Модуляция определение в физике. Теория радиоволн: аналоговая модуляция

Предупреждаю сразу: сильно просто не получится. Слишком уж сложная штука модуляция.

Что бы понять, что такое модуляция, нужно знать, что такое частота, с этого и начнём.
Для примера возьмём качели: частота качания качелей, это число полных колебаний, качелей в секунду.
Полных, это значит что одно колебание, это движение качели от самого крайнего левого положения, вниз, через центр до самого максимального уровня справа и потом опять через центр до того же уровня слева.
Обычные дворовые качели имеют частоту порядка 0,5 герца, значит что полное колебание они совершают за 2 секунды.
Динамик звуковой колонки качается гораздо быстрее, воспроизводя ноту "Ля" первой октавы (440 герц), он совершает 440 колебаний в секунду.
В электрических цепях колебания, это качание напряжения, от максимального положительного значения, вниз, через ноль напряжения до максимального отрицательного значения, вверх, через ноль опять до максимального положительного. Или от максимального напряжения, через некое среднее до минимального, потом опять через среднее, опять до максимального.
На графике (или экране осциллографа) это выглядит так:

Частота колебаний напряжения на выходе радиостанции излучающей несущую на 18 канале сетки C в "европпе" будет 27175000 колебаний в секунду или 27 мегагерц и 175 килогерц (мега - миллион; кило - тысяча).

Что бы сделать модуляцию наглядной, выдумаем два неких сигнала, один частотой 1000Гц, второй 3000Гц, графически они выглядят так:

Заметим, как отображены эти сигналы на графиках слева. Это графики частоты и уровня. Чем больше частота сигнала, тем правее будет изображён на таком графике сигнал, чем больше его уровень (мощность), тем выше линия этого сигнала на графике.

Теперь представим, что оба эти сигнала мы сложили, то есть в готовом виде наш вымышленный тестовый сигнал есть сумма двух сигналов. Как сложили? Очень просто - поставили микрофон и посадили двух людей перед ним: мужика, который кричал на частоте 1000Гц и бабу, которая верещала на 3000Гц, на выходе микрофона мы получили наш тестовый сигнал, который выглядит так:

И вот именно этот тестовый сигнал мы и будем "подавать" на микрофонный вход нашего вымышленного передатчика, изучая что получается на выходе (на антенне) и как всё это влияет на разборчивость и дальность связи.

О модуляции вообще

Модулированный сигнал несущей на выходе любого передатчика в любом случае (при любой модуляции) получается методом сложения или умножения сигнала несущей на сигнал, который нужно передать, например сигнал с выхода микрофона. Разница между модуляциями лишь в том, что умножается, с чем складывается и в какой части схемы передатчика это происходит.
В плане приёма, тут всё сводится к тому, что бы из принятого сигнала выделить то, чем был модулирован сигнал, усилить это и сделать понятным (слышимым, видимым).

Амплитудная модуляция - AM (АМ, амплитудная модуляция)

Как можно видеть, при амплитудной модуляции уровень напряжения колебаний высокой частоты (несущей) напрямую зависит от величины напряжения поступающего с микрофона.
Напряжение на выходе микрофона увеличивается, увеличивается и напряжение несущей на выходе передатчика, то есть больше мощности на выходе, меньше напряжение с микрофона, меньше напряжение на выходе. Когда напряжение на выходе микрофона в некой центральной позиции, то передатчик излучает некую центральную мощность (при АМ модуляции в 100% при тишине перед микрофоном 50% мощности).
Глубиной АМ модуляции называется уровень влияния сигнала с микрофона на уровень выходной мощности передатчика. Если виляние 30% то значит самый сильный отрицательный импульс напряжения с микрофона уменьшит уровень несущей на выходе на 30% от максимальной мощности.
А вот так выглядит спектр сигнала с AM модуляцией (распределение его компонентов по частотам):

По центру, на частоте 27175000 Гц у нас несущая, а ниже и выше по частоте "боковые полосы", то есть суммы сигнала несущей и звуковых частот нашего тестового сигнала:
27175000+1000Гц и 27175000-1000Гц
27175000+3000Гц и 27175000-3000Гц
Сигналы "несущая минус звук" - нижняя боковая полоса, а "несущая плюс звук" - верхняя боковая полоса.
Не трудно заметить, что для передачи информации достаточно только одной боковой полосы, вторая лишь повторяет ту же самую информацию, но только с противоположным знаком попусту расходуя мощность передатчика на излучение этой дублирующей информации в эфир.
Если убрать несущую, которая полезной информации вообще не содержит и одну из боковых полос, то получиться SSB модуляция (по-русски: ОБП) - модуляция с одной боковой полосой и отсутствующей несущей (однополосная модуляция).

SSB модуляция (ОБП, однополосная модуляция)

Вот так выглядит SSB на выходе передатчика:

Видно, что этот сигнал мало чем отличается от АМ модуляции. Оно и понятно, SSB это продолжение AM, то есть SSB создаётся из АМ модуляции, из сигнала которой удаляется не нужная боковая полоса и несущая.
Если же взглянуть на спектр сигнала, то разница очевидна:

Здесь нет ни несущей ни дублирующей боковой полосы (на этом графике показана USB, т.е. однополосная модуляция, где оставлена верхняя боковая полоса, есть ещё и LSB, это когда оставлена нижняя боковая полоса).
Нет несущей, нет дублирующей боковой - вся мощность передатчика уходит только на передачу полезной информации.
Только принять такую модуляцию на обычный АМ приёмник невозможно. Для приёма нужно восстановить "отправную точку" - несущую. Сделать это просто - частота на которой работает передатчик известна, значит нужно лишь добавить несущую такой же частоты и отправная точка появиться. Любопытный читатель наверно уже заметил, что если не известна частота передатчика, то отправная точка будет не правильная, мы добавим не ту несущую, что же мы при этом услышим? А услышим мы при этом голос или "быка" или "гномика". Произойдёт это потому, что приёмник в данном виде модуляции не знает, какие частоты были у нас изначально, то ли это были 1000Гц и 3000Гц, то ли 2000Гц и 4000Гц, то ли 500Гц и 2500Гц - "расстояния" то между частотами верные, а вот начало сместиться, как результат или "пи-пи-пи" или "бу-бу-бу".

