Метод ветвей и границ. Теория графов. Решение задачи коммивояжера. Вернемся к картинке в начале поста. Методы решения труднорешаемых задач

Здравствуй! Реализовывая различные алгоритмы для нахождения гамильтонова цикла с наименьшей стоимостью, я наткнулся на публикацию, предлагающую свой вариант. Попробовав в деле, я получил неправильный ответ:

Дальнейшие поиски в Интернете не принесли ожидаемого результата: либо сложное для не-математиков теоретическое описание, либо понятное, но с ошибками.

Под катом вас будет ждать исправленный алгоритм и онлайн-калькулятор.

Сам метод, опубликованный Литтлом, Мерти, Суини, Кэрелом в 1963 г. применим ко многим NP-полным задачам, и представляет собой очень теоритеризованный материал, который без хороших знаний английского языка и математики сразу не применишь к нашей задаче коммивояжера.

Кратко о методе - это полный перебор всех возможных вариантов с отсеиванием явно неоптимальных решений.

Исправленный алгоритм, для нахождения действительно минимального маршрута

Алгоритм состоит из двух этапов:

Первый этап
Приведение матрицы затрат и вычисление нижней оценки стоимости маршрута r.

1. Вычисляем наименьший элемент в каждой строке (константа приведения для строки)
2. Переходим к новой матрице затрат, вычитая из каждой строки ее константу приведения
3. Вычисляем наименьший элемент в каждом столбце (константа приведения для столбца)
4. Переходим к новой матрице затрат, вычитая из каждого столбца его константу приведения.
Как результат имеем матрицу затрат, в которой в каждой строчке и в каждом столбце имеется хотя бы один нулевой элемент.
5. Вычисляем границу на данном этапе как сумму констант приведения для столбцов и строк (данная граница будет являться стоимостью, меньше которой невозможно построить искомый маршрут)

Второй (основной) этап

1.Вычисление штрафа за неиспользование для каждого нулевого элемента приведенной матрицы затрат.
Штраф за неиспользование элемента с индексом (h,k) в матрице, означает, что это ребро не включается в наш маршрут, а значит минимальная стоимость «неиспользования» этого ребра равна сумме минимальных элементов в строке h и столбце k.

а) Ищем все нулевые элементы в приведенной матрице
б) Для каждого из них считаем его штраф за неиспользование.
в) Выбираем элементы, которым соответствует максимальный штраф

2. Теперь наше множество S разбиваем на множества - содержащие ребро с максимальным штрафом(S w i) и не содержащие эти ребра(S w i /o).
3. Вычисление оценок затрат для маршрутов, входящих в каждое из этих множеств.
а) Для множеств S w i /o все просто: раз мы не берем соответствующее ребро c максимальным штрафом(h i ,k i), то для него оценка затрат равна оценки затрат множества S + штраф за неиспользование ребра (h i ,k i)
б) При вычислении затрат для множества S w i примем во внимание, что раз ребро (h i i,k i) входит в маршрут, то значит ребро (k i ,h i) в маршрут входить не может, поэтому в матрице затрат пишем c(k i ,h i)=infinity, а так как из пункта h i мы «уже ушли», а в пункт k i мы «уже пришли», то ни одно ребро, выходящее из h i , и ни одно ребро, приходящее в k i , уже использоваться не могут, поэтому вычеркиваем из матрицы затрат строку h i и столбец k i . После этого приводим матрицу, и тогда оценка затрат для S w равна сумме оценки затрат для S и r(h i ,k i), где r(h i ,k i) - сумма констант приведения для измененной матрицы затрат.
4. Из всех неразбитых множеств выбирается то, которое имеет наименьшую оценку.

Так продолжаем, пока в матрице затрат не останется одна не вычеркнутая строка и один не вычеркнутый столбец.

Небольшая оптимизация - подключаем эвристику

Да, правда, почему бы нам не ввести эвристику? Ведь в алгоритме ветвей и границ мы фактически строим дерево, в узлах которого решаем брать ребро (h i ,k i) или нет, и вешаем двух и более детей - Sw(h i ,k i) и Sw/o(h i ,k i). Но лучший вариант для следующей итерации выбираем только по оценке. Так давайте выбирать лучший не только по оценке, но и по глубине в дереве, т.к. чем глубже выбранный элемент, тем ближе он к концу подсчета. Тем самым мы сможем наконец дождаться ответа.

Теперь, собственно, об ошибках в той публикации

Причина у этих ошибок одна - игнорирование возможности появления нескольких нулевых элементов с максимальным штрафом. В таком случае надо делить не на два подмножества, а на большее количество (2n). А также следует выбирать для разбиения множество с минимальной границей из всех возможных путей, а не из двух полученных в результате последнего разбиения детей.

Доказательство

Вернемся к картинке в начале поста:


А вот решение с исправленным алгоритмом.

Определения

называется непустое конечное множество, состоящее из двух подмножеств и . Первое подмножество (вершины) состоит из любого множества элементов. Второе подмножество (дуги) состоит из упорядоченных пар элементов первого подмножества . Если вершины и такие, что , то это вершины смежные.

Маршрутом в графе

называется последовательность вершин не обязательно попарно различных, где для любого смежно с . Маршрут называется цепью, если все его ребра попарно различны. Если то маршрут называется замкнутым. Замкнутая цепь называется циклом.

Постановка задачи

Коммивояжер должен объездить n городов. Для того чтобы сократить расходы, он хочет построить такой маршрут, чтобы объездить все города точно по одному разу и вернуться в исходный с минимумом затрат.

В терминах теории графов задачу можно сформулировать следующим образом. Задано n вершин и матрица {c ij }, где c ij ≥0 – длинна (или цена) дуги (i , j ),

. Под маршрутом коммивояжера z будем понимать цикл i 1 , i 2 ,…, i n , i 1 точек 1,2,…, n. Таким образом, маршрут является набором дуг. Если между городами i и j нет перехода, то в матрице ставится символ «бесконечность». Он обязательно ставится по диагонали, что означает запрет на возвращение в точку, через которую уже проходил маршрут коммивояжера , длина маршрута l (z ) равна сумме длин дуг, входящих в маршрут. Пусть Z – множество всех возможных маршрутов. Начальная вершина i 1 – фиксирована. Требуется найти маршрут z 0 ÎZ , такой, что l (z 0)= minl (z ), z ÎZ .

