/м 2 ;
  • статическая контрастность 3000:1;
  • минимальное время отклика (1-2 мс);
  • изогнутая панель;
  • есть подключение через кабель HDMI;
  • имеется технология защиты от синего излучения;
  • минимум мерцания.

Еще лучше, если перед покупкой вы сами придете в магазин с записанной на флешку программой для проверки на битые пиксели и оцените качество передаваемой картинки. Известные магазины предоставляют такую возможность.