CW модуляция (телеграф)

С телеграфом всё просто - это сигнал 100% АМ модуляция, только резкая: или сигнал есть на выходе передатчика или сигнала нет. Нажат телеграфный ключ - есть сигнал, отпущен - нет ничего.
Выглядит на графиках телеграф вот так:

Соответственно спектр телеграфного сигнала:

То есть частота несущей 100% промодулирована нажатиями на телеграфный ключ.
Почему на спектре 2 палочки немного отступая от сигнала "центральной частоты" а не одна единственная - несущей?
Здесь всё просто: как бы то ни было, телеграф это АМ, а АМ это сумма сигналов несущей и модуляции, так как телеграф (морзянка), это серия нажатий на ключик то это тоже колебания с некоторой но частотой, пусть и низкой по сравнению со звуком. Именно на частоту нажатия на ключик и отступают боковые полосы телеграфного сигнала от несущей.
Как передавать такие сигналы?
В простейшем случае - нажимая на кнопку передачи во время молчания перед микрофоном.
Как принимать такие сигналы?
Для приёма нужно несущую, появляющуюся в эфире в такт нажатиям на ключ, превратить в звук. Методов много, самый простой - подключить к выходу детектора АМ приёмника схему, которая пикает каждый раз как на детекторе появляется напряжение (т.е. на детектор поступает несущая). Более сложный и разумный способ - смешать сигнал поступающий из эфира с сигналом генератора (гетеродина) встроенного в приёмник, а разность сигналов подать на усилитель звука. Так если частота сигнала в эфире 27175000Гц, частота генератора приёмника 27174000, то на вход усилителя звуковой частоты поступит сигнал 27175000+27174000=54349000Гц и 27175000-27174000=1000Гц, естественно первый из них не звуковой а радиосигнал, его усилитель звука не усилит, а вот второй, 1000Гц, это уже слышимый звук и его он усилит и мы услышим "пииии", пока есть в эфире несущая и тишину (шумы эфира) когда нет.
Кстати, когда включаются двое на передачу одновременно, эффект "пииии" возникающий от сложения и вычитания несущих в приёмнике, думаю, замечали многие. То что слышно - разница между сигналами несущих возникающая в нашем приёмнике.

FM модуляция (ЧМ, частотная модуляция)

Собственно суть частотной модуляции проста: частота несущей в такт напряжению на выходе микрофона немного меняется. Когда напряжение на микрофоне увеличивается, увеличивается и частота, когда уменьшается напряжение на выходе микрофона, то уменьшается и частота несущей.
Уменьшение и увеличение частоты несущей происходит в небольших пределах, например для Си-Би радиостанций это плюс/минус 3000Гц при частоте несущей порядка 27000000Гц, для радиовещательных станций FM диапазона, это плюс/минус 100000Гц.
Параметр ЧМ модуляции - индекс модуляции. Соотношение звука максимальной частоты которую пропустит микрофонный усилитель передатчика к максимальному изменению частоты несущей при самом громком звуке. Не трудно заметить, что для Си-Би это 1 (или 3000/3000), а для вещательных станций FM это примерно 6 ... 7 (100000/15000).
При ЧМ модуляции несущая по уровню (мощность сигнала передатчика) всегда постоянна, она не меняется от громкости звуков перед микрофоном.
В графическом виде, на выходе передатчика ЧМ модуляция выглядит так:

При ЧМ модуляции, как и при АМ на выходе передатчика есть и несущая и две боковые полосы, так как частота несущей болтается в такт модулирующему сигналу, отступая от центра:

DSB, ДЧТ, фазовая и другие виды модуляции

Справедливости ради, нужно отметить, что существуют и другие виды модуляции несущей:
DSB - две боковые полосы и отсутствующая несущая. DSB, по сути АМ модуляция у которой удалена (вырезана, подавлена) несущая.
ДЧТ - двухчастотный телеграф, по сути, есть не что иное, как частотная модуляция, но нажатиями телеграфного ключа. Например, точке соответствует сдвиг несущей на 1000Гц, а тире на 1500Гц.
Фазовая модуляция - модуляция фазы несущей. Частотная модуляция при малых индексах 1-2 по сути есть фазовая модуляция.

В некоторых системах (телевидение, FM стерео радиовещание) модуляция несущей осуществляется ещё одной промодулированной несущей, а она уже и несёт полезную информацию.
Например, упрощённо, FM стерео вещательный сигнал, это несущая промодулированная частотной модуляцией, сигналом который сам есть несущая промодулированная DSB модуляций, где одна боковая - это сигнал левого канала, а другая боковая полоса это сигнал правого канала звука.

Важные аспекты приёма и передачи сигналов АМ, ЧМ и SSB

Так как АМ и SSB это модуляции, у которых выходной сигнал передатчика пропорционален напряжению, поступающему с микрофона, то важно, что бы он линейно усиливался, как на приёмной, так и на передающей стороне. То есть если усилитель усиливает в 10 раз, то при напряжении на его входе 1 вольт на выходе должно быть 10 вольт, а при 17 вольтах на входе на выходе должно быть точно 170 вольт. Если усилитель будет не линеен, то есть при напряжении на входе 1 вольт усиление 10 и на выходе 10 вольт, а при 17 вольтах на входе усиление окажется лишь 5 и на выходе будет 85 вольт, то появятся искажения - хрипы и хрюки при громких звуках перед микрофоном. Если усиление будет наоборот меньше для малых входных сигналах, то будут хрипы при тихих звуках и неприятные призвуки даже при громких (потому что в начале своего колебания любой звук проходит зону близкую к нулю).
Особенна важна линейность усилителей для SSB модуляции.