Решение задачи

Основная идея метода ветвей и границ состоит в том, что вначале строят нижнюю границу φ длин множества маршрутов Z. Затем множество маршрутов разбивается на два подмножества таким образом, чтобы первое подмножество

состояло из маршрутов, содержащих некоторую дугу (i, j), а другое подмножество не содержало этой дуги. Для каждого из подмножеств определяются нижние границы по тому же правилу, что и для первоначального множества маршрутов. Полученные нижние границы подмножеств и оказываются не меньше нижней границы множества всех маршрутов, т.е. φ(Z)≤ φ (), φ(Z) ≤ φ ().

Сравнивая нижние границы φ (

) и φ (), можно выделить то, подмножество маршрутов, которое с большей вероятностью содержит маршрут минимальной длины.

Затем одно из подмножеств

или по аналогичному правилу разбивается на два новых и . Для них снова отыскиваются нижние границы φ (), и φ () и т.д. Процесс ветвления продолжается до тех пор, пока не отыщется единственный маршрут. Его называют первым рекордом. Затем просматривают оборванные ветви. Если их нижние границы больше длины первого рекорда, то задача решена. Если же есть такие, для которых нижние границы меньше, чем длина первого рекорда, то подмножество с наименьшей нижней границей подвергается дальнейшему ветвлению, пока не убеждаются, что оно не содержит лучшего маршрута .

Если же такой найдется, то анализ оборванных ветвей продолжается относительно нового значения длины маршрута. Его называют вторым рекордом. Процесс решения заканчивается, когда будут проанализированы все подмножества.

Для практической реализации метода ветвей и границ применительно к задаче коммивояжера укажем прием определения нижних границ подмножеств и разбиения множества маршрутов на подмножества (ветвление).

Для того чтобы найти нижнюю границу воспользуемся следующим соображением: если к элементам любого ряда матрицы задачи коммивояжера (строке или столбцу) прибавить или вычесть из них некоторое число, то от этого оптимальность плана не изменится. Длина же любого маршрутом коммивояжера изменится на данную величину.

Вычтем из каждой строки число, равное минимальному элементу этой строки. Вычтем из каждого столбца число, равное минимальному элементу этого столбца. Полученная матрица называется приведенной по строкам и столбцам. Сумма всех вычтенных чисел называется константой приведения.

Константу приведения следует выбирать в качестве нижней границы длины маршрутов.

Разбиение множества маршрутов на подмножества

Для выделения претендентов на включение во множество дуг, по которым производится ветвление, рассмотрим в приведенной матрице все элементы, равные нулю. Найдем степени Θ ij нулевых элементов этой матрицы. Степень нулевого элемента Θ ij равна сумме минимального элемента в строке i и минимального элемента в столбце j (при выборе этих минимумов c ij – не учитывается). С наибольшей вероятностью искомому маршруту принадлежат дуги с максимальной степенью нуля.

Для получения платежной матрицы маршрутов, включающей дугу (i , j ) вычеркиваем в матрице строку i и столбец j , а чтобы не допустить образования цикла в маршруте, заменяем элемент, замыкающий текущую цепочку на бесконечность.

Множество маршрутов, не включающих дугу (i , j ) получаем путем замены элемента c ij на бесконечность.

Пример решения задачи коммивояжера методом ветвей и границ

Коммивояжер должен объездить 6городов. Для того чтобы сократить расходы, он хочет построить такой маршрут, чтобы объездить все города точно по одному разу и вернуться в исходный с минимумом затрат. Исходный город A. Затраты на перемещение между городами заданы следующей матрицей:

A B C D E F
A 26 42 15 29 25
B 7 16 1 30 25
C 20 13 35 5 0
D 21 16 25 18 18
E 12 46 27 48 5
F 23 5 5 9 5

Решение задачи

Для удобства изложения везде ниже в платежной матрице заменим имена городов (A, B, …, F) номерами соответствующих строк и столбцов (1, 2, …, 6).

Найдем нижнюю границу длин множества всех маршрутов. Вычтем из каждой строки число, равное минимальному элементу этой строки, далее вычтем из каждого столбца число, равное минимальному элементу этого столбца, и таким образом приведем матрицу по строкам и столбцам. Минимумы по строкам: r 1 =15, r 2 =1, r 3 =0, r 4 =16, r 5 =5, r 6 =5.

После их вычитания по строкам получим:


1 2 3 4 5 6
1 11 27 0 14 10
2 6 15 0 29 24
3 20 13 35 5 0
4 5 0 9 2 2
5 7 41 22 43 0
6 18 0 0 4 0

Минимумы по столбцам: h 1 =5, h 2 =h 3 =h 4 =h 5 =h 6 .

После их вычитания по столбцам получим приведенную матрицу:

1 2 3 4 5 6
1 11 27 0 14 10
2 1 15 0 29 24
3 15 13 35 5 0
4 0 0 9 2 2
5 2 41 22 43 0
6 13 0 0 4 0

Найдем нижнюю границу φ (Z ) = 15+1+0+16+5+5+5 = 47.

Для выделения претендентов на включение во множество дуг, по которым производится ветвление, найдем степени Θ ij нулевых элементов этой матрицы (суммы минимумов по строке и столбцу). Θ 14 = 10 + 0,
Θ 24 = 1 + 0, Θ 36 = 5+0, Θ 41 = 0 + 1, Θ 42 = 0 + 0, Θ 56 = 2 + 0, Θ 62 = 0 + 0,
Θ 63 = 0 + 9, Θ 65 = 0 + 2. Наибольшая степень Θ 14 = 10. Ветвление проводим по дуге (1, 4).

ЭММиМвЛ, ИСО, МПУР

ЗАДАЧА КОММИВОЯЖЕРА

Определения

Графом называется непустое конечное множество, состоящее из двух подмножестви. Первое подмножество
(вершины) состоит из любого множества элементов. Второе подмножество(дуги) состоит из упорядоченных пар элементов первого подмножества
. Если вершины
и
такие, что
, то это вершины смежные.

Маршрутом в графе называется последовательность вершин
не обязательно попарно различных, где для любого
смежно с. Маршрут называется цепью, если все его ребра попарно различны. Если
то маршрут называется замкнутым. Замкнутая цепь называется циклом.

Постановка задачи

Коммивояжер должен объездить n городов. Для того чтобы сократить расходы, он хочет построить такой маршрут, чтобы объездить все города точно по одному разу и вернуться в исходный с минимумом затрат.

