Опыт использования солнечных батарей в Московской области с цифрами - koyger. Солнечная батарея – использование в быту (макет дома). Схема работы солнечного электроснабжения

Наука подарила нам время, когда технология использования энергии солнца стала общедоступной. Заполучить солнечные батареи для дома имеет возможность всякий собственник. Дачники не отстают в этом вопросе. Они чаще оказываются вдали от централизованных источников устойчивого электроснабжения.

Мы предлагаем ознакомиться с информацией, представляющей устройство, принципы работы и расчета рабочих узлов гелиосистемы. Ознакомление с предложенными нами сведениями приблизит реальность обеспечения своего участка природным электричеством.

Для наглядного восприятия предоставленных данных прилагаются подробные схемы, иллюстрации, фото- и видео-инструкции.

Устройство и принцип действия солнечной батареи

Когда-то пытливые умы открыли для нас природные вещества, вырабатывающие под воздействием частиц света солнца, фотонов, . Процесс назвали фотоэлектрическим эффектом. Ученые научились управлять микрофизическим явлением.

На основе полупроводниковых материалов они создали компактные электронные приборы – фотоэлементы.

Производители освоили технологию объединения миниатюрных преобразователей в эффективные гелиопанели. КПД панельных солнечных модулей из кремния широко производимых промышленностью 18-22%.

Из описания схемы наглядно видно: все комплектующие элементы электростанции одинаково важны – от их грамотного подбора зависит согласованная работа системы

Из модулей собирается солнечная батарея. Она является конечным пунктом путешествия фотонов от Солнца до Земли. Отсюда эти составляющие светового излучения продолжают свой путь уже внутри электрической цепи как частицы постоянного тока.

Они распределяются по аккумуляторам, либо подвергаются трансформации в заряды переменного электротока напряжением 220 вольт, питающего всевозможные домашние технические устройства.

Солнечная батарея представляет собой комплекс последовательно соединенных полупроводниковых устройств — фотоэлементов, преобразующих солнечную энергию в электрическую

Больше подробностей о специфике устройства и принципе действия солнечной батареи вы найдете в другой нашего сайта.

Виды солнечных модулей-панелей

Гелиопанели-модули собираются из солнечных элементов, иначе – фотоэлектрических преобразователей. Массовое применение нашли ФЭП двух видов.

Они отличаются используемыми для их изготовления разновидностями полупроводника из кремния, это:

  • Поликристаллические. Это солнечные элементы, изготовленные из кремниевого расплава путем длительного охлаждения. Несложный метод производства обуславливает доступность цены, но производительность поликристаллического варианта не превышает 12%.
  • Монокристаллические. Это элементы, полученные в результате нарезки на тонкие пластины искусственно выращенного кремниевого кристалла. Самый продуктивный и дорогой вариант. Средний КПД в районе 17 %, можно найти монокристаллические фотоэлементы с более высокой производительностью.

Поликристаллические солнечные элементы плоской квадратной формы с неоднородной поверхностью. Монокристаллические разновидности выглядят как тонкие однородной поверхностной структуры квадраты со срезанными углами (псевдоквадраты).

Так выглядят ФЭП – фотоэлектрические преобразователи: характеристики солнечного модуля не зависят от разновидности применяемых элементов – это влияет лишь на размеры и цену

Панели первого исполнения при одинаковой мощности больше размером, чем вторые из-за меньшей эффективности (18% против 22%). Но процентов, в среднем, на десять дешевле и пользуются преимущественным спросом.

Галерея изображений

О правилах и нюансах выбора солнечных батарей для снабжения энергией автономного отопления вы сможете .

Схема работы солнечного электроснабжения

Когда проводишь взглядом по загадочно звучащим названиям узлов, входящих в состав системы питания солнечным светом, приходит мысль о супертехнической сложности устройства.

На микроуровне жизни фотона это так. А наглядно общая схема электрической цепи и принцип ее действия выглядят очень даже просто. От светила небесного до «лампочки Ильича» всего четыре шага.

Солнечные модули — первая составляющая электростанции. Это тонкие прямоугольные панели, собранные из определенного числа стандартных пластин-фотоэлементов. Производители делают фотопанели различными по электрической мощности и напряжению, кратному 12 вольтам.

Галерея изображений

Устройства плоской формы удобно располагаются на открытых для прямых лучей поверхностях. Модульные блоки объединяются при помощи взаимных подключений в гелиобатарею. Задача батареи преобразовывать получаемую энергию солнца, выдавая постоянный ток заданной величины.

Устройства накопления электрического заряда — известны всем. Роль их внутри системы энергоснабжения от солнца традиционна. Когда домашние потребители подключены к централизованной сети, энергонакопители запасаются электричеством.

Они также аккумулируют его излишки, если для обеспечения расходуемой электроприборами мощности достаточно тока солнечного модуля.

Аккумуляторный блок отдает цепи требуемое количество энергии и поддерживает стабильное напряжение, как только потребление в ней возрастает до повышенного значения. То же происходит, например, ночью при неработающих фотопанелях или во время малосолнечной погоды.

Схема энергообеспечения дома с помощью солнечных батарей отличается от вариантов с коллекторами возможностью накапливать энергию в аккумуляторе

Контроллер – электронный посредник между солнечным модулем и аккумуляторами. Его роль регулировать уровень заряда аккумуляторных батарей. Прибор не допускает их закипания от перезарядки или падения электрического потенциала ниже определенной нормы, необходимой для устойчивой работы всей гелиосистемы.