Для выравнивания уровней сигналов в приёмниках АМ и SSB используются специальные узлы схемы - автоматические регуляторы усиления (схемы АРУ). Задача АРУ выбирать такое усиление узлов приёмника, что бы и сильный сигнал (от близкого корреспондента) и слабый (от удалённого), в конце концов, оказались примерно одинаковыми. Если АРУ не использовать, то слабые сигналы будут слышны тихо-тихо, а сильные разорвут излучатель звука приёмника в клочки, как капля никотина разрывает хомяка. Если же АРУ будет слишком быстро реагировать на изменение уровня, то она начнёт не просто выравнивать уровни сигналов от близких и далёких корреспондентов, но и внутри сигнала "душить" модуляцию - уменьшая усиление при повышении напряжения и повышая при понижении, сводя всю модуляцию к немодулированному сигналу.

Для ЧМ модуляции не требуется особой линейности усилителей, при ЧМ модуляции информацию несёт изменение частоты и никакое искажение или ограничение уровня сигнала не может изменить частоту сигнала. Собственно в приёмнике ЧМ вообще обязательно установлен ограничитель уровня сигнала, так как уровень не важен, важна частота, а изменение уровня будет только мешать выделить изменения частоты и превратить ЧМ несущую в звук сигнала, которым она промодулирована.
К слову сказать, именно из-за того, что в ЧМ приёмнике все сигналы ограничиваются, то есть слабые шумы имеют почти тот же уровень, что и сильный полезный сигнал, в отсутствии сигнала ЧМ детектор (демодулятор) так сильно шумит - он пытается выделить изменение частоты шумов на входе приёмника и шумов самого приёмника, а в шумах изменение частоты сильно велико и случайно, вот и слышны случайные сильные звуки: громкий шум.
В АМ и SSB приёмнике шума при отсутствии сигнала меньше, так как сам шум приёмника по уровню всё же мал и шумы на входе по сравнению с полезным сигналом по уровню малы, а для AM и SSB важен именно уровень.

Для телеграфа тоже не очень важна линейность, там информацию несёт само наличие или отсутствие несущей, а её уровень лишь побочный параметр.

ЧМ, АМ и SSB на слух

В сигналах АМ и SSB гораздо заметнее импульсные помехи, такие как треск неисправного зажигания автомобилей, щелчки грозовых разрядов или рокот от импульсных преобразователей напряжения.
Чем слабее сигнал, чем меньше его мощность, тем тише звук на выходе приёмника, а чем сильнее, тем громче. Хотя АРУ и делает своё дело, выравнивая уровни сигналов, но её возможности не бесконечны.
Для SSB модуляции практически невозможно пользоваться шумоподавителем и вообще понять, когда другой корреспондент отпустил передачу, так как при молчании перед микрофоном в SSB передатчик в эфир ничего не излучает - нет несущей, а если перед микрофоном тишина, то нет и боковых полос.

ЧМ сигналы меньше подвержены влиянию импульсных помех, но из-за сильного шума ЧМ детектора в отсутствии сигнала просто невыносимо сидеть без шумоподавителя. Каждое выключение передачи корреспондента в приёмнике сопровождается характерным "пшык" - детектор уже начал переводить шумы в звук, а шумоподавитель ещё не закрылся.

Если слушать АМ на ЧМ приёмник или наоборот, то будет слышно хрюканье, но разобрать о чём речь всё же можно. Если на ЧМ или АМ приёмник послушать SSB, то будет только дикая аудио-каша из "хрю-жу-жу-бжу" и совершенно никакой разборчивости.
На SSB приёмник можно прекрасно послушать CW (телеграф), АМ, а с некоторыми искажениями и ЧМ с малыми индексами модуляции.

Если включаются одновременно две или больше АМ или ЧМ радиостанций на одной частоте, то получается каша из несущих, этакий писк и визг среди которого ничего не разобрать.
Если же включатся два или больше SSB передатчика на одной частоте, то в приёмнике будет слышно всех, кто говорил, так как несущей у SSB нет и биться (смешиваться до свиста) нечему. Слышно всех, так, словно все сидят в одной комнате и разом заговорили.

Если у АМ или ЧМ частота приёмника не точно совпадает с частотой передатчика, то появляются искажения на громких звуках, "подхрипывания".
Если у SSB передатчика частота меняется в такт уровню сигнала (например, аппаратура не тянет по питанию), то в голосе слышно бульканье. Если плавает частота приёмника или передатчика, то звук плавает по частоте, то "бубнит", то "чирикает".

Эффективность видов модуляции - АМ, ЧМ и SSB

Теоретически, подчёркиваю - теоретически, при равной мощности передатчика, дальность связи от вида модуляции будет зависеть так:
АМ = Расстояние * 1
ЧМ = Расстояние * 1
SSB = Расстояние * 2
В той самой теории, энергетически, SSB выигрывает у АМ в 4 раза по мощности, или в 2 раза по напряжению. Выигрыш появляется за счёт того, что мощность передатчика не расходуется на излучение бесполезной несущей и попусту дублирующей информацию второй боковой полосы.
На практике выигрыш меньше, так как мозг человека не привык слышать шумы эфира в паузах между громкими звуками и несколько страдает разборчивость.
ЧМ тоже модуляция "с сюрпризом" - одни умные книги говорят, что АМ и ЧМ одна другой не лучше, а то и вовсе ЧМ хуже, другие утверждают, что при малых индексах модуляции (а это Си-Би и радиолюбительские радиостанции) ЧМ выигрывает у АМ в 1,5 раза. На деле, по субъективному мнению автора ЧМ "пробивнее", чем АМ примерно в 1,5 раза, прежде всего, потому что ЧМ менее подвержена импульсным помехам и качаниям уровня сигнала.