В терминах теории графов задачу можно сформулировать следующим образом. Задано n вершин и матрица {c ij }, где c ij ≥0 – длина (или цена) дуги (i , j ),
. Подмаршрутом коммивояжера z будем понимать цикл i 1 , i 2 ,…, i n , i 1 точек 1,2,…, n. Таким образом, маршрут является набором дуг. Если между городами i и j нет перехода, то в матрице ставится символ «бесконечность». Он обязательно ставится по диагонали, что означает запрет на возвращение в точку, через которую уже проходил маршрут коммивояжера , длина маршрута l (z ) равна сумме длин дуг, входящих в маршрут. Пусть Z – множество всех возможных маршрутов. Начальная вершина i 1 – фиксирована. Требуется найти маршрут z 0  Z , такой, что l (z 0)= min l (z ), z Z .

Решение задачи

Основная идея метода ветвей и границ состоит в том, что вначале строят нижнюю границу φ длин множества маршрутов Z. Затем множество маршрутов разбивается на два подмножества таким образом, чтобы первое подмножество состояло из маршрутов, содержащих некоторую дугу (i, j ), а другое подмножество не содержало этой дуги. Для каждого из подмножеств определяются нижние границы по тому же правилу, что и для первоначального множества маршрутов. Полученные нижние границы подмножествиоказываются не меньше нижней границы множества всех маршрутов, т.е.
.

Сравнивая нижние границы φ () иφ (), можно выделить то, подмножество маршрутов, которое с большей вероятностью содержит маршрут минимальной длины.

Затем одно из подмножеств илипо аналогичному правилу разбивается на два новыхи. Для них снова отыскиваются нижние границыφ (), и φ () и т.д. Процесс ветвления продолжается до тех пор, пока не отыщется единственный маршрут. Его называютпервым рекордом . Затем просматривают оборванные ветви. Если их нижние границы больше длины первого рекорда, то задача решена. Если же есть такие, для которых нижние границы меньше, чем длина первого рекорда, то подмножество с наименьшей нижней границей подвергается дальнейшему ветвлению, пока не убеждаются, что оно не содержит лучшего маршрута .

Если же такой найдется, то анализ оборванных ветвей продолжается относительно нового значения длины маршрута. Его называют вторым рекордом . Процесс решения заканчивается, когда будут проанализированы все подмножества.

Основная идея метода ветвей и границ состоит в том, что ветвятся не все вершины. Сначала вершины просматриваются, и каждая вершина оценивается. Ветвится та вершина, которая получает лучшую оценку.

Каждой вершине соответствует множество вариантов решений. Каждому варианту решения соответствует определенное значение критерия эффективности
. Лучшее из этих значений (минимальное или максимальное) удобно взять в качестве оценки вершины. Однако подсчитать точное значениекритерия, не перебрав всех вариантов, невозможно. Поэтому используется не точное значениекритерия, а его оценка снизу (в случае минимизации) или сверху (в случае максимизации). Оценка снизу – это оценка нижней границы множества вариантов, оценка сверху – это оценка верхней границы множества вариантов.

Оценка вершины должна удовлетворять следующим свойствам.

Алгоритм метода ветвей и границ

Шаг 1 . Строятся вершины первого уровня. Для каждой вершины подсчитывается оценка нижней (верхней) границы. Ветвится вершина, которой соответствует лучшая (минимальная или максимальная) оценка.

Шаг 2 . Для всех вершин -го уровня (
) подсчитывается оценка. Ветвится та из висячих вершин уровня
, которой соответствует лучшая (минимальная или максимальная) оценка.

Шаг 3 . Действия шага 2 повторяются до тех пор, пока не будет получено точное решение на последнем уровне. Для него подсчитывается точное значение . Если это значение не хуже оценок оставшихся висячих вершин, то найдено оптимальное решение. Если это значение строго лучше, то оптимальное решение единственно. Если значение функциидля вершин последнего уровня не лучше значения оценок оставшихся висячих вершин, то переходят на шаг 2.

Метод ветвей и границ не гарантирует того, что в ходе решения задачи не будет произведен полный перебор.

Для практической реализации метода ветвей и границ применительно к задаче коммивояжера укажем прием определения нижних границ подмножеств и разбиения множества маршрутов на подмножества (ветвление).

Для того чтобы найти нижнюю границу воспользуемся следующим соображением: если к элементам любого ряда матрицы задачи коммивояжера (строке или столбцу) прибавить или вычесть из них некоторое число, то от этого оптимальность плана не изменится. Длина же любого маршрута коммивояжера изменится на данную величину.

Вычтем из каждой строки число, равное минимальному элементу этой строки. Вычтем из каждого столбца число, равное минимальному элементу этого столбца. Полученная матрица называется приведенной по строкам и столбцам. Сумма всех вычтенных чисел называется константой приведения .

Константу приведения следует выбирать в качестве нижней границы длины маршрутов.

Разбиение множества маршрутов на подмножества

Для выделения претендентов на включение во множество дуг, по которым производится ветвление, рассмотрим в приведенной матрице все элементы, равные нулю. Найдем степени Θ ij нулевых элементов этой матрицы. Степень нулевого элемента Θ ij равна сумме минимального элемента в строке i и минимального элемента в столбце j (при выборе этих минимумов c ij – не учитывается). С наибольшей вероятностью искомому маршруту принадлежат дуги с максимальной степенью нуля.

Для получения платежной матрицы маршрутов, включающей дугу (i , j ) вычеркиваем в матрице строку i и столбец j , а чтобы не допустить образования цикла в маршруте, заменяем элемент, замыкающий текущую цепочку на бесконечность.

Множество маршрутов, не включающих дугу (i , j ) получаем путем замены элемента c ij на бесконечность.

Пример (Г.И. Просветов, 2009, стр. 44)

Решим задачу коммивояжера для пяти пунктов.

Расстояния между населенными пунктами заданы с помощью матрицы

,

где - длина пути от пунктаi до пункта j .

На каждом шаге ребро
либо включается в ответ (обозначение
), либо не включается в ответ (обозначение
).

Шаг 1. Нахождение константы приведения .

Находим минимальный элемент в каждой строке и вычитаем его из всех элементов этой строки. В полученной матрице находим минимальный элемент в каждом столбце и вычитаем его из каждого элемента соответствующего столбца.

Найденные минимумы в строке и столбце называются константами приведения строки или столбца соответственно. Сумма всех найденных минимумов равна 18 – константа приведения матрицы. Она дает оценку снизу на данном шаге длины маршрута.

Шаг 2 . Определение дуги, исключение которой максимально увеличивает оценку, полученную на предыдущем шаге.

С этой целью заменяем поочередно каждый из нулей на .

Элемент
имеет наибольшую сумму. Поэтому все множество маршрутов распадается на два класса:
(не содержат дугу
) и
(содержат дугу
).

Шаг 3 . Определение множества дуг для дальнейшего ветвления.