Переворачивающий, так дословно объясняется звучание термина . Да, ведь на самом деле, этот узел выполняет функцию, когда-то казавшуюся электротехникам фантастикой.

Он преобразует постоянный ток солнечного модуля и аккумуляторов в переменный с разностью потенциалов 220 вольт. Именно такое напряжение является рабочим для подавляющей массы бытовых электроустройств.

Поток солнечной энергии пропорционален положению светила: устанавливая модули, хорошо бы предусмотреть регулировку угла наклона в зависимости от времени года

Пиковая нагрузка и среднесуточное энергопотребление

Удовольствие иметь собственную гелиостанцию стоит пока немало. Первая ступень на пути к обладания могуществом энергии солнца – определение оптимальной пиковой нагрузки в киловаттах и рационального среднесуточного энергопотребления в киловатт-часах домашнего или дачного хозяйства.

Пиковая нагрузка создается необходимостью включения сразу нескольких электрических приборов и определяется их максимальной суммарной мощностью с учетом завышенных пусковых характеристик некоторых из них.

Подсчет максимума потребляемой мощности позволяет выявить, жизненно нужна одновременная работа каких электроприборов, а которых не очень. Такому показателю подчиняются мощностные характеристики узлов электростанции, то есть итоговая стоимость устройства.

Суточное энергопотребление электроприбора измеряется произведением его индивидуальной мощности на время, что он проработал от сети (потреблял электроэнергию) в течение суток. Общее среднесуточное энергопотребление рассчитывается как сумма израсходованной энергии электричества каждым потребителем за суточный период.

Последующий анализ и оптимизация полученных данных о нагрузках и энергопотреблении обеспечат нужную комплектацию и последующую работу солнечной энергосистемы с минимальными затратами

Результат потребления энергии помогает рационально подойти к расходу солнечного электричества. Итог вычислений важен для дальнейшего расчета емкости аккумуляторов. От этого параметра цена аккумуляторного блока, немало стоящего компонента системы, зависит еще больше.

Порядок расчета энергетических показателей

Процесс вычислений в буквальном смысле начинается с горизонтально расположенного, в клеточку, развернутого тетрадного листа. Легкими карандашными линиями из листка получается бланк с тридцатью графами, а строками по количеству домашних электроприборов.

Подготовка к арифметическим расчетам

Первая колонка чертится традиционная – порядковый номер. Второй столбик – наименование электроприбора. Третий – его индивидуальная потребляемая мощность.

Столбцы с четвертого по двадцать седьмой – часы суток от 00 до 24. В них через горизонтальную дробную черту заносятся:

  • в числитель – время работы прибора в период конкретного часа в десятичном виде (0,0);
  • в знаменатель – вновь его индивидуальная потребляемая мощность (это повторение нужно для подсчета часовых нагрузок).

Двадцать восьмая колоночка – суммарное время, которое работает бытовое устройство в течение суток. В двадцать девятую – записывается персональное энергопотребление прибора как результат умножения индивидуальной потребляемой мощности на время работы за суточный период.

Составление развернутой спецификации потребителей с учетом почасовых нагрузок поможет оставить больше привычных приборов, благодаря их рациональному использованию

Тридцатая колонка тоже стандартная – примечание. Она пригодится для промежуточных подсчетов.

Составление спецификации потребителей

Следующий этап расчетов – превращение тетрадного бланка в спецификацию бытовых потребителей электроэнергии. С первой колонкой понятно. Здесь проставляются порядковые номера строк.

Во втором столбике вписываются наименования потребителей энергии. Рекомендуется начинать заполнение электроприборами прихожей. Далее описываются другие помещения против или по часовой стрелке (кому как удобно).

Если есть второй (и т.д.) этаж, процедура та же: от лестницы – вкруговую. При этом не надо забывать про приборы на лестничных пролетах и уличное освещение.

Третью графу с указанием мощности напротив названия каждого электрического прибора лучше наполнять попутно со второй.

Столбцы с четвертого по двадцать седьмой соответствуют всякий своему часу суток. Для удобства их сразу можно прочеркнуть горизонтальными линиями посередине строк. Полученные верхние половины строчек – как бы числители, нижние – знаменатели.

Эти столбцы заполняются построчно. Числители выборочно оформляются как временные интервалы десятичного формата (0,0), отражающие время работы данного электроприбора в тот или иной конкретный часовой период. Параллельно там, где проставляются числители, вписываются знаменатели с показателем мощности прибора, взятой из третьей графы.

После того как все часовые столбцы заполнены, переходят к подсчетам индивидуального суточного рабочего времени электроприборов, двигаясь по строчкам. Результаты фиксируются в соответствующих ячейках двадцать восьмой колоночки.

В случае, когда солнечная электростанция играет вспомогательную роль, чтобы система не работала вхолостую, часть нагрузки можно подключить к ней на постоянное питание

На основе мощности и рабочего времени последовательно вычисляется суточное энергопотребление всех потребителей. Оно отмечается в ячеях двадцать девятого столбика.

Когда все строки и столбики спецификации заполнены, производят расчеты итогов. Складывая пографно мощности из знаменателей часовых столбцов, получают нагрузки каждого часа. Просуммировав сверху вниз индивидуальные суточные энергопотребления двадцать девятой колоночки, находят общее среднесуточное.