Аппаратура АМ, ЧМ и SSB в плане сложности и переделки одного в другое

Самая сложная аппаратура это SSB.
По сути SSB аппарат с лёгкостью может работать в AM или ЧМ после ничтожно малой переделки.
Переделать АМ или ЧМ приёмопередатчик в SSB почти невозможно (потребуется ввести в схему очень, очень много дополнительных узлов и полностью переделать блок передатчика).
От автора: переделка АМ или ЧМ аппарата в SSB лично мне кажется полным безумием.
SSB аппарат "с нуля" - собирал, но что бы переделать АМ или ЧМ в SSB - нет.

Второй по сложности, это ЧМ аппарат.
По сути ЧМ аппарат уже содержит в приёмнике всё, что нужно для детектирования АМ сигналов, так как у него тоже есть АРУ (автоматическая регулировка усиления) и следовательно детектор уровня принимаемой несущей, то есть по сути полноценный АМ приёмник, только работающий где-то там, внутри (от этой части схемы работает и пороговый шумоподавитель).
С передатчиком будет сложнее, так как почти все его каскады работают в не линейном режиме.
От автора: переделать можно, но никогда в этом не было нужды.

АМ аппаратура самая простая.
Что бы переделать АМ приёмник в ЧМ, потребуется ввести новые узлы - ограничитель и ЧМ детектор. По факту ограничитель и ЧМ детектор, это 1 микросхема и чуть-чуть деталей.
Переделка АМ передатчика в ЧМ значительно проще, так как нужно лишь ввести цепочку, которая будет "болтать" частоту несущей в такт напряжению, поступающему с микрофона.
От автора: пару раз переделывал АМ трансивер в АМ/ЧМ, в частности Си-Би радиостанции "Cobra 23 plus" и "Cobra 19 plus".

Сталкиваясь в повседневной жизни с новыми понятиями, многие стараются найти ответы на свои вопросы. Именно для этого необходимо описывать любые явления. Одним из них является такое понятие, как модуляция. О нем и пойдет речь далее.

Общее описание

Модуляция - это процесс изменения одного или целого набора параметров высокочастотного колебания в соответствии с законом информационного низкочастотного сообщения. Результатом этого является перенос спектра управляющего сигнала в область высоких частот, так как эффективное вещание в пространство требует, чтобы все приемо-передающие устройства функционировали на разных частотах, не перебивая друг друга. Благодаря этому процессу информационные колебания помещаются на несущую, априорно известную. В управляющем сигнале содержится передаваемая информация. Высокочастотное колебание берет на себя роль переносчика информации, за счет чего приобретает статус несущего. В управляющем сигнале заложены передаваемые данные. Существуют разные типы модуляции, которые зависят от того, какой формы колебания используют: прямоугольные, треугольные или какие-то иные. При дискретном сигнале принято говорить о манипуляции. Итак, модуляция - это процесс, предполагающий колебания, поэтому она может быть частотной, амплитудной, фазовой и др.

Разновидности

Теперь можно рассмотреть, какие виды этого явления существуют. По сути, модуляция - это процесс, при котором низкочастотная волна переносится высокочастотной. Чаще всего используются следующие виды: частотная, амплитудная и фазовая. При происходит изменение частоты, при амплитудной - амплитуды, а при фазовой - фазы. Существуют и смешанные виды. Импульсная модуляция и модификация относятся к отдельным видам. В этом случае параметры высокочастотного колебания изменяются дискретно.

Амплитудная модуляция

В системах с таким видом изменения происходит изменение амплитуды несущей волны с высокой частотой при помощи модулирующей волны. При на выходе выявляются не только входные частоты, но и их сумма и разность. В этом случае, если модуляция - это комплексная волна, как, к примеру, речевые сигналы, состоящие из множества частот, то для суммы и разности частот потребуется две полосы, одна ниже несущей, а вторая выше. Их называют боковыми: верхней и нижней. Первая - это копия первоначального сдвинутого на определенную частоту. Нижняя полоса - это копия изначального сигнала, прошедшая инвертирование, то есть оригинальные верхние частоты - это нижние частоты в нижней боковой.

Нижняя боковая представляет собой зеркальное отображение верхней боковой относительно частоты несущей. Система, использующая амплитудную модуляцию, передающая несущую и обе боковые, называется двухполосной. Несущая не содержит полезной информации, поэтому ее можно убрать, но в любом случае полоса сигнала будет в два раза больше изначальной. Сужение полосы достигается за счет вытеснения не только несущей, но и одной из боковых, так как в них содержится одна информация. Этот вид известен в качестве однополосной модуляции с подавленной несущей.

Демодуляция

Для этого процесса требуется смешать модулированный сигнал с несущей той же частоты, что испускается модулятором. После этого получается изначальный сигнал в виде отдельной частоты или полосы частот, а потом отфильтровывают от других сигналов. Иногда генерирование несущей для демодуляции происходит на месте, при этом она не всегда совпадает с частотой несущей на самом модуляторе. Из-за небольшой разницы между частотами появляются несовпадения, что характерно для телефонных цепей.