Рассмотрим множество
. Исключение дуги

на:

.

В полученной матрице нужно определить сумму констант приведения:

Нижняя граница множества
, где 18 – оценка предыдущего шага, 3 – оценка текущего шага.

Рассмотрим множество
. Включение дуги
проводится с помощью исключения 1-й строки (в множестве
из пункта 1 мы идем только в пункт 3) и 3-го столбца (в множестве
в пункт 3 мы можем попасть только из пункта 1). Элемент (3,1) заменяем на(исключаем возможность возвращения, зацикливания, образования негамильтонова цикла):


.

Нижняя граница множества , где 18 – оценка предыдущего шага, 1 – оценка текущего шага. Числа над матрицей суть номера столбцов, числа перед матрицей – номера строк.

Так как
, то дальше ветвим множество
.

Для матрицы

определим дугу, исключение которой максимально увеличило бы полученную оценку
. Для этого заменяем поочередно каждый из нулей наи вычисляем сумму наименьших элементов в строке и столбце, содержащих этот новый элемент:

Для элемента
эта сумма наибольшая. Поэтому все множество маршрутов распадается на два класса:
(не содержит дугу
) и
(содержит дугу
).

Рассмотрим множество
. Исключение дуги
проводится с помощью замены элемента
на:

.

Определим в полученной матрице ее константу приведения:

.

    (5х5) (Засчитывается за 4 условные задачи) время на исполнение 2 пары) (Презентация КОММИВОЯЖЁР) Самая сложная задача исследования операций

Методом ветвей и границ требуется найти Кратчайший маршрут объезда 5 городов с возвратом в исходный, при КОТОРОМ КАЖДЫЙ ГОРОД ПОСЕЩАЕТСЯ в ТОЧНОСТИ 1 раз (в матрице даны цены проезда из «левого» города в «верхний»).

Решение Методом ветвей и границ

      Шаг №0 Оцениваем цикл 1-2-3-4-5-1 – это первое приближение верхней оценки. Далее, если на любой ветви дерева ветвления нижняя оценка подмножества решений окажется выше верхней эта ветвь «отмирает» , т.к. все её решения хуже уже имеющегося.

      Шаг №1а) Выписываем константы редуцирования по строкам. Это минимальные числа в строках. Их надо вычесть из элементов своих строк (при этом появится не менее одного нуля в каждой строке).

      Шаг №1б) В только что полученной на шаге 1а) матрице (с нулями в строках) ровно ту же операцию проводи и по столбцам - ищем столбцы, где минимум е равен 0 и вычитаем его. В формате самопроверки убедитесь, что теперь в каждом столбце и каждой строке матрицы стоимостей проезда имеется хотя бы один ноль.

      Шаг №1в) Вычисляем сумму констант редуцирования полученных на шагах а) и б). Очевидно, никакой маршрут не может стоить дешевле – поэтому это оценка снизу. Далее мы будем увеличивать эту оценку на величину и
      (эти величины опишем ниже), где- пара индексов ребра, по которому выбрано производить ветвление.

      Опишем, как будет происходить ветвление: выбираем ребро i,j(удовлетворяющее требованиям следующего пункта) множество гамильтоновых маршрутов можно мыслить как комбинаторно большое множество своеобразных «бус» составленных из звеньев типа Петербург-Москва, Москва-Одесса, Одесса-Белград и т.д. Примем способ разделить всё множество замкнутых путей на те, где есть дорога Одесса-Белград и те где её нет (первое множество меньше второго).

      Теоретически можно производить ветвление по любому ребру, но наша задача в том, чтобы на одном множестве нижняя оценка цены маршрута не изменилась, а на другом максимально выросла – это может способствовать тому, что в большинстве случаев комбинаторный перебор, вообще говоря, экспоненциального алгоритма решения NPполной задачи окажется не слишком большой.

      Для этого: Шаг №2. Вычисляем стоимости обхода для каждого нулевого элемента (если он превратился в бесконечность ∞) - величина на которую увеличиваются константы редуцирования соответствующей строки и столбца.

      Разбиваем текущее множество решений на два:


    1. Процесс отчасти заканчивается после выбора k-2 ребер, гдеkобщее число вершин. В задаче 2х2 решение однозначно, оно (обычно) приводит к коррекции верхней оценки. Если все (остальные) нижние оценки хуже, ответ получен. В таком примере как приведенный в этом задании как правило имеет место эта ситуация, но в более большом и сложном графе (при создании универсального алгоритма), требуется описать дальнейшие действия. Если всё ещё не все нижние оценки хуже чем скорректированная верхняя оценка, то выжившие нетривиальные множества придется ветвить до тех пор пока либо они не исчезнут из-за высокой, т.е. плохой нижней оценки, либо (что редко) до того как будет получена новая верхняя оценка - новое решение, превосходящее по качеству предыдущее. Процесс продолжается до тех пор, пока полученное решение не останется безальтернативным.

Рассмотрим матрицу стоимостей проезда из «левого» города в «верхний»

Начальная глобальная оценка Zверхняя=10+10+20+15+10 = 65 получим по циклу. (соответствующие рёбра, обведены квадратами на рисунке - одно в левом нижнем углу, остальные над диагональю).

Начинаем рисовать дерево ветвления

В полученной матрице

рассчитаем дополнительную цену «объезда» каждого отдельного нуля (то есть, на сколько возрастёт сумма констант редуцирования, если дорога перестанет существовать (цена проезда будет заменена на бесконечность)) и выберем, тот «ноль», цена объездакоторого максимальна.

(1,2)=0

(1,5)=1

(2,1)=0

(2,3)=5 (Максимальная )

(3,1)=0

(3,4)=2

(4,2)=4

(5,2)=2

Итак, максимальная цена объезда  наблюдается при выключении ребра (2,3)=5.

Нашим алгоритмом, естественно разделить все циклы объезда на содержащие ребро (2,3) и не содержащие его. Нижняя оценка стоимости первой группы циклов (мы её посчитаем позже), скорее всего не изменится, нижняя оценка циклов не включающих (2,3) возрастает на величину (2,3)=5.

На отдельной странице начинаем вырисовывать дерево ветвления.

На начальном этапе оно содержит множество всех циклов, которое разбивается на множество содержащее (2,3) (их меньше)– слева и не содержащее (2,3) – справа.

Нижняя оценка (большего) правого множества получается суммой оценки предшествующей вершины Z min =58 и(2,3)=5:Z min =58+5=63.