Расчет не включает собственное потребление будущей системы. Этот фактор учитывается вспомогательным коэффициентом при последующих итоговых вычислениях.

Анализ и оптимизация полученных данных

Если питание от гелиоэлектростанции планируется как резервное, данные о почасовых потребляемых мощностях и об общем среднесуточном энергопотреблении помогают минимизировать расход дорогого солнечного электричества.

Этого добиваются, исключая из пользования энергоемкие потребители до момента восстановления централизованного электроснабжения, особенно в часы максимальных нагрузок.

Если солнечная энергосистема проектируется как источник постоянного электрообеспечения, тогда результаты часовых нагрузок выдвигаются вперед. Важно так распределить потребление электричества в течение суток, чтобы убрать намного преобладающие максимумы и сильно проваливающиеся минимумы.

Исключение пиковой, выравнивание максимальных нагрузок, устранение резких провалов энергопотребления во времени позволяют подобрать наиболее экономичные варианты узлов солнечной системы и обеспечивают стабильную, главное, безаварийную долговременную работу гелиостанции.

График раскроет неравномерность энергопотребления: наша задача – сдвинуть максимумы на время наибольшей активности солнца и уменьшить общий суточный расход, особенно ночной.

Представленный чертеж показывает превращение полученного на основе составленной спецификации нерационального графика в оптимальный. Показатель суточного потребления снижен с 18 до 12 кВт/ч, среднесуточная почасовая нагрузка с 750 до 500 Вт.

Такой же принцип оптимальности пригодится при использовании варианта питания от солнца в качестве резервного. Излишне тратиться на увеличение мощности солнечных модулей и аккумуляторных батарей ради некоторого временного неудобства, возможно не стоит.

Подбор узлов гелиоэлектростанции

Для упрощения расчетов будет рассматриваться версия применения солнечной батареи как основного для дачи источника электрической энергии. Потребителем выступит условный дачный домик в Рязанской области, где постоянно проживают с марта по сентябрь.

Наглядности рассуждениям придадут практические вычисления, основывающиеся на данных опубликованного выше рационального графика почасового энергопотребления:

  • Общее среднесуточное энергопотребление = 12 000 ватт/час.
  • Пиковая нагрузка 1200 х 1,25 = 1500 ватт (+25%).

Значения потребуются в расчетах суммарной емкости солнечных приборов и прочих рабочих параметров.

Определение рабочего напряжения гелиосистемы

Внутреннее рабочее напряжения всякой гелиосистемы основывается на кратности 12 вольтам, как самого распространенного номинала аккумуляторных батарей. Наиболее широко узлы гелиостанций: солнечные модули, контроллеры, инверторы – выпускаются под популярные напряжения 12, 24, 48 вольт.

Более высокое напряжение позволяет использовать питающие провода меньшего сечения – а это повышенная надежность контактов. С другой стороны, вышедшие из строя аккумуляторы сети 12В, можно будет заменять по одному.

В 24-вольтовой сети, рассматривая специфику эксплуатации аккумуляторных батарей, придется производить замену только парами. Сеть 48V потребует смены всех четырех батарей одной ветки. К тому же, при 48 вольтах уже существует опасность поражения электрическим током.

При одинаковой емкости и примерно равной цене следует приобретать аккумуляторы с наибольшей допустимой глубиной разряда и более максимальным током

Главный выбор номинала внутренней разности потенциалов системы связан с мощностными характеристиками выпускаемых современной промышленностью инверторов и должен учитывать величину пиковой нагрузки:

  • от 3 до 6 кВт – 48 вольт,
  • от 1,5 до 3 кВт – равен 24 или 48V,
  • до 1,5 кВт – 12, 24, 48В.

Выбирая между надежностью проводки и неудобством замены аккумуляторов, для нашего примера остановимся на надежности. В последующем будем отталкиваться от рабочего напряжения рассчитываемой системы 24 вольта.

Комплектование батареи солнечными модулями

Формула расчета требуемой от солнечной батареи мощности выглядит так:

Рсм = (1000 * Есут) / (к * Син),

  • Рсм = мощность солнечной батареи = суммарная мощность солнечных модулей (панелей, Вт),
  • 1000 = принятая светочувствительность фотоэлектрических преобразователей (кВт/м²)
  • Есут = потребность в суточном энергопотреблении (кВт*ч, в нашем примере = 18),
  • к = сезонный коэффициент, учитывающий все потери (лето = 0,7; зима = 0,5),
  • Син = табличное значение инсоляции (потока солнечной радиации) при оптимальном наклоне панелей (кВт*ч/м²).

Узнать значение инсоляции можно у региональной метеорологической службы.

Оптимальный угол наклона солнечных панелей равен значению широты местности:

  • весной и осенью,
  • плюс 15 градусов – зимой,
  • минус 15 градусов – летом.

Рассматриваемая в нашем примере Рязанская область находится на 55-й широте.

Наибольшая мощность солнечных батарей достигается использованием систем слежения, сезонным изменением угла наклона панелей, применением смешанного дифферента модулей

Для взятого времени с марта по сентябрь лучший нерегулируемый наклон солнечной батареи равен летнему углу 40⁰ к поверхности земли. При такой установке модулей усредненная суточная инсоляция Рязани в этот период 4,73. Все цифры есть, выполним расчет:

Рсм = 1000 * 12 / (0,7 * 4,73) ≈ 3 600 ватт.