В данном случае используется цифровой модулирующий сигнал, то есть это позволяет кодировать более одного бита на бод посредством кодирования бинарного сигнала данных в сигнал с несколькими уровнями. Биты бинарных сигналов иногда разбивают на пары. Для пары бит можно использовать четыре варианта комбинации, при этом каждая пара бывает представлена одним из четырех уровней амплитуды. Такой закодированный сигнал характеризуется тем, что скорость модуляции в бодах наполовину меньше изначального сигнала данных, поэтому его можно использовать для амплитудной модуляции обычным образом. Свое применение она нашла в радиосвязи.

Частотная модуляция

Системы с такой модуляцией предполагают, что частота несущей будет меняться соответственно с формой модулирующего сигнала. Этот вид превосходит амплитудную в плане устойчивости к определенным воздействиям, имеющимся на телефонной сети, поэтому его стоит использовать на низких скоростях, где нет необходимости в привлечении большой полосы частот.

Фазо-амплитудная модуляция

Чтобы увеличить число бит на бод, можно скомбинировать фазовую и амплитудную модуляции.

В качестве одного из современных методов амплитудно-фазовой модуляции можно назвать тот, который базируется на передаче нескольких несущих. К примеру, в каком-то приложении используется 48 несущих, разделенных полосой в 45 Гц. Посредством комбинирования амплитудной и фазовой модуляции для каждой несущей выделяется до 32 дискретных состояний на каждый отдельный период бода, благодаря чему можно переносить по 5 бит на бод. Получается, что вся эта совокупность позволяет переносить 240 бит на бод. При работе со скоростью 9600 бит/с скорость модуляции требует лишь 40 бод. Такой низкий показатель довольно терпим к амплитудным и фазовым скачкам, присущим телефонной сети.

Импульсно-кодовая модуляция

Этот вид обычно рассматривается в качестве системы для трансляции к примеру, голос в цифровом виде. Эта техника модуляции не используется в модемах. Тут происходит стробирование аналогового сигнала со скоростью, вдвое превышающей наивысшую частоту компонента сигнала в аналоговой форме. При использовании таких систем на телефонных сетях стробирование происходит 8000 раз в секунду. Каждый отсчет - это уровень напряжения, закодированный семибитным кодом. Чтобы наилучшим образом представить используется кодирование по логарифмическому закону. Семь бит совместно с восьмым, говорящим о наличии сигнала, формируют октет.

Для восстановления сигнала сообщения требуется модуляция и детектирование, то есть обратный процесс. При этом сигнал преобразуется нелинейным способом. Нелинейные элементы обогащают спектр выходного сигнала новыми компонентами спектра, а для выделения низкочастотных компонентов используются фильтры. Модуляция и детектирование могут осуществляться с применением вакуумных диодов, транзисторов, полупроводниковых диодов в качестве нелинейных элементов. Традиционно используются точечные полупроводниковые диоды, так как у плоскостных входная емкость заметно больше.

Современные виды

Цифровая модуляция обеспечивает намного большую информационную емкость и обеспечивает совместимость с разнообразными службами цифровых данных. Помимо этого с ее помощью повышается защищенность информации, улучшается качество систем связи, и ускоряется доступ к ним.

Существует ряд ограничений, с которыми сталкиваются разработчики любых систем: допустимая мощность и ширина частотной полосы, заданный шумовой уровень систем связи. С каждым днем увеличивается численность пользователей систем связи, а также растет спрос на них, что требует увеличения радиоресурса. Цифровая модуляция заметно отличается от аналоговой тем, что несущая в ней передает большие объемы информации.

Сложности использования

Перед разработчиками систем цифровой радиосвязи стоит такая основная задача - найти компромисс между шириной полосы трансляции данных и сложностью системы в техническом плане. Для этого уместно использовать разные методы модуляции, чтобы получить необходимый результат. Радиосвязь можно организовать и при использовании простейших схем передатчика и приемника, но для такой связи будет использоваться спектр частот, пропорциональный численности пользователей. Для более сложных приемников и передатчиков требуется меньшая полоса частот для трансляции информации в том же объеме. Для перехода к спектрально-эффективным методам передачи необходимо усложнить оборудование соответствующим образом. Эта проблема не зависит от вида связи.

Альтернативные варианты

Широтно-импульсная модуляция характеризуется тем, что ее несущий сигнал представляет собой последовательность импульсов, при этом частота импульсов постоянная. Изменения касаются только длительности каждого импульса соответственно модулирующему сигналу.

Широтно-импульсная модуляция отличается от частотно-фазовой. Последняя предполагает модуляцию сигнала в виде синусоиды. Он характеризуется постоянной амплитудой и изменяемой частотой или фазой. Импульсные сигналы тоже можно промодулировать по частоте. Может быть длительность импульсов фиксированная, а их частота находится в каком-то а вот их мгновенное значение будет меняться в зависимости от модулирующих сигналов.

Выводы

Можно использовать простые виды модуляции, при этом только один параметр будет изменяться соответственно с модулирующей информацией. Комбинированная схема модуляции, которая применяется в современном оборудовании для работы связи, - это когда происходит одновременное изменение и амплитуды, и фазы несущей. В современных системах может использоваться несколько поднесущих, для каждой из которых используется модуляция определенного вида. В этом случае речь идет о схемах модуляции сигналов. Используется этот термин и для сложных многоуровневых видов, когда для исчерпывающей информации требуется дополнительное

В современных системах связи используются наиболее эффективные типы модуляции, благодаря чему обеспечивается минимизация ширины полосы с целью освобождения частотного пространства для других видов сигналов. Качество связи от этого только выигрывает, однако сложность оборудования в данном случае оказывается очень высока. В конечном итоге частота модуляции дает результат, видимый конечному пользователю только в плане удобства использования технических средств.