В левом множестве ребро (2,3) (условно говоря путь Санкт-Петербург - Москва) является обязательным – соответственно мы более не имеем выбора куда поехать из города 2 (удалим строку 2) и как приехать в город №3 (удалим столбец).

Итоговое дерево ветвления:

Финал метода.

Получается матрица размера 2х2.

Маломерный пример.

В заключении рассмотрим матрицу 3х3.

Тогда верхняя граница длин всех маршрутов Z max = 4+9+8 = 21

Таким образом, нижняя оценка Z нижн =16 (6+3+4+3).

Оцениваем константы обхода:

объединим города 2 и 1 в левой ветке, в правой ветке нижняя оценка стоимости возрастёт с 16 на 5 до 21.

получаем матрицу

Запретим короткое замыкание - во избежание

и редуцируем матрицу

На левой ветке ΔZ_=4, новая оценка целевой функции Z_=16+ ΔZ_=16+4=20.

Выбрано ребро

Остались рёбра
.

По принципу домино восстанавливаем минимальный цикл начиная с ребра начинающегося с 1, у на с это ребро
, как бы идущего "паровозиком".

Это конкретный путь длина 20 в этот момент мы получаем новую верхнюю оценку, что лучше старой верхней оценки 21.

На дереве ветвления множеств перебора исчезает ветвь с более высокой нижней оценкой 21 (правая ветвь).

В нашем случае полученный вариант оказался лучше всех нижних оценок по другим ветвям.

Ответ:
.

Проверка


Презентация КОММИВОЯЖЁР.

Задача проверяется преподавателем по оформлению дерева ветвления. Чтобы на нём была представлена максимально полная необходимая для проверки информация в вершинах дерева отобразить нижние оценки целевых функций, на рёбрах дерева обязательно должны быть отображены все θ (рост суммы констант редуцирования на правом повороте), все ΔZ(рост суммы констант редуцирования при левом повороте). При левом повороте выбирается одно обязательное ребро (отмечается на дереве ветвления) и добавляется одно запрещённое ребро. Для объяснения его выбора рядом с деревом ветвления на соответствующем уровне должна быть изображена цепочка в которой запрещаемое ребро вкупе с ранее выбранными (включая сейчас выбранное) порождает цикл не проходящий через все рёбра (так называемое «короткое замыкание» цикла).

В ответе дается цепочка Рёбер вида (1,k)(k,l)(l,m)..(r,1)(по размеру задачи), стоимость маршрута состоит из начальной нижней оценки и её приращений ΔZ(если были только ВЫЧЁРКИВАНИЯ – левые ПОВОРОТЫ) и – что бывает очень редко - ΔZи θ, если КРОМЕ левых ПОВОРОТОВ присутствовали один или несколько правых поворотов. Провести проверку стоимости ПОЛУЧЕНОГО решения по исходной матрице, объяснить причины несовпадения – если имелись (не совпадений быть не должно).

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1 . Описание метода ветвей и границ

В основе метода ветвей и границ лежит идея последовательного разбиения множества допустимых решений на подмножества. На каждом шаге метода элементы разбиения подвергаются проверке для выяснения, содержит данное подмножество оптимальное решение или нет. Проверка осуществляется посредством вычисления оценки снизу для целевой функции на данном подмножестве. Если оценка снизу не меньше рекорда - наилучшего из найденных решений, то подмножество может быть отброшено. Проверяемое подмножество может быть отброшено еще и в том случае, когда в нем удается найти наилучшее решение. Если значение целевой функции на найденном решении меньше рекорда, то происходит смена рекорда. По окончанию работы алгоритма рекорд является результатом его работы.

Если удается отбросить все элементы разбиения, то рекорд - оптимальное решение задачи. В противном случае, из неотброшенных подмножеств выбирается наиболее перспективное (например, с наименьшим значением нижней оценки), и оно подвергается разбиению. Новые подмножества вновь подвергаются проверке и т.д.

При применении метода ветвей и границ к каждой конкретной задаче в первую очередь должны быть определены две важнейшие его процедуры: 1) ветвления множества возможных решений; 2) вычисления нижних и верхних оценок целевой функции.

1 . 1 Правила ветвления

В зависимости от особенностей задачи для организации ветвления обычно используется один из двух способов:

1. ветвление множества допустимых решений исходной задачи D;

2. ветвление множества D" получаемого из D путем снятия условия целочисленноти на переменные.

Первый способ ветвления обычно применяется для задач целочисленного программирования и заключается в выделении подобластей возможных решений путем фиксации значений отдельных компонент целочисленных оптимизационных переменных (рис. 1). На рис. 1-а дана геометрическая интерпретация области допустимых решений задачи целочисленного программирования, определяемой двумя линейными ограничениями и условиями неотрицательности переменных, и образующихся при ветвлении подобластей, а на рис. 1-б показана соответствующая схема ветвления.

Второй способ ветвления - более универсальный, чем первый. Для осуществления ветвления некоторой области D i " этим способом на D i " решается оптимизационная задача с целевой функцией исходной задачи и действительными переменными.

Ветвление осуществляется, если в оптимальном решении значение хотя бы одной целочисленной по исходной постановке задача переменной не является целочисленным. Среди этих переменных выбирается одна, например j - я. Обозначим ее значение в найденном оптимальном решении x 0 [j]. Говорят, что ветвление осуществляется по переменной x[j]. Область D i " разделяется на две подобласти D i1 " и D i2 " следующим образом:

где ] - целая часть значения x 0 [j]

На рис. 2 условно дана геометрическая интерпретация такого ветвления.

Размещено на http://www.allbest.ru/

Рис. 2. Геометрическая интерпретация ветвления

Видно, что при этом из области D i " удаляется часть между плоскостями вновь введенных ограничений. Так как переменная x[j] по условиям области допустимых решений исходной задачи - целочисленная, то из подобласти допустимых решений исходной задачи. D i (D i D i ") при таком изъятии не исключается ни одного решения.

1 . 2 Формирование нижних и верхних оценок целевой функции

Прежде чем начать обсуждение данного вопроса, необходимо сказать, что общепринятым является применение метода ветвей и границ для задачи, в которой направление оптимизации приведено к виду минимизации. Для компактности дальнейших обозначений и выкладок запишем задачу дискретного программирования, для которой будем применять метод ветвей и границ, в следующей обобщенной форме:

где х - вектор оптимизационных переменных, среди которых часть действительных, а часть целочисленных; f(x) - в общем случае нелинейная целевая функция; D - область допустимых решений задачи дискретного программирования общего вида.