Если брать за основу солнечной батареи 100-ваттные модули, то потребуется их 36 штук. Будут весить они килограмм 300 и займут площадь размером где-то 5 х 5 м.

Проверенные на практике монтажные схемы и варианты подключения солнечных батарей .

Обустройство аккумуляторного энергоблока

Подбирая аккумуляторные батареи, нужно руководствоваться постулатами:

  1. НЕ подходят для этой цели обычные автомобильные аккумуляторы. Батареи солнечных электростанций маркируются надписью «SOLAR».
  2. Приобретать аккумуляторы следует только одинаковые по всем параметрам, желательно, из одной заводской партии.
  3. Помещение, где размещается аккумуляторный блок, должно быть теплым. Оптимальная температура, когда батареи выдают полную мощность = 25⁰C. При ее снижении до -5⁰C емкость аккумуляторов уменьшается на 50%.

Если взять для расчета показательный аккумулятор напряжением 12 вольт емкостью 100 ампер/час, несложно подсчитать, целый час он сможет обеспечить энергией потребителей суммарной мощностью 1200 ватт. Но это при полной разрядке, что крайне нежелательно.

Для длительной работы аккумуляторных батарей НЕ рекомендуется снижать их заряд ниже 70%. Предельная цифра = 50%. Принимая за «золотую середину» число 60%, кладем в основу последующих вычислений энергозапас 720 Вт/ч на каждые 100 А*ч емкостной составляющей аккумулятора (1200 Вт/ч х 60%).

Возможно, покупка одного аккумулятора емкостью 200 А*ч обойдется дешевле приобретения двух по 100, да и количество контактных соединений батарей уменьшится

Первоначально устанавливать аккумуляторы необходимо 100% заряженными от стационарного источника тока. Аккумуляторные батареи должны полностью перекрывать нагрузки темного времени суток. Если не повезет с погодой, поддерживать необходимые параметры системы и днем.

Важно учесть, что переизбыток аккумуляторов приведет к их постоянному недозаряду. Это значительно уменьшит срок службы. Наиболее рациональным решением видится укомплектование блока батареями с энергозапасом, достаточным для покрытия одного суточного энергопотребления.

Чтобы узнать требующуюся суммарную емкость батарей, разделим общее суточное энергопотребление 12000 Вт/ч на 720 Вт/ч и умножим на 100 А*ч:

12 000 / 720 * 100 = 2500 А*ч ≈ 1600 А*ч

Итого для нашего примера потребуется 16 аккумуляторов емкостью 100 или 8 по 200 А*ч, подключенных последовательно-параллельно.

Выбор хорошего контроллера

Выводы и полезное видео по теме

Ролик #1. Показ установки солнечных батарей на крышу дома своими руками:

Ролик #2. Выбор аккумуляторных батарей для гелиосистемы, виды, отличия:

Ролик #3. Дачная солнечная электростанция для тех, кто все делает сам:

Рассмотренные пошаговые практические приемы расчетов, основной принцип эффективной работы современной солнечной панельной батареи в составе домашней автономной гелиостанции помогут хозяевам и большого дома густонаселенного района, и дачного домика в глуши обрести энергетическую суверенность.

Пришло время рассказать о том, насколько эффективна солнечная энергетика в Московской области. Целый год я собирал статистику выработки солнечной энергии с двух 100-ваттных солнечных панелей, установленных на крыше загородного дома и подключенных в сеть с использованием грид инвертора. Я уже писал об этом год назад. А сейчас пора подвести итоги.

Сейчас вы узнаете то, о чем никогда не расскажут продавцы солнечных панелей.

Ровно год назад, в октябре 2015 года, в качестве эксперимента я решил записаться в ряды «зеленых», спасающих нашу планету от преждевременной гибели, и приобрел солнечные панели максимальной мощностью 200 ватт и грид-инвертор рассчитанный максимум на 300 (500) ватт вырабатываемой мощности. На фотографии вы можете увидеть структуру поликристаллической 200-ваттной панели, но через пару дней после покупки стало ясно, что в одиночной конфигурации у неё слишком низкое напряжение, недостаточное для правильной работы моего грид-инвертора.

Поэтому мне пришлось её поменять на две 100-ваттных монокристаллических панели. Теоретически они должны быть немного эффективнее, по факту же они просто дороже. Это панели высокого качества, российского бренда Sunways. За две панели я заплатил 14 800 рублей.

Вторая статья расходов - грид-инвертор китайского производства. Производитель никак себя не обозначил, но устройство сделано качественно, а вскрытие показало, что внутренние компоненты рассчитаны на мощность до 500 ватт (вместо 300, написанных на корпусе). Стоит такой грид всего 5 000 рублей. Грид - это гениальное устройство. С одной стороны к нему подключается + и - от солнечных панелей, а с другой стороны он с помощью обычной электрической вилки подключается совершенно в любую электрическую розетку в вашем доме. В процессе работы грид подстраивается под частоту в сети и начинает "выкачивать" переменный ток (сконвертированный из постоянного) в вашу домашную сеть 220 вольт.

Грид работает только при наличии напряжения в сети и его нельзя рассматривать как резервный источник питания. Это его единственный минус. А колоссальным плюсом грид инвертора является то, что вам в принципе не нужны аккумуляторы. Ведь именно аккумуляторы являются самым слабым звеном в альтернативной энергетике. Если та же солнечная панель гарантированно отработает более 25 лет (то есть через 25 лет она потеряет примерно 20% своей производительности), то срок службы обыкновенного свинцового аккумулятора в аналогичных условиях составит 3-4 года. Гелевые и AGM аккумуляторы прослужат дольше, до 10 лет, но они и стоят в 5 раз дороже обычных аккумуляторов.