11 мая 2011 в 19:42

Модуляция радиосигнала

  • Блог компании Yota

В комментариях к статье посетовал на отсутствие статей описывающей физическую сторону передачи информации по радио каналу.
Мы решили исправить это упущение и написать цикл постов о беспроводной передаче данных.
В первом из них мы расскажем о главном аспекте передачи информации посредством радиосигнала – модуляции.


Модуля́ция (лат. modulatio - размерность) - процесс изменения одного или нескольких параметров высокочастотного несущего колебания по закону низкочастотного информационного сигнала.
Передаваемая информация заложена в управляющем сигнале, а роль переносчика информации выполняет высокочастотное колебание, называемое несущим.
Модуляция может осуществляться изменением амплитуды, фазы или частоты высокочастотной несущей.
Эта техника дает несколько важных преимуществ:

  1. Позволяет сформировать радиосигнал, который будет обладать свойствами соответствующими свойствам несущей частоты. О свойствах волн разных частотных диапазонов можно почитать, например, .
  2. Позволяет использовать антенны малого размера, ведь размер антенны должен быть пропорционален длине волны.
  3. Позволяет избежать интерференции с другими радиосигналами.
Передаваемый в сетях WiMax поток данных соответствует частоте в районе 11 кГц. Если мы попробуем передавать этот низкочастотный сигнал по воздуху, нам понадобится антенна следующих размеров:


Антенна длинной 24 километра не кажется достаточно удобной в использовании.
Если же мы будем передавать этот сигнал наложенным на несущую частоту в 2.5 ГГц (частота используемая в Yota WiMax), то нам понадобится антенна длиной 12 см.

Аналоговая модуляция.

Прежде чем перейти непосредственно к цифровой модуляции, приведу картинку, иллюстрирующую аналоговую AM (амплитудную) и FM (частотную) модуляцию, которая освежит у многих школные познания:


исходный сигнал


AM (амплитудная модуляция)


FM (частотная модуляция)

Цифровая модуляция и ее типы.

В цифровой модуляции аналоговый несущий сигнал модулируется цифровым битовым потоком.
Существуют три фундаментальных типа цифровой модуляции (или шифтинга) и один гибридный:
  1. ASK – Amplitude shift keying (Амплитудная двоичная модуляция).
  2. FSK – Frequency shift keying (Частотая двоичная модуляция).
  3. PSK – Phase shift keying (Фазовая двоичная модуляция).
  4. ASK/PSK.
Упомяну, что существует традиция в русской терминологии радиосвязи использовать для модуляции цифровым сигналом термин «манипуляция».

В случае амплитудного шифтинга амплитуда сигнала для логического нуля может быть (например) в два раза меньше логической и единицы.
Частотная модуляция похожим образом представляет логическую единицу интервалом с большей частотой, чем ноль.
Фазовый шифтинг представляет «0» как сигнал без сдвига, а «1» как сигнал со сдвигом.
Да, тут мы как раз имеем дело со «сдвигом по фазе»:)
Каждая из схем имеет свои сильные и слабые стороны.
  • ASK хороша с точки зрения эффективности использования полосы частот, но подвержена искажениям при наличии шума и недостаточно эффективна с точки зрения потребляемой мощности.
  • FSK – с точностью до наоборот, энергетически эффективна, но не эффективно использует полосу частот.
  • PSK – хороша в обоих аспектах.
  • ASK/PSK – комбинация двух схем. Она позволяет еще лучше использовать полосу частот.
Самая простая PSK схема (показанная на рисунке) имеет собственное название - Binary phase-shift keying. Используется единственный сдвиг фазы между «0» и «1» - 180 градусов, половина периода.
Существуют также QPSK и 8-PSK:
QPSK использует 4 различных сдвига фазы (по четверти периода) и может кодировать 2 бита в символе (01, 11, 00, 10). 8-PSK использует 8 разных сдвигов фаз и может кодировать 3 бита в символе.

Одна из частных реализаций схемы ASK/PSK которая называется QAM - Quadrature Amplitude Modulation (квадратурная амплитудная модуляция (КАМ). Это метод объединения двух AM-сигналов в одном канале. Он позваляет удвоить эффективную пропускную способность. В QAM используется две несущих с одинаковой частотой но с разницей в фазе на четверть периода (отсюда и возникает слово квадратура). Более высокие уровни QAM строятся по тому же принципы, что и PSK. Если вас интересуют детали, вы без труда можете их найти в сети.
Теоретическая эффективность использования полосы пропускания:
Формат Эффективность (бит/с/Гц)
BPSK 1
QPSK 2
8-PSK 3
16-QAM 4
32-QAM 5
64-QAM 6
256-QAM 8

Чем сложнее схема модуляции, тем более пагубное воздействие на нее оказывают искажения при передаче, и тем меньше расстояние от базовой станции, на котором сигнал может быть успешно принят.
Теоретически возможны PSK и QAM схемы еще более высокого уровня, но на практике при их использовании возникает слишком большое количество ошибок.
Теперь, когда мы рассмотрели основные моменты, можно написать какие схемы модуляции применяются в сетях WiMax.

Модуляция сигнала в сетях WiMax.

В WiMax используется «динамическая адаптивная модуляция», которая позволяет базовой станции делать выбор между пропускной способностью и максимальным расстоянием до приемника. Чтобы увеличить дальность, базовая станция может переключиться между 64-QAM, 16-QAM и QPSK.

Заключение.

Я надеюсь, что у меня получилось соблюсти баланс между популярностью изложения и техничностью содержания. Если данная статья окажется востребованной, я продолжу работать в этом направлении. Технология WiMax имеет множество нюансов, о которых можно рассказать.

Федеральное агентство связи.

Государственное образовательное учреждение.

Высшее учебное заведение.