Нижние оценки целевой дикции в зависимости от выбранного способа ветвления могут определяться либо для подобластей D i D либо для подобластей D i " D" (D i " и D" получены из соответствующих множеств D i и D путем снятия условий целочисленности на дискретные переменные).

Нижней оценкой целевой функции f(x) на множестве D i (или D i ") будем называть величину:

Вычисление нижних оценок в каждом конкретном случае может осуществляться с учетом особенностей решаемой задачи. При этом чтобы оценки наиболее эффективно, выполняли свою функцию, они должны быть как можно большими, т.е. быть как можно ближе к действительным значениям min f(x). Это необходимо в первую очередь для того, чтобы нижние оценки как можно точнее отражали действительное соотношение min f(x) на образовавшихся при ветвлении подмножествах и позволяли более точно определять направление дальнейшего поиска оптимального решения исходной задачи.

На рис. 3 показан такой идеальный случай, когда нижние оценки (соединены ломаной штрихпунктирной линией) правильно отражают соотношения между действительными минимальными значениями f(x) (соединены штриховой линией) для четырех подмножеств допустимых решений D 1 , D 2 , D 3 , D 4 .

Один из универсальных способов вычисления нижних оценок заключается в решении следующей задачи:

Определенная таким образом о i является нижней оценкой f(x) на D i (или D i "), так как D i D i ".

Если при решении задачи (4) установлено, что, то для общности будем полагать, что.

Необходимо отметить одно важное свойство нижних оценок, заключающееся в том, что их значения для образовавшихся при ветвлении подмножеств не могут быть меньше нижней оценки целевой функции на множестве, подвергавшемся ветвлению.

Совместно с нижней оценкой в методе ветвей и границ используются верхние оценки f(x). Как правило, вычисляют лишь одно значение верхней оценки, которую определяют как значение целевой функции для лучшего найденного допустимого решения исходной задачи. Такую верхнюю оценку иногда называют рекордом. Если же можно для решаемой задачи достаточно просто и точно получить верхние оценки f(x) для отдельных множеств, образующихся при ветвлении, то их необходимо использовать в методе для уменьшения вычислительной сложности процесса решения. При использовании единой верхней оценки ее первоначальное значение обычно полагают равным бесконечности (), если, конечно, из априорных соображений не известно ни одного допустимого решения исходной задачи. При нахождении первого допустимого решения:

Затем при определении более лучшего допустимого решения верхнюю оценку корректируют:

Таким образом, значение верхней оценки может лишь уменьшаться в процессе решения задачи.

1 .3 Алгоритм метода ветвей и границ

Основные правила алгоритма могут быть сформулированы следующим образом:

1. Ветвлению в первую очередь подвергается подмножество с номером, которому соответствует наименьшее значение нижней оценки целевой функции (I - это множество номеров всех подмножеств, (или), находящихся на концах ветвей и ветвление которых еще не прекращено). Если реализуется изложенный выше способ ветвления множеств, то может возникнуть неоднозначность относительно выбора компоненты, по которой необходимо осуществлять очередной шаг ветвления. К сожалению, вопрос о «наилучшем» способе такого выбора с общих позиций пока не решен, и поэтому в конкретных задачах используются некоторые эвристические правила.

2. Если для некоторого i-го подмножества выполняется условие, то ветвление его необходимо прекратить, так как потенциальные возможности нахождения хорошего решения в этом подмножестве (их характеризует) оказываются хуже, чем значение целевой функции для реального, найденного к данному моменту времени, допустимого решения исходной задачи (оно характеризует).

3. Ветвление подмножества прекращается, если найденное в задаче (4) оптимальное решение. Обосновывается это тем, что, и, следовательно, лучшего допустимого решения, чем в этом подмножестве не существует. В этом случае рассматривается возможность корректировки.

4. Если, где, то выполняются условия оптимальности для найденного к этому моменту лучшего допустимого решения. Обоснование такое же, как и пункта 2 настоящих правил.

5. После нахождения хотя бы одного допустимого решения исходной задачи может быть рассмотрена возможность остановки работы алгоритма с оценкой близости лучшего из полученных допустимых решений к оптимальному (по значению целевой функции):

1 .4 Решение задачи методом ветвей и границ

Первоначально находим симплексным методом или методом искусственного базиса оптимальный план задачи без учета целочисленности переменных.

Если среди компонент этого плана нет дробных чисел, то тем самым найдено искомое решение данной задачи.

Если среди компонент плана имеются дробные числа, то необходимо осуществить переход к новым планам, пока не будет найдено решение задачи.

Метод ветвей и границ основан на предположении, что наш оптимальный нецелочисленный план дает значение функции, большее, чем всякий последующий план перехода.

Пусть переменная в плане - дробное число. Тогда в оптимальном плане ее значение будет по крайней мере либо меньше или равно ближайшему меньшему целому числу, либо больше или равно ближайшему большему целому числу.

Определяя эти числа, находим симплексным методом решение двух задач линейного программирования

Возможны четыре случая при решении этой пары задач:

Одна из задач неразрешима, а другая имеет целочисленный оптимальный план. Тогда этот план и значение целевой функции дают решение исходной задачи.

Одна из задач неразрешима, а другая имеет нецелочисленный оптимальный план. Тогда рассматриваем вторую задачу и в ее оптимальном плане выбираем одну из компонент, значение которой равно дробному числу и строим две задачи, аналогичные предыдущим.

Обе задачи разрешимы. Одна из задач имеет оптимальный целочисленный план, а в оптимальном плане другой задачи есть дробные числа. Тогда вычисляем значения целевой функции от планов и сравниваем их между собой. Если на целочисленном оптимальном плане значение целевой функции больше или равно ее значению на плане, среди компонент которого есть дробные числа, то данный целочисленный план является оптимальным для исходной задачи и дает искомое решение.

Обе задачи разрешимы, и среди оптимальных планов обеих задач есть дробные числа. Тогда рассматриваем ту из задач, для которой значение целевой функции является наибольшим. И строим две задачи.

Таким образом, при решении задачи получаем схему:

Находим решение задачи линейного программирования без учета целочисленности.

Составляет дополнительные ограничения на дробную компоненту плана.

Находим решение двух задач с ограничениями на компоненту.

Строим в случае необходимости дополнительные ограничения, согласно возможным четырем случаям получаем оптимальный целочисленный план либо устанавливаем неразрешимость задачи.

Найдем решение задачи

Решение. Находим решение без учет целочисленности задачи симплексным методом.

Рассмотрим следующую пару задач:

Первая задача имеет оптимальный план

вторая - неразрешима.