Поскольку у меня есть сетевое электричество, то мне никакие аккумуляторы не нужны. Если же делать систему автономной, то нужно добавить к бюджету еще 15-20 тысяч рублей на аккумулятор и контроллер к нему.

Теперь, что касается выработки электроэнергии. Вся энергия вырабатываемая солнечными панелями в реальном времени попадает в сеть. Если в доме есть потребители этой энергии, то она вся будет израсходована, а счетчик на вводе в дом «крутиться» не будет. Если же моментальная выработка электроэнергии превысит потребляемую в данный момент, то вся энергия будет передана обратно в сеть. То есть счетчик будет «крутиться» в обратную сторону. Но тут есть нюансы.

Во-первых, многие современные электронные счетчики считают проходящий через них ток без учета его направления (то есть вы будете платить за отдаваемую обратно в сеть электроэнергию). А во-вторых, российское законодательство не разрешает частным лицам продавать электроэнергию. Такое разрешено в Европе и именно поэтому там каждый второй дом обвешан солнечными панелями, что в совокупности с высокими сетевыми тарифами позволяет действительно экономить.

Что делать в России? Не ставить солнечные панели, которые могут выработать энергии больше, чем текущее дневное энергопотребление в доме. Именно по этой причине у меня всего две панели суммарной мощностью 200 ватт, которые с учетом потерь инвертора могут отдать в сеть примерно 160-170 ватт. А мой дом стабильно круглосуточно потребляет примерно 130-150 ватт в час. То есть вся выработанная солнечными панелями энергия будет гарантированно потреблена внутри дома.

Для контроля вырабатываемой и потребляемой энергии я пользуюсь Smappee. Я уже писал про него в прошлом году. У него два трансформатора тока, которые позволяют вести учет как сетевой, так и вырабатываемой солнечными панелями электроэнергии.

Начнём с теории, и перейдем к практике.

В интернете есть много калькуляторов солнечных электростанций, вот можно посмотреть на то, что он из себя представляет. Из моих исходных данных согласно калькулятору следует, что среднегодовая выработка электроэнергии моих солнечных панелей составит 0,66 квтч/сутки , а суммарная выработка за год - 239,9 квтч .

Это данные для идеальных погодных условий и без учета потерь на конвертацию постоянного тока в переменный (вы же не собираетесь переделывать электроснабжение своего домохозяйства на постоянное напряжение?). В реальности полученную цифру можно смело делить на два.

Сравниваем с реальными данными по выработке за год:

2015 год - 5,84 квтч
Октябрь - 2,96 квтч (с 10 октября)
Ноябрь - 1,5 квтч
Декабрь - 1,38 квтч
2016 год - 111,7 квтч
Январь - 0,75 квтч
Февраль - 5,28 квтч
Март - 8,61 квтч
Апрель - 14 квтч
Май - 19,74 квтч
Июнь - 19,4 квтч
Июль - 17,1 квтч
Август - 17,53 квтч
Сентябрь - 7,52 квтч
Октябрь - 1,81 квтч (до 10 октября)

Всего: 117,5 квтч

Вот график выработки и потребления электроэнергии в загородном доме за последние 6 месяцев (апрель-октябрь 2016 года). Именно за апрель-август солнечными панелями была выработана львиная доля (более 70%) электрической энергии. В остальные месяцы года выработка была невозможна по большей части из-за облачности и снега. Ну и не забываем, что КПД грида по конвертации постоянного тока в переменный примерно 60-65%.

Солнечные панели установлены практически в идеальных условиях. Направление строго на юг, поблизости нет высоких домов отбрасывающих тень, угол установки относительно горизонта - ровно 45 градусов. Этот угол даст максимальную среднегодовую выработку электроэнергии. Конечно можно было купить поворотный механизм с электроприводом и функцией слежения за солнцем, но это бы увеличило бюджет всей установки практически в 2 раза, тем самым отодвинув срок её окупаемости в бесконечность.

По выработке солнечной энергии в солнечные дни у меня нет никаких вопросов. Она полностью соответствует расчетным. И даже снижение выработки зимой, когда солнце не поднимается высоко над горизонтом не было бы настолько критично, если бы не... облачность. Именно облачность является главным врагом фотовольтаики. Вот вам почасовая выработка за два дня: 5 и 6 октября 2016 года. Пятого октября светило солнце, а 6 октября небо затянули свинцовые тучи. Солнце, ау! Ты где спряталось?

Зимой есть еще одна небольшая проблема - снег. Решить её можно только одним способом, установить панели практически вертикально. Либо каждый день вручную очищать их от снега. Но снег это ерунда, главное чтобы светило солнце. Пусть даже низко над горизонтом.

Итак, подсчитаем расходы:

Грид инвертор (300-500 ватт) - 5 000 рублей
Монокристаллическая солнечная панель (Grade A - высшего качества) 2 шт по 100 ватт - 14 800 рублей
Провода для подключения солнечных панелей (сечением 6 мм2) - 700 рублей
Итого: 20 500 рублей.

За прошедший отчетный период было выработано 117,5 квтч, по текущему дневному тарифу (5,53 руб/квтч) это составит 650 рублей .