«Сибирский государственный университет телекоммуникации и информатики».

Кафедра БИС.

ДПР по основам телекоммуникации на тему: модуляция и её разновидности.

Выполнил: студент I курса,

МРМ, Гр-пы С-07

Водичев Александр.

Новосибирск -2010.


Введение

Понятие модуляции

Виды модуляции

Импульсная модуляция

Демодуляция сигналов

Смешанные виды модуляции

Особенности импульсной модуляции

Спектр сигнала АИМ

Модуляция случайными функциями

Заключение

Список используемой литературы


Введение

В своём реферате я опишу свойства модуляции и её виды. Опишу, что такое модуляция, что можно с её помощью делать.

Если говорить своими словами, то модуляция-это процесс преобразования оного сигнала в другой, для того чтобы передать сообщение в нужное место. А ещё есть процесс обратный модуляции, и называется он демодуляцией. И заключается он в том, чтобы преобразовать принятое сообщение в первоначальный вид. Отсюда следует, что процесс полной передачи сообщения состоит из трёх основных этапов: первый этап, это процесс изменения сигнала для того, чтобы его передать; второй этап, это передача сообщения; и третий этап, это возвращение сообщения в его начальный вид. И даже есть разные виды переносчиков. И для каждого вида переносчика есть различные виды модуляции.

Ещё есть система связи. Система связи, она же система передачи информации, в неё входят передатчик, канал и приёмник. Передатчик – средство для передачи сообщений. Канал передачи – это технические устройства и физическая среда, в которой сигналы распространяются от передатчика к приёмнику. А приёмник – это средство для приема сообщений и сигналов.


Так выглядит система передачи сообщений.

В процессе передачи на сообщения воздействуют различные помехи. Все помехи для упрощения условно объединены в одном источнике помех.

Характеристики системы связи можно разделить на внешние и внутренние. К внешним характеристикам, по которым получатель оценивает качество связи, относят верность, скорость и своевременность передачи. Внутренние характеристики позволяют оценить степень использования предельных возможностей системы. К ним относятся помехоустойчивость и эффективность.

Перечисленные важнейшие характеристики систем передачи тесно связаны между собой. Эффективность использования существующих систем и обоснованность выбора принципов построения новых систем во многом будут зависеть от того, насколько полно разработчики аппаратуры используют свойства сообщений, сигналов и помех, а также особенности их преобразований в каналах и различных свойствах системы.

Цель работы

Цель моей работы понять, что такое модуляция, разобрать все её свойства, особенности и все существующие виды. Понять, как передаются сообщения и принимаются, зашифровываются и расшифровываются. Рассмотреть, как воздействуют помехи на качество передаваемых сообщений. Узнать какими приборами сигналы преобразуются из одного вида в другой.


Понятие модуляции

Процесс преобразования первичного сигнала заключается в изменении одного или нескольких параметров несущего колебания по закону изменения первичного сигнала (то есть в наделении несущего колебания признаками первичного сигнала) и называется модуляцией.

Перенос сигнала из одной точки пространства в другую осуществляет система электросвязи. Электрический сигнал является, по сути, формой представления сообщения для передачи его системой электросвязи.

Обычно в качестве переносчика используют гармоническое колебание высокой частоты – несущее колебание. Гармоническое колебание, выбранное в качестве несущего, полностью характеризуется тремя параметрами: амплитудой, частотой и начальной фазой. Модуляцию можно осуществить изменением, любого из трёх параметров по закону передаваемого сигнала. Источник сообщения формирует сообщение а(t), которое с помощью специальных устройств преобразуется в электрический сигнал s(t). При передаче речи такое преобразование выполняет микрофон, при передачи изображения – электронно-лучевая трубка, при передаче телеграммы – передающая часть телеграфного аппарата.

Чтобы передать сигнал в системе электросвязи, нужно воспользоваться каким-либо переносчиком. В качестве переносчика естественно использовать те материальные объекты, которые имеют свойство перемещаться в пространстве, например, электромагнитное поле в проводах (проводная связь), в открытом пространстве (радиосвязь), световой луч (оптическая связь).

Таким образом, в пункте передачи первичный сигнал s(t) необходимо преобразовать в сигнал v(t), удобный для его передачи по соответствующей среде распространения. В пункте приёма выполняется обратное преобразование. В отдельных случаях (например, когда средой распространения является пара физических проводов, как в городской телефонной связи) указанное преобразование сигнала может отсутствовать.

Доставленный в пункт приёма сигнал должен быть снова преобразован в сообщение (например, с помощью телефона или громкоговорителя при передаче речи, электронно-лучевой трубки при передаче изображения, приёмной части телефонного аппарата при передачи телеграммы) и затем передан получателю.

Передача информации всегда сопровождается неизбежным действием помех и искажений. Это приводит к тому, что сигнал на выходе системы электросвязи s(t)и принятое сообщение a(t) могут в какой-то мере отличаться от сигнала на входе s(t)и переданного сообщения а(t). Степень соответствия принятого сообщения переданному называют верностью передачи.

Для различных сообщений качество их передачи оценивается по-разному. Принятое телефонное сообщение должно быть достаточно разборчивым, абонент должен быть узнаваемым. Для телевизионного сообщения существует стандарт (хорошо известная всем телезрителям таблица на экране телевизора), по которому оценивается качество принятого изображения.

Количественной оценкой верности передачи дискретных сообщений служит отношение числа ошибочно принятых элементов сообщения к числу переданных элементов – частота ошибок (или коэффициент ошибок).

Спектр модулированной несущей или угловой модуляции даже при гармоническом первичном сигнале s(t) состоит из бесконечного числа дискретных составляющих, образующих нижнюю и верхнюю боковые полосы спектра, симметричные относительно несущей частоты и имеющие одинаковые амплитуды. Иногда отдельно рассматривают модуляцию гармонического несущего колебания по амплитуде, частоте или фазе дискретными первичными сигналами s(t), например телеграфными или передачи данных.