Проверяем на целочисленность план первой задачи. Это условие не выполняется, поэтому строим следующие задачи:

Задача 1.1

Задача 1.2

Задача 1.2 неразрешима, а задача №1.1 имеет оптимальный план, на котором значение целевой функции.

В результате получили, что исходная задача целочисленного программирования имеет оптимальный план и.

2. Решение задачи коммивояжера методом ветвей и границ

Рассмотрим теперь класс прикладных задач оптимизации. Метод ветвей и границ используется в очень многих из них. Предлагается рассмотреть одну из самых популярных задач - задача коммивояжера. Вот ее формулировка. Имеется несколько городов, соединенных некоторым образом дорогами с известной длиной; требуется установить, имеется ли путь, двигаясь по которому можно побывать в каждом городе только один раз и при этом вернуться в город, откуда путь был начат («обход коммивояжера»), и, если таковой путь имеется, установить кратчайший из таких путей.

2.1 Постановка задачи

Формализуем условие в терминах теории графов. Города будут вершинами графа, а дороги между городами - ориентированными (направленными) ребрами графа, на каждом из которых задана весовая функция: вес ребра - это длина соответствующей дороги. Путь, который требуется найти, это - ориентированный остовный простой цикл минимального веса в орграфе (напомним: цикл называется остовным, если он проходит по всем вершинам графа; цикл называется простым, если он проходит по каждой своей вершине только один раз; цикл называется ориентированным, если начало каждого последующего ребра совпадает с концом предыдущего; вес цикла - это сумма весов его ребер; наконец, орграф называется полным, если в нем имеются все возможные ребра); такие циклы называются также гамильтоновыми.

Очевидно, в полном орграфе циклы указанного выше типа есть. Заметим, что вопрос о наличии в орграфе гамильтонова цикла достаточно рассмотреть как частный случай задачи о коммивояжере для полных орграфов. Действительно, если данный орграф не является полным, то его можно дополнить до полного недостающими ребрами и каждому из добавленных ребер приписать вес Ґ, считая, что Ґ - это «компьютерная бесконечность», т.е. максимальное из всех возможных в рассмотрениях чисел. Если во вновь построенном полном орграфе найти теперь легчайший гамильтонов цикл, то при наличии у него ребер с весом Ґ можно будет говорить, что в данном, исходном графе «цикла коммивояжера» нет. Если же в полном орграфе легчайший гамильтонов цикл окажется конечным по весу, то он и будет искомым циклом в исходном графе.

Отсюда следует, что задачу о коммивояжере достаточно решить для полных орграфов с весовой функцией. Сформулируем теперь это в окончательном виде:

пусть - полный ориентированный граф и - весовая функция; найти простой остовный ориентированный цикл («цикл коммивояжера») минимального веса.

Пусть конкретный состав множества вершин и - весовая матрица данного орграфа, т.е. , причем для любого.

Рассмотрение метода ветвей и границ для решения задачи о коммивояжере удобнее всего проводить на фоне конкретного примера. Пользуясь введенными здесь обозначениями, мы проводим это описание в следующей лекции.

Введем некоторые термины. Пусть имеется некоторая числовая матрица. Привести строку этой матрицы означает выделить в строке минимальный элемент (его называют константой приведения) и вычесть его из всех элементов этой строки. Очевидно, в результате в этой строке на месте минимального элемента окажется ноль, а все остальные элементы будут неотрицательными. Аналогичный смысл имеют слова привести столбец матрицы.

Слова привести матрицу по строкам означают, что все строки матрицы приводятся. Аналогичный смысл имеют слова привести матрицу по столбцам.

Наконец, слова привести матрицу означают, что матрица сначала приводится по строкам, а потом приводится по столбцам.

Весом элемента матрицы называют сумму констант приведения матрицы, которая получается из данной матрицы заменой обсуждаемого элемента на Ґ. Следовательно, слова самый тяжелый нуль в матрице означают, что в матрице подсчитан вес каждого нуля, а затем фиксирован нуль с максимальным весом.

Приступим теперь к описанию метода ветвей и границ для решения задачи о коммивояжере.

Первый шаг. Фиксируем множество всех обходов коммивояжера (т.е. всех простых ориентированных остовных циклов). Поскольку граф - полный, это множество заведомо не пусто. Сопоставим ему число, которое будет играть роль значения на этом множестве оценочной функции: это число равно сумме констант приведения данной матрицы весов ребер графа. Если множество всех обходов коммивояжера обозначить через G, то сумму констант приведения матрицы весов обозначим через j(G). Приведенную матрицу весов данного графа следует запомнить; обозначим ее через M 1 ; таким образом, итог первого шага:

множеству G всех обходов коммивояжера сопоставлено чис-ло j(G) и матрица M 1 .

Второй шаг. Выберем в матрице M 1 самый тяжелый нуль; пусть он стоит в клетке; фиксируем ребро графа и разделим множество G на две части: на часть, состоящую из обходов, которые проходят через ребро, и на часть, состоящую из обходов, которые не проходят через ребро.

Сопоставим множеству следующую матрицу M 1,1: в матрице M 1 заменим на Ґ число в клетке. Затем в полученной матрице вычеркнем строку номер i и столбец номер j, причем у оставшихся строк и столбцов сохраним их исходные номера. Наконец, приведем эту последнюю матрицу и запомним сумму констант приведения. Полученная приведенная матрица и будет матрицей M 1,1 ; только что запомненную сумму констант приведения прибавим к j(G) и результат, обозначаемый в дальнейшем через j(), сопоставим множеству.

Теперь множеству тоже сопоставим некую матрицу M 1,2 . Для этого в матрице M 1 заменим на Ґ число в клетке и полученную в результате матрицу приведем. Сумму констант приведения запомним, а полученную матрицу обозначим через M 1,2 . Прибавим запомненную сумму констант приведения к числу j(G) и полученное число, обозначаемое в дальнейшем через j(), сопоставим множеству.

Теперь выберем между множествами и то, на котором минимальна функция j (т.е. то из множеств, которому соответствует меньшее из чисел j() и j()).

Заметим теперь, что в проведенных рассуждениях использовался в качестве исходного только один фактический объект - приведенная матрица весов данного орграфа. По ней было выделено определенное ребро графа и были построены новые матрицы, к которым, конечно, можно все то же самое применить.

При каждом таком повторном применении будет фиксироваться очередное ребро графа. Условимся о следующем действии: перед тем, как в очередной матрице вычеркнуть строку и столбец, в ней надо заменить на Ґ числа во всех тех клетках, которые соответствуют ребрам, заведомо не принадлежащим тем гамильтоновым циклам, которые проходят через уже отобранные ранее ребра.