Если предположить, что стоимость сетевых тарифов не изменится (на самом деле они изменяются в большую сторону 2 раза в год), то свои вложения в альтернативную энергетику я смогу вернуть только через 32 года!

А уж если добавить аккумуляторы, то вся эта система никогда себя не окупит. Поэтому солнечная энергетика при наличии сетевого электричества может быть выгодна только в одном случае - когда у нас электроэнергия будет стоить как в Европе. Вот будет стоить 1 квтч сетевого электричества более 25 рублей, вот тогда солнечные панели будут очень выгодны.

Пока же использовать солнечные панели выгодно только там, где нет сетевого электричества, а его проведение стоит слишком дорого. Предположим, что у вас его загородный дом, расположенный в 3-5 км от ближайшей электрической линии. Причем она высоковольтная (то есть потребуется установка трансформатора), а у вас нет соседей (не с кем разделить расходы). То есть за подключение к сети вам придется заплатить условно 500 000 рублей, а после этого еще и платить по сетевым тарифам. Вот в этом случае вам будет выгоднее купить на эту сумму солнечные панели, контроллер и аккумуляторы - ведь после ввода системы в эксплуатацию вам уже больше платить не нужно будет.

А пока стоит рассматривать фотовольтаику исключительно, как хобби.

Если говорить об энергетике, то в последнее время многие домовладельцы стали использовать альтернативные варианты, один из которых более популярен, чем многие другие. Основывается он на превращении солнечной энергии в энергию электрическую. Однако чтобы преобразовать солнечную энергию в ток, нужно применять специальные средства, единственным доступным вариантом которых являются солнечные панели. Конечно, это дороговато по сравнению с обычным электричеством, но когда электрические сети не подведены к тому или иному зданию (предприятию), то ничего больше не остается, как использовать или бензиновый генератор, или солнечные панели. Однако бензин сегодня тоже не дешевый, и чтобы дать в дом необходимое количество энергии, нужно его потратить немало. А вот с солнечными батареями дело обстоит совсем иначе. С помощью них можно получать энергию совершенно даром, все расходы тут - только на сами панели и их подключение к сети.

Солнечные батареи . Каталог, цены, характеристики.

Солнечные панели представляют собой фотоэлементы, заключенные в соединенные меду собой ячейки, их еще называют солнечными батареями. Для производства электрической энергии в основном используются самые разные полупроводниковые материалы. Именно они занимаются сбором «силы солнца», ее преобразованием и направлением в нужное русло. Полученная энергия применяется и для загрузки постоянного тока, и для накопления в аккумуляторные панели про запас, и непосредственно для преобразования в ток.

Из чего сделаны солнечные батареи?

Существуют самые разные виды солнечных батарей. Однако основа для вырабатывания энергии во всех них одна - это кремний, вернее его диоксид, представляет собой прочные кристаллы. Применяются эти кристаллы для работы транзисторов, процессоров, вычислительной техники и электроники. Солнечные батареи имеют в своей основе металлическую подложку с нанесенным на нее тыльным плюсовым контактом. Поверх него наносится полупроводник Р тип, затем N тип слой и сетка, которая собирает вывод N перехода. На панели наносится специальный антиотражающий слой, который делает их темными.

Недавно на суд потребителей были представлены гибридные панели, которые получают энергию при использовании ультрафиолетового и инфракрасного излучения. Их изготавливали, совмещая солнечную панель и специально разработанные пленочные полимеры.

Аморфные и гибкие солнечные панели изготавливаются в основном из теллурида кадмия и селенида меди-индия. Использование этих материалов значительно увеличивает КПД батареи.

Особенности использования солнечных батарей

Существуют некоторые особенности, которые следует иметь в виду при работе с солнечными панелями. Если вы проживаете в той местности, где солнца не так много, как хотелось бы, то солнечные панели могут вам не подойти. Вы потратите приличные деньги, а эффективность окажется под вопросом.

Однако даже в солнечных местах батареи могут не работать, если их хорошо не подготовить. Чтобы солнечные панели вырабатывали энергию, придется купить еще кое-какое оборудование:

  1. Сами батареи, объединенные в цепь;
  2. Специальное устройство (контроллер), посредством которого аккумуляторы будут заряжаться и распределять ток по сети;
  3. Запаситесь инвертором, посредством которого фотоэлементы (12-48в) будут преобразовывать энергию в переменный ток;
  4. Необходим ряд аккумуляторов, которые будут накапливать заряд. В то время, когда солнце отсутствует, накопленные в аккумуляторах заряды будут полезны;
  5. Необходимое количество проводов и крепление.

О преимуществах солнечных панелей.

Поскольку солнечные панели надежны и просты, альтернативный способ выработки энергии активно развивается во многих странах мира. Для их работы не нужно дополнительное топливо. У солнечных панелей довольно большой срок эксплуатации. Обслуживать их также легко. Регулярно очищайте их от грязи и снега, и они будут работать исправно долгие годы. Солнечные панели - это экологически чистое устройство, поскольку они не влияют негативно на окружающую среду.

Где можно устанавливать солнечные панели?

Установите их таким образом, чтобы фотоэлементы были направлены в ту область неба, по которой с востока на запад движется солнце. Если фасад дома направлен на южную сторону, можете смело устанавливать солнечные панели туда. Старайтесь, чтобы на солнечные панели не падала тень. Посмотрите, есть ли рядом с домом свободное пространство. Установите панели на шарнирную опору, которая будет менять положение устройства по направлению к солнцу и способствовать наилучшему освещению фотоэлементов.