Модуляцию гармонического несущего колебания первичным сигналом s(t) называют непрерывной, так как в качестве переносчика выбран непрерывный периодический сигнал v0(t).

Сравнение различных видов непрерывной модуляции позволяет выявить их особенности. При амплитудной модуляции ширина спектра модулированного сигнала, как правило, значительно меньше, чем при угловой модуляции (частотной и фазовой). Таким образом, на лицо экономия частотного спектра: для амплитудно-модулированных сигналов можно отводить при передачи более узкую полосу частот.

Чтобы правильно выбрать канал связи для передачи по нему модулированных сигналов, необходимо знать такие характеристики последних, как пиковая и средняя мощность, а также энергетический спектр. Эти характеристики модулированных сигналов отличаются от аналогичных характеристик сообщений, которыми производится модуляция. Для различных видов модуляции соотношения между характеристиками сообщения и модулированного сигнала различны. Например, ширина спектра сигнала ЧМ больше, чем ширина спектра сигнала АМ, хотя модуляция производится одним и тем же сообщением.

Сообщения представляют собой некоторые случайные процессы, поэтому сигналы, получающиеся в результате модуляции, также являются случайными, и для отыскания упомянутых выше характеристик сигналов следует использовать методы теории случайных процессов.

Однако в подавляющем большинстве случаев более наглядное представление о свойствах модулированных сигналов можно получить, предположив, что модуляция производится некоторыми детерминированными функциями, такими, как гармоническое колебание или периодическая последовательность импульсов известной формы. Эти функции можно рассматривать, как отдельные реализации из ансамбля возможных сообщений.

модуляция передача сигнал гармонический

Виды модуляции

Существует два вида переносчиков: гармонический и импульсный.

Для гармонического переносчика возможны три вида модуляции: амплитудная модуляция (АМ), фазовая (ФМ) и частотная (ЧМ).

Для импульсного переносчика возможны четыре вида модуляции: амплитудно-импульсная, или высотно-импульсная модуляция (АИМ),когда по закону передаваемого сигнала изменяется амплитуда импульсов, фазо-импульсная, или время-импульсная (ФИМ)-изменяется фаза импульсов, широтно-импульсная или модуляция по длительности (ШИМ), когда изменяется ширина импульсов и, наконец, либо частотно-импульсная (ЧИМ)-изменяется частота следования импульсов, либо интервально-импульсная (ИИМ).

Модуляцию ФИМ и ЧИМ объединяют во временно-импульсную (ВИМ). Между ними существует связь, аналогичная связи между фазовой и частотной модуляцией синусоидального колебания.

Спектры ШИМ, ЧИМ, и ФИМ имеют более сложный вид чем спектр сигнала АИМ.

Импульсные последовательности АИМ, ШИМ, ЧИМ, и ФИМ называются последовательностями видеоимпульсов. Если позволяет среда распространения, то видеоимпульсы передаются без дополнительных преобразований (например, по кабелю). Однако по радиолиниям передать видеоимпульсы невозможно. Тогда сигнал подвергают второй ступени преобразования (модуляции).

Модуляцией называют процесс преобразования одной либо нескольких характеристик модулирующего высокочастотного колебания при воздействии управляющего низкочастотного сигнала. В итоге спектр управляющего сигнала перемещается в высокочастотную область, где передача высоких частот является более эффективной.

Модуляция выполняется с целью передачи информации посредством . Передаваемые данные содержатся в управляющем сигнале. А функцию переносчика осуществляет высокочастотное колебание, именуемое несущим. В роли несущего колебания могут быть использованы колебания разнообразной формы: пилообразные, прямоугольные и др., но обычно используют гармонические синусоидальные. Исходя из того, какая именно характеристика синусоидального колебания изменяется, различают несколько типов модуляции:

Амплитудная модуляция

На вход модулирующего устройства передают модулирующий и опорный сигналы, в результате на выходе имеем смодулированный сигнал. Условием корректного преобразования считается удвоенное значение несущей частоты в сравнении с максимальным значением полосы модулирующего сигнала. Данный тип модуляции достаточно прост в исполнении, но отличается невысокой помехоустойчивостью.

Помехонеустойчивость возникает вследствие узкой полосы модулируемого сигнала. Ее используют в основном в средне- и низкочастотных интервалах электромагнитного спектра.

Частотная модуляция

В результате данного типа модуляции сигнал модулирует частоту опорного сигнала, а не мощность. Поэтому если величина сигнала увеличивается, то, соответственно, растет частота. Ввиду того, что полоса получаемого сигнала намного шире исходной величины сигнала.

Такая модуляция характеризуется высокой помехоустойчивостью, однако для ее применения следует использовать высокочастотный диапазон.

Фазовая модуляция

В процессе данного типа модуляции модулирующий сигнал использует фазу опорного сигнала. При данном типе модулирования получаемый сигнал имеет достаточно широкий спектр, потому что фаза оборачивается на 180 градусов.

Фазовая модуляция активно используется для формирования помехозащищенной связи в микроволновом диапазоне.

В качестве несущего сигнала могут использоваться незатухающие функции, шумы, последовательность импульсов и пр. Так, при импульсной модуляции в роли несущего сигнала используется последовательность узких импульсов, а в роли модулирующего сигнала выступает дискретный либо аналоговый сигнал. Так как последовательность импульсов характеризуется 4 характеристиками, то различают 4 типа модуляции:

— частотно-импульсная;

— широтно-импульсная;

— амплитудно-импульсная;

— фазово-импульсная.