К выбранному множеству с сопоставленными ему матрицей и числом j повторим все то же самое и так далее, пока это возможно.

Доказывается, что в результате получится множество, состоящее из единственного обхода коммивояжера, вес которого равен очередному значению функции j; таким образом, оказываются выполненными все условия, обсуждавшиеся при описании метода ветвей и границ.

После этого осуществляется улучшение рекорда вплоть до получения окончательного ответа.

2.2 Условие задачи

Студенту Иванову поручили разнести некоторые важные документы из 12-ого корпуса. Но, как назло, у него на это очень мало времени, да и еще надо вернуться обратно. Нужно найти кротчайший путь. Расстояния между объектами даны в таблице

2.3 Математическая модель задачи

Для решения задачи присвоим каждому пункту маршрута определенный номер: 12-ый корпус - 1, Белый дом - 2, КРК «Премьер» - 3, Администрация - 4 и 5-ый корпус - 5. Соответственно общее количество пунктов. Далее введем альтернативных переменных, принимающих значение 0, если переход из i-того пункта в j-тый не входит в маршрут и 1 в противном случае. Условия прибытия в каждый пункт и выхода из каждого пункта только по одному разу выражаются равенствами (8) и (9).

Для обеспечения непрерывности маршрута вводятся дополнительно n переменных и дополнительных ограничений (10).

Суммарная протяженность маршрута F , которую необходимо минимизировать, запишется в следующем виде:

В нашем случае эти условия запишутся в следующем виде:

2.4 Решение задачи методом ветвей и границ

1) Анализ множества D.

Найдем оценку снизу Н . Для этого определяем матрицу минимальных расстояний по строкам (1 где расстояние минимально в строке).

Аналогично определяем матрицу минимальных расстояний по столбцам.

Выберем начальный план: . Тогда верхняя оценка:

Очевидно, что, где означает переход из первого пункта в j-тый. Рассмотрим эти подмножества по порядку.

2) Анализ подмножества D 12 .

3) Анализ подмножества D 13 .

4) Анализ подмножества D 14 .

5) Анализ подмножества D 15 .

6) Отсев неперспективных подмножеств.

Подмножества D 13 и D 15 неперспективные. Т.к. , но, то далее будем рассматривать подмножество D 14 .

7) Анализ подмножества D 142 .

8) Анализ подмножества D 143 .

9) Анализ подмножества D 145 .

10) Отсев неперспективных подмножеств

Подмножество D 143 неперспективное. Т.к. , но, то далее будем рассматривать подмножество D 145 .

11) Анализ подмножества D 1452 .

ветвь граница целевой алгоритм

12) Анализ подмножества D 1453 .

Оптимальное решение: .

Таким образом, маршрут студента: 12-ый корпус - Администрация - 5-ый корпус - Белый дом - КРК Премьер - 12-ый корпус.

Размещено на http://www.allbest.ru/

Список использованной литературы

1. Абрамов Л.А., Капустин В.Ф. Математическое программирование. - Л.: Изд-во ЛГУ, 1981. -328 с.

2. Алексеев О.Г. Комплексное применение методов дискретной оптимизации. - М.: Наука, 1987. -294 с.

3. Корбут А.А., Финкелгейн Ю.Ю. Дискретное программирование. М.: Наука. 1969. -240 с

4. Кузнецов Ю.Н. и др. Математическое программирование: Учебное пособие. - 2-е изд., перераб и доп. - М.: Высшая школа, 1980. -300 с.

5. Пападимитриу Х., Стайглиц К. Комбинаторная оптимизация. Алгоритмы и сложность. - М.: Мир, 1985. -213 с.

Размещено на Allbest.ru

...

Подобные документы

    Постановка и решение дискретных оптимизационных задач методом дискретного программирования и методом ветвей и границ на примере классической задачи коммивояжера. Этапы построения алгоритма ветвей и границ и его эффективность, построение дерева графов.

    курсовая работа , добавлен 08.11.2009

    Постановка задачи о коммивояжере. Нахождение оптимального решения с применением метода ветвей и границ. Основной принцип этого метода, порядок его применения. Использование метода верхних оценок в процедуре построения дерева возможных вариантов.

    курсовая работа , добавлен 01.10.2009

    Особенности метода ветвей и границ как одного из распространенных методов решения целочисленных задач. Декомпозиция задачи линейного программирования в алгоритме метода ветвей и границ. Графический, симплекс-метод решения задач линейного программирования.

    курсовая работа , добавлен 05.03.2012

    Моделирование передвижения муравьев. Метод ветвей и границ, ближайшего соседа. Ограничения, накладываемые на агента в стандартной постановке задачи коммивояжера. Использование графа видимости в алгоритме муравья. Структура данных алгоритма муравья.

    дипломная работа , добавлен 07.02.2013

    Методы ветвей и границ первого и второго порядка. Оптимальный и пассивный поиск. Недостатки метода Ньютона. Метод золотого сечения. Примеры унимодальных функций. Динамическое и линейное программирование. Метод Жордана-Гаусса. Решение задачи коммивояжера.

    курсовая работа , добавлен 20.07.2012

    Сущность теории графов и сетевого моделирования. Выбор оптимального пути и стоимости переезда коммивояжера с помощью метода ветвей и границ. Разработка программы выбора самого выгодного маршрута, проходящего через указанные города хотя бы по одному разу.

    курсовая работа , добавлен 08.08.2013

    Оптимизация решения задачи с помощью алгоритма отжига. Анализ теории оптимизации как целевой функции. Метод градиентного спуска. Переменные и описание алгоритма отжига. Представление задачи коммивояжера через граф. Сведение задачи к переменным и решение.

    курсовая работа , добавлен 21.05.2015

    Постановка линейной целочисленной задачи. Метод отсекающих плоскостей. Дробный алгоритм решения полностью целочисленных задач. Эффективность отсечения Гомори. Сравнение вычислительных возможностей метода отсекающих плоскостей и метода ветвей и границ.

    курсовая работа , добавлен 25.11.2011

    Задача о ранце как задача комбинаторной оптимизации. Задача о загрузке, рюкзаке, ранце. Постановка и NP-полнота задачи. Классификация методов решения задачи о рюкзаке. Динамическое программирование. Метод ветвей и границ. Сравнительный анализ методов.

    курсовая работа , добавлен 18.01.2011

    Поиск верхних и нижних границ для оптимального значения на подобласти допустимых решений. Методы и проблемы решения задач нелинейного программирования. Написание и отладка программы. Создание программы для решения задачи "коммивояжёра" прямым алгоритмом.