Магнетрон применение. Как работает магнетрон. Блок управления — мозг прибора

Легко управлять микроволновкой сегодня может даже ребенок. Она стала привычной и надежной помощницей. И при этом очень редко задумываемся, каким образом пища разогревается за считаные минуты. А происходит это, благодаря микроволнам, которые производит магнетрон. Разберемся, каким образом прибор работает.

Что такое магнетрон в СВЧ

Магнетрон - это главная деталь микроволновой печи . Его неслучайно называют сердцем агрегата. СВЧ исправно выполняет свои функции только при исправном магнетроне.Основная задача детали - создание электромагнитных полей. Возможность руководить их возникновением была установлена почти 100 лет назад.

Справка. В 1921 году физик из США А.Халл в процессе проводимых опытов и экспериментов обнаружил возможность изменять массу электронов.

Он же ввел в употребление само название магнетрона. Но высокочастотные электромагнитные волны были открыты тремя годами позже, в 1924 г. С этого времени ученые не только изучили СВЧ, но и научились их использовать.

Справка . В микроволновых печах данные генераторы волн используются с 60-х годов XX века.

Как устроен магнетрон в СВЧ

Устройство детали требует минимальных знаний по физике. Поток электронов возникает в пространстве между анодом и катодом.

Анод

В микроволновке для анода используют медь. Из нее выполнена оболочка цилиндра. Внутри он полый. Стенка цилиндра толстая, ее внутренняя поверхность неровная. В разрезе анод выглядит как окружность, по всей длине которой расположены небольшие полукольца.

Они необходимы для создания дополнительного резонанса. Воздуха внутри анода нет, там создано вакуумное пространство. Чтобы создаваемые СВЧ волны не оставались внутри, в одном из полуколец-резонаторов имеется специальный выход.

Катод

Через центр анода проложен катод. Для него воспользовались нитью накаливания. Для ее подогрева предусмотрены провода. Они соединяют катод с источником подогрева.

Важно! Анод и катод размещают в специальном блоке, который содержит магниты.

Принцип работы магнетрона

Итак, теперь мы знаем, что в главной детали СВЧ взаимодействуют 2 разных поля .

  • Первое из них - электронное . При включении прибора и подаче напряжения у катода появляются электроны, которые движутся к положительному полюсу - к аноду.
  • Второе поле - магнитное . Оно воздействует на частицы и возвращает их назад, к катоду.

После того как электроны образуют кольцо, внутри магнетрона возникает заряд. Причем количество зарядов увеличивается, так как в каждом полукольце-резонаторе образуются дополнительные электронные кольца. Это становится причиной возникновения высокочастотных колебаний. Таким образом, волновое поле сверхвысоких частот появляется в результате взаимодействия электронного и магнитного полей. Возникающие при этом микроволны и выполняют обработку продуктов.

Разогрев пищи в микроволновке осуществляется излучением, частота которого равна 2450 МГц, создаваемым магнетроном. Если после включения печи тарелка крутится, свет в камере горит, вентилятор работает, а еда остаётся холодной или греется неприлично долго — значит что-то не в порядке с этой лампой. Если знать, как проверить магнетрон в микроволновке, то можно обойтись без похода в мастерскую. Тем более что неисправной может оказаться какая-либо вспомогательная деталь в схеме магнетрона.

На что способна микроволновка. Что такое магнетрон и Свч-энергия магнетрона? Магнетрон — это цэлектровакуумная лампа, выполняющая функции диода и состоящая из нескольких частей:

  1. Цилиндрического медного анода, поделённого на 10 частей.
  2. В центре размещён катод со встроенной нитью накала. Его задачей является создание потока электронов.
  3. По торцам размещаются кольцевые магниты, необходимые для создания магнитного поля, за счёт которого создаётся свч излучение.
  4. Излучение улавливается проволочной петлёй, соединённой с катодом и выводится из магнетрона с помощью излучающей антенны, направляясь по волноводу в камеру.

Во время работы магнетрон сильно греется, поэтому его корпус оснащается пластинчатым радиатором, обдуваемым вентилятором. Для защиты от перегрева в схему питания включен термопредохранитель.

Как устроен магнетрон, схема.

Нарушение работоспособности магнетрона может возникнуть по следующим причинам:

  • Прогорел защитный колпачок и поэтому при работе искрит. Заменяется на любой целый, так как они одинаковы для всех магнетронов.
  • Перегорание нити накала.
  • Разгерметизация магнетрона вследствие перегрева.
  • Пробой высоковольтного диода.
  • Сгорел высоковольтный предохранитель.
  • Нет контакта в термопредохранителе.
  • Пробит высоковольтный конденсатор.