Кстати, даже в некоторых электромобилях зарядка аккумуляторов проводится с помощью солнечных батарей, но это пока экзотичное приминение панелей. Чаще всего, солнечными панелями пользуются для энергопитания зданий - общественных и личных. Давно популярны солнечные панели в тех странах, где много солнца. К примеру, Израиль и некоторые страны на побережье Средиземного моря (Турция, Алжир) используют именно солнечные панели для питания электроэнергией офисов, производственных объектов, клиник и других зданий. Солнечные панели используют и в космической отрасли, на космических станциях это практически единственный источник энергии. Такие панели - самые безопасные по сравнению с ядерным и радиоизотопным источниками электроэнергии. Есть и более экзотические способы использования солнечных батарей. Можно взять велодорожку в Нидерландах, которая полностью создана из солнечных панелей и снабжает электричеством многие рядом стоящие здания. Франция планирует создать автомобильные трассы с встроенными в них солнечными панелями усиленного типа.

Солнечные батареи достоинства и недостатки.

Из достоинств можно отметить:

Они экологически чистые, поскольку при их работе отсутствуют выбросы и продукты сгорания.
У них большой срок эксплуатации (до 30 лет).
Их можно устанавливать там, где нет электросетей.

Недостатки солнечных батарей

Из недостатков можно снова упомянуть высокую стоимость самих панелей и оборудования к ним. Они не подходят для работы в тех местах, где нет достаточного количества солнечных лучей. За ними нужно следить, регулярно очищать. Окупаются подобные панели долго.

Однако, невзирая на все проблемы, связанные с получением солнечной энергии, надо твердо помнить о том, что альтернативная энергия - это наше завтра. Но время не стоит на месте и уже сегодня стоит обратить на это внимание и использовать энергию, получаемую от солнечных панелей.

Решил написать небольшую статью, о применение в быту солнечных батарей. Многие задают вопрос: можно ли от одной солнечной батареи запитать холодильник или Электра плиту, а одной или двух панелей на сколько хватит. А сколько 100 ватных лампочек можно запитать от одного АКБ. Ну и другие вопросы такого характера. Для начала хочу повториться, что любая альтернатива в домашних условиях, это всего лишь попытка обеспечить себя энергией в маленьком объёме. Дабы площади под солнечные батареи при обеспечении 1-2 кВ, уже не маленькие! около 20 м/кв.

Но если у вас есть возможность установить СБ. на площадь около 20-40 кВ/м и у вас хватит денег на установку 10-15 Гелиевых АКБ по 200А, ёмкостью 20000- 30000 А., То вы сможете обеспечить себя энергией до одного, четырех дней. При условии, что в доме техника установлена не времен СССР! А имеет низкие показатели по энергопотреблению! Обязательным условием любого не зависимого дома является, максимальный переход на современное оборудование с низким потреблением!

Не маловажный факт является и соотношение СБ к емкости АКБ, а также к потреблению от АКБ. Для примера, вы включили чайник на 2 кВт (на самом деле о таких чайниках придется забыть!) А система рассчитана на забор энергии 1 кВт. Если включать такую нагрузку в течение дня раз 10-15 то емкости АКБ надолго не хватит! В этом случае нужна система на 2 кВт. Но опять, же есть другая проблема!

Зимний период эксплуатации, в это время ток от СБ. может падать в 2-4 раза. А в дни, когда идет снег еще меньше, например, на моей системе 6 СБ, ток летом составляет 20А, а зимой в снег падает 1.6 А. В эти дни либо нужна подзарядка от бензо дизель генератора, или от сети. Рассчитать количество СБ. нужно, только если система не заряжается в зимний солнечный день, или не хватает мощности СБ. для поддержания мощности системы.

Такая система должна быть до укомплектована СБ мощностью до 40%- 60% от суммарной мощности системы.

Так — же, стоит учитывать, сколько в вашем регионе солнечных дней! Обычно такие системы себя оправдывают, конечно, не за один год! Но работа таких систем может составлять более 20 лет до 100 лет, где потеря потоку составит 50% (система из 1кв может стать лет через 100 системой на 500 Ватт -900 Ватт в зависимости от солнечной активности в вашем регионе, а так, же летней мах температуре).

В итоге система обойдется пусть даже в 500 000 тысяч рублей, но при сроке эксплуатации в 100 лет она себя с наценками на энергоресурсы не раз еще себя сможет окупить ведь в год вы тратите всего 5-7 тысяч рублей и вас некто кроме вашей системы не ограничивает!. Единственное но, это придется раз в 10 -20 лет менять АКБ в вашей системе, потому что они не рассчитаны на такой долгий срок эксплуатации!

На сегодняшний день применение солнечных батарей не имеет границ. С каждым днем все чаще они успешно применяются в самых разнообразных областях промышленности, в сельском хозяйстве, военно-космической отрасли и даже в повседневной жизни людей. Для того чтобы понять насколько обширно на сегодняшний день использование солнечных батарей в России, необходимо совершить интересное путешествие по нашему огромному миру.

1. Освещение на солнечных батареях

На сегодняшний день весьма распространено уличное освещение на солнечных батареях. Такие светильники все чаще появляются на страницах по ландшафтному дизайну. Довольно часто они встречаются в садах знаменитостей и на дачных участках простых людей.

Изначально использование солнечных батарей планировалось исключительно в военных целях в космической промышленности. Еще совсем недавно такие панели относились к фантастике и использовались исключительно в космонавтике, а обычные люди могли наблюдать такие устройства только в фильмах о будущем. Однако прошло время, и сегодня такие технологии уже не являются роскошью. В наши дни освещение на солнечных батареях – это не только красиво, доступно и экологически безопасно, но и крайне выгодно.

Сегодня по всему миру стартуют проекты по освещению улиц при помощи солнечной электроэнергии. В России производство солнечных батарей постоянно увеличивает и набирает обороты, создаются даже электростанции на солнечных батареях. Перспективы этой отрасли весьма и весьма велики и дальновидны.

2. Электричество от солнечных батарей там, где нет линий электропередач

К сожалению, современные линии электропередач, которые опутали большую часть всей планеты, даже на сегодняшний день еще не добрались до некоторых труднодоступных уголков. Некоторые места нашей необъятной страны подключить к электростанции крайне дорого и не выгодно. Именно в таких случаях электричество от солнечных батарей является настоящим спасением. В таких местах установка солнечной батареи является наиболее целесообразным и выгодным решением.

Еще одна отрасль, в которой весьма успешно используются солнечные батареи – это автомобилестроение. Создаются новые гибридные автомобили на солнечных батареях. К примеру, Toyota Prius оснащена гибридным мотором, а на крыше автомобиля установлена солнечная батарея. В случае если топливо заканчивается, автомобиль способен проехать еще 5 км от этой батареи. Показатель, конечно, не особо высок, но эти технологии еще совсем новые и постоянно развиваются. Создаются автомобили, которые способны работать на таких батареях гораздо дольше. При этом они являются экологически безопасными и беспрецедентно экономичными.

Помимо этого только при помощи солнечной энергии и солнечных батарей разрешаются вопросы об энергообеспечении в некоторых отрезанных от цивилизации домах. Как правило, установка солнечных батарей существенно выгоднее, нежели использование генераторов на жидком либо твердом топливе. В подавляющем большинстве случае солнечные батареи устанавливают на крышах домов и соединяют с системой аккумулирования энергии. Таким образом, в солнечные дни энергия от солнечных батарей заряжает аккумуляторы и питает бытовые приборы, а в ночное время и в облачные дни питание осуществляется от аккумуляторов.

Помимо этого в Испании широкое применение получили обогреватели на солнечных батареях. Из экономических соображений множество домов в Испании были оборудованы солнечными батареями, которые использовались для нагрева воды, благодаря чему в момент отключения электричества люди все равно будут снабжены горячей водой и отоплением помещений.

3. Эксплуатация солнечных батарей в быту

В первую очередь стоит отметить, что дом, который оснащен солнечными батареями, не подвергается перепадам напряжения в электросети. Самое интересное, что данными панелями можно оснастить абсолютно любой дом, к примеру, дачу, либо домик в лесу или деревне. Такие установки вполне способны питать освещение дома или некоторые бытовые приборы, такие как телевизор или холодильник.

Что можно сделать из солнечной батареи? Ответ на этот вопрос очень прост. На сегодняшний день мировые производители электроники и бытовых приборов уже начинают внедрять солнечные панели в свою продукцию. К примеру, каждый в своей жизни сталкивался с обычным калькулятором, работающим от солнечной энергии. Помимо этого, в современном мире существует масса полезных приборов, которые оснащены небольшой солнечной панелью. Это различные зарядные устройства для мобильных телефонов и аккумуляторов, фонарики, светильники, мобильные телефоны и так далее. Потенциал огромен и не имеет границ.

Применение солнечных батарей в быту и в промышленности имеет массу преимуществ, но главное – это экологичность.

4. Солнечные батареи и их применение в промышленности

На сегодняшний день наибольший опыт использования солнечных батарей имеют такие страны как: США, Испания, Германия, Объединенные Арабские Эмираты, Украина и другие страны Европы. Распространение альтернативных источников энергии в этих странах объясняется нехваткой основных теплоносителей (нефть или газ).

В России развитие солнечной энергетики только развивается и набирает обороты. Создаются электростанции, которые питают как промышленные комплексы, так и жилые дома.

Среди множества преимуществ солнечной электроэнергии первым делом стоит отметить тот факт, что такое оборудование во время всего срока использования генерирует существенно больше энергии, нежели было затрачено на его изготовление. К примеру, самые распространенные кремниевые солнечные батареи, которые работают в Испании, возвращают потраченную энергию на их изготовление уже в первые 2 года. При этом срок их службы составляет не менее 20 лет.

Еще одно преимущество солнечных панелей заключается в том, что для массовой генерации электроэнергии не нужно занимать много полезного и, как правило, дорогостоящего пространства. Солнечные батареи можно устанавливать на крыши домов и фасады зданий.

С технической стороны главное преимущество таких систем заключается в полном отсутствии расходных материалов, а также в отсутствии необходимости применять любые виды топлива. Помимо этого в таких системах нет движущихся элементов, которые вырабатывают много шума и быстро изнашиваются. Они не нуждаются в постоянном техническом обслуживании и ремонте.

Таким образом, электроснабжение от солнечных батарей является выгодным с любой точки зрения.

5. Солнечные батареи. Экономия электроэнергии: Видео