При всех неисправностях, кроме разгерметизации, возможен ремонт своими руками.

Измерение сопротивления омметром.

Определение неисправности

Чтобы узнать, почему не работает печь, нужно отключить её от розетки и снять крышку.

  1. Внимательно осматривается внутренность на предмет оплавления, обгорания, отпаявшихся проводов. Состояние высоковольтного предохранителя видно невооружённым взглядом. Предохранитель с оборванной нитью меняется на целый и если при опробовании печи опять перегорает, то поиск продолжается.
  2. Для дальнейшей диагностики потребуется мультиметр или тестер. Проверка начинается с печатной платы, на которой собрана схема питания магнетрона, состоящая из резисторов, диодов, конденсаторов, варисторов. Детали можно прозванивать по месту, без выпаивания.
  3. После чего тестером проверяют термопредохранитель. При нормальных контактах сопротивление равно нулю.
  4. Проверка высоковольтного конденсатора мультиметром возможна только на пробой. Если прибор покажет короткое замыкание — деталь заменяется. Так как некоторые типы конденсаторов имеют встроенные резисторы для разрядки, исправная ёмкость покажет сопротивление в 1 МОм, вместо бесконечности.
  5. Для проверки высоковольтного диода тестер не годится, поскольку у него мал диапазон измерения сопротивления. Чтобы правильно оценить состояние диода потребуется мегомметр со шкалой до 200 МОм. Но вряд ли он найдётся в домашней мастерской. Поэтому применяется метод диагностики с использованием двухпроводной домашней электросети с обязательным соблюдением правил безопасности. Один вывод диода подключается к сетевому проводу. Между вторым и другим проводником сети включается мультиметр для измерения постоянного напряжения в диапазоне до 250 В. Если диод цел, прибор покажет наличие выпрямленного напряжения. При пробое или обрыве стрелка останется на нуле. Для замены подойдёт любой высоковольтный диод с рабочим напряжением 5 кВ и током 0,7 А.
  6. Проверка магнетрона начинается с прозвонки накальной нити. Для этого измеряется сопротивление между его клеммами, которое у исправного накала составляет несколько Ом. Если тестер показывает бесконечность, это ещё не значит, что нить перегорела. Для полной уверенности проверяется, после снятия крышки, целостность соединений дросселей с клеммами магнетрона.
    Некоторые умельцы рекомендуют удалять дросселя. Делать это ни в коем случае нельзя, так как нарушается режим работы трансформатора, из-за чего возможно возгорание.
    После измерения сопротивления между выводами и корпусом можно судить о состоянии проходных конденсаторов. При бесконечности — всё нормально, при нуле — пробиты, а при наличии сопротивления — с утечкой тока. Неисправные конденсаторы откусываются кусачками и на их место припаиваются новые с ёмкостью не менее 2000 пФ.
  7. Если все элементы целы, но магнетронного излучения недостаточно для полноценного разогрева еды, значит, катод потерял эмиссию. Данная неисправность устраняется только заменой. При замене конденсаторов нельзя пользоваться обычным припоем, требуются тугоплавкие марки или компактный аппарат для контактной сварки.

На видео рассказ для чайников, как проверить магнетрон, всё очень доходчиво:

Замена магнетрона

Поскольку ремонт магнетрона не производится даже в хорошо оснащённых мастерских, придётся приобретать новый. Прежде чем извлечь магнетрон из микроволновки, необходимо пометить контакты разъёма, чтобы не перепутать их местами при установке новой детали. Если выводы подключить неправильно — магнетрон не будет работать.

Замену можно сделать самостоятельно, если хоть раз применял отвёртку по назначению и прозвонил пару диодов. Для этого не требуется специальных навыков и знания, как работает магнетрон. В случае невозможности найти определённый магнетрон для микроволновки, придётся применить подходящий аналог.

Его мощность должна быть равной или большей, чем у оригинала, а крепление и расположение разъёма совпадать. Устройство магнетрона у производителей одинаково, а конструкция может отличаться, поэтому нужно проследить, чтобы прилегание аналога к волноводу было плотным. Если теплопроводящая паста на термопредохранителе окажется засохшей — её заменяют свежей.

При покупке нового магнетрона необходимо, чтобы совпадала мощность, соответствовали контакты и отверстия для крепления. Если хотя бы одно из условий не совпадает — вы приобрели не годную вам деталь.

  • Если в микроволновке при включении что-то трещит и искрит — нужно перестать пользоваться печью и выяснить причину. Устранение неисправности обойдётся дешевле покупки новой детали. В данном случае виновником обычно оказывается прогорание колпачка, из-за этого СВЧ-печь искрит.
  • Необходимо постоянно следить за состоянием слюдяной накладки, защищающей выход волновода в камеру от попадания жира и крошек пищи. Если колпачок неисправен — слюда может оказаться прогоревшей, что приводит к выходу их строя магнетрона. Накладку следует держать в чистоте, так как попавший на неё жир обугливается под воздействием температуры и приобретает электропроводность. Взаимодействуя с излучением, он становится причиной искрения в камере.
  • При нестабильном напряжении, микроволновку лучше подключить через стабилизатор, так как даже незначительное падение негативно влияет на работу печи. Падает мощность, и ускоряется износ катода магнетрона. Например, при напряжении в сети 200 В мощность уменьшается вдвое.
  • У микроволновки много применений, поэтому в случае её неисправности нарушается привычный порядок вещей. Причиной поломки необязательно является магнетрон или схема его питания. Сначала следует проверить величину напряжения в месте подключения печи к сети и состояние слюдяной пластины.

Магнетрон - э то генераторный электровакуумный СВЧ прибор, в котором формирование электронного потока и его взаимодействие с СВЧ полем происходит в пространстве, где постоянные электрическое и магнитное поля взаимно перпендикулярны. Магнетрон преобразует энергию источника питания в энергию СВЧ колебаний.

Простейший магнетрон (см.рис.27) – это диод цилиндрической конструкции с внешним анодом 1 и соосно расположенным внутри него катодом 2. В толстостенном медном цилиндре анода равномерно размещены полые резонаторы 3, соединенные с промежутком катод–анод 4, называемым пространством взаимодействия. Резонаторы и пространство взаимодействия образуют кольцевую резонаторную систему (РС).

Рис.27. Конструкция магнетрона.

1–анод, 2–катод, 3–резонаторы, 4–пространство взаимодействия, 5–вывод энергии СВЧ.

Резонаторная система принимает поток электронов, движущихся от катода к аноду, и одновременно отводит тепло. В резонаторной системе есть несколько частот, при которых на длине резонатора укладывается целое число стоячих волн от 1 до n/2 (n-число резонаторов). На определенной резонансной частоте и возникают СВЧ колебания.

В резонаторе на электроны, двигающиеся от катода к аноду, действуют три поля: постоянное электрическое, сообщающее кинетическую энергию электронам, постоянное магнитное поле, изменяющее траекторию их движения, и СВЧ поле, возникающее в резонаторах и проникающее через щели в промежуток катод-анод. При этом часть электронов, которые замедляются полем, отдают энергию, поддерживая колебания в резонаторе. В магнетроне процессы формирования, управления и преобразования энергии электронного потока происходят в одном пространстве взаимодействия, что осложняет анализ работы этого устройства.

На рис.28 приведена структура ВЧ электрического поля в пространстве взаимодействия вблизи одиночного резонатора (а) и по кругу всего анодного блока. Вектор напряженности поля можно разложить на радиальную и тангенциальную составляющие. При этом в пространстве взаимодействия возникает стоячая волна на определенной частоте, а резонаторный блок представляет собой замедляющую систему.

Если средняя составляющая скорости электрона равна фазовой скорости СВЧ волны вдоль резонансной системы (условие синхронизма), то СВЧ поле группирует электроны, замедляя их и отбирая энергию, полученную от статического электрического поля. Траектория движения электрона в пространстве взаимодействия приведена на рис. 29.

Три электрона (А, Б и В) находятся в разных точках тормозящего ВЧ поля в пространстве взаимодействия и имеют различные скорости. Электрон А будет ускоряться радиальной составляющей ВЧ поля, а электрон В – замедляться. В результате оба они с разных сторон будут приближаться к электрону Б, находящемуся в плоскости, где радиальная составляющая электрического поля равна нулю. Таким образом происходит группировка электронов по скорости, а отбор энергии электронного пучка осуществляется тангенциальной составляющей поля, что приводит к образованию в магнетроне электронных пучков, двигающихся от катода к аноду. Число таких пучков в два раза меньше числа резонаторов. На рис. 30 показана огибающая этих пучков в фиксированный момент времени (траектории конкретных электронов показаны сплошными линиями).



Весь пространственный заряд электронных пучков вращается вокруг катода синхронно с изменением ВЧ электрического поля. В моменты времени, когда электронные пучки подходят к щелям резонаторов, поле в них оказывается тормозящим, отбирающим энергию у электронов. В результате потенциальная энергия электронного потока, получаемая им от источника постоянного анодного напряжения, преобразуется в энергию электромагнитных колебаний, генерируемых магнетроном.

В зависимости от режима работы различают магнетроны импульсного и непрерывного действия. К.п.д. магнетронов достигает 95%, рабочая частота от 0,5 до 100 ГГц, длительность импульсов колебаний 0,02-100 мкс, мощность прибора от нескольких Вт до десятков МВт.

Различные варианты конструкции магнетронов и резонаторных систем приведены на рис.31-32.

Рис.31 Резонаторные системы магнетрона.

Рис.32 Конструкции магнетронов

Чтобы получить частные и высокие колебания, используют магнетроны. Электрические и магнитные поля действуют с высокой силой. В результате происходят колебания высокой частоты. Часто применяемой разновидностью устройства является многорезонаторная. В таком магнетроне на электроны действуют сразу три поля:

  • электрическое;
  • магнитное;

Магнетрон: что это и как появилось

Впервые этот термин был использован в 1921 году американским ученым-физиком А. Халлом. Его исследования и эксперименты были продолжены далее, что привело к появлению многих разновидностей магнетронов, которые стали использовать в радиоэлектронике.

Патент на это изобретение получил А. Жаке в 1924 году. Именно он изобрел современный магнетрон, принцип действия которого основывается на взаимодействии двух полей.

В последующее десятилетие велись разработки магнетронов для генерации волн СВЧ. Главная задача заключалась в увеличении частоты колебаний, что удалось сделать только советским ученым. Они увеличили исходное значение в два раза, применив в качестве материала анода медь.

Устройство

Сердцем магнетрона является блок анода, состоящий из медного цилиндра, с пустотой внутри. В центре его имеются полости, они являются кольцевой системой объемных резонаторов. В середине анода имеется отверстие, именно через него идет подключение к питанию.

Также от него анод подключается к катоду. Им является нить накала, она подогреваемая и проходит через всю середину анода. Чтобы обеспечить выход высокочастотных колебаний, такой выход устанавливают в одном из резонаторов. Внутри анодного блока вакуум. Для его охлаждения на поверхности устанавливают ребристые радиаторы.

Помещают этот блок так, что бы он оказался между магнитами, создающими магнитное поле достаточной силы.

Устанавливают напряжение между причем так, что положительно заряженный полюс находится у анода. Электроны от катода начинают двигаться из-за действия поля электричества. Двигаться они должны к аноду, а магнетрон, принцип действия которого заключается в возвращает его образно к катоду.

Добиться эффекта, когда электроны движутся по описываемой окружности и при этом находятся рядом с анодом, но возвращаются обратно, можно, если соблюсти определенные условия в двух связанных полях. При таком состоянии на аноде остается лишь малая часть всех электронов, вылетевших с катода.

Возвратившись на катод, часть электронов заменяется. Этот процесс продолжается, образуя возле анода заряд в форме кольца. Такой заряд начинает образовываться возле каждого резонатора, появляются незатухающие высокочастотные колебания. Вывести такие колебания можно витками проводов, расположив их в любом из резонаторов. Следом эти колебания передаются на волновод (или коаксиальную линию).

Магнетроном можно назвать прибор СВЧ, он генераторный, вакуумный, движение электронов в нем происходит в двух полях: электронном и магнитном. Создает магнетрон принцип действия двух этих полей, которые образуют третье - СВЧ.

Применение

Использоваться могут они в радиотехнике. Например, при составлении радарных карт. Для этого магнетрон должен состоять не только из рупорного облучателя, но и из параболического отражателя. При помощи управления импульсами высокой интенсивности создается короткий импульс излучения микроволн. Часть энергии, отражаясь, возвращается обратно к волноводу и антенне, что направляют ее к приемнику.

После обработки данные появляются на радарной карте.

Применение в быту

В печах, работа которых основана на микроволнах, принцип действия немного другой. Магнетрон для микроволновки имеет на конце волновода прозрачное отверстие для радиочастот, которые образуются в отсеке для приготовления пищи. Поэтому важно включать такую печь только с наличием в ней еды. Без этого условия стоячие волны вызовут искрение, так как магнитные волны не поглотились, а были возвращены обратно. Если это продлится долгое время, магнетрон просто сломается. Скорость, при которой пища в микроволновке готовится, зависит напрямую от мощности магнетрона.

Большинство имеет мощность от 700 до 850 Вт. Этого вполне хватит, чтобы вскипятить стакан воды всего за 2-3 минуты. Магнетрон для СВЧ "Сатурн", в зависимости от модели, может иметь разную мощность. Выбор СВЧ этой фирмы можно начать именно со сравнения магнетронов, а потом и дополнительных функций.

Покупка СВЧ

При покупке следует знать принцип ее действия. Многие насторожено относятся к этой технике, ошибочно полагая, что это источник радиации. На самом деле, в ней действует принцип СВЧ, что следует из самого названия. СВЧ - не что иное, как «сверхвысокие частоты». Радиацию она, конечно, не излучает, но обращаться с такой техникой нужно осторожно.

Сама микроволновка уже изначально имеет защиту окружающих от СВЧ-излучения. Такая печь оборудована специальным датчиком, который отключит магнетрон, если открыта дверца. Завершить работу магнетрон, принцип действия которого заключается в выработке СВЧ-волн, не сможет, если нарушены правила эксплуатации. Если поместить в печь, например, металлическую миску, она просто выведет из строя весь прибор.

Волны от СВЧ-печи могут выходить наружу не дальше чем на пять метров.

Поэтому в то время, когда она работает, лучше находиться подальше. Однако планировка кухонь большинства квартир делать этого не позволяет, ибо придется выходить в другую комнату.

Электромагнитное поле бесконтактно разогревает пищу, помещенную в микроволновую печь. Более того, процесс нагрева происходит непосредственно в пределах продукта, что сокращает время приготовления до нескольких минут. Не надо предварительно нагревать посуду, в которой находится пища.

Для лучшего результата готовки надо знать кулинарные хитрости приготовления тех или иных продуктов. С учетом того, что время идет, а устройство СВЧ-печей не меняется, можно предположить их дальнейшее и постоянное закрепление за кухнями многих потребителей.

Покупка магнетрона к СВЧ

Покупая самостоятельно магнетрон, нужно обязательно знать маркировку. Чтобы не совершить ошибку, покупая магнетрон на нужно ознакомиться с тем, какие же они бывают. Самая слабая мощность у магнетрона 2M213. У него выходная мощность при нагрузке и типовая равны 700 и 600 W соответственно, анодное значение - 3,95 kVp, а частота - 2460 MHz.

Магнетронов со средними значениями величин несколько. Основной из них: 2M214. У этой модели частота такая же, анодное значение чуть выше - 4.20 kVp. Выходная мощность при нагрузке и типовая - 1000 и 850 W соответственно.

Максимальные значения показателей у магнетрона марки2M246.

При той же частоте анодное значение больше - 4.40 kVp, средние мощности на выходе при нагрузке - 1150 W, типовая - 1000 W.

Возможна ли замена своими руками

Любой из видов магнетрона для микроволновок LG можно заменить аналогичным для другой фирмы, например, "Самсунг". Аналогично можно заменить магнетрон для микроволновки "Самсунг" подходящим по мощности элементом от другой фирмы. Если модель бытовой сверхвысокочастотной печи выпущена очень давно, то найти деталь соответствующей марки очень трудно. Возможно, производитель уже снял с производства данный вид.

Но даже если вы знаете принцип работы магнетрона, не следует заниматься починкой такой техники дома самостоятельно.

Приобрести магнетрон 2M218 JF Daewoo можно самостоятельно, заказав в специализированных магазинах или непосредственно у производителя. Стоит он порядка 2 тысяч рублей.

Основа работы микроволновки

Разогрев продуктов в микроволновке происходит так: любая пища содержит в себе молекулы воды, она, в свою очередь, состоит из заряженных положительно и отрицательно частиц. Такие молекулы выступают диполем, потому что хорошо проводят волны электричества.

Заключение

Частая поломка СВЧ-печей - выход из строя магнетрона. Купить магнетрон на микроволновку LG (как, впрочем, и других производителей данных бытовых приборов) и заменить его самостоятельно будет достаточно проблематично. Даже если найдется подходящий элемент, установить его сможет только мастер.

Перед покупкой устройства стоит сравнить его цену со стоимостью самой микроволновки. Часто бывает, что ремонт обойдется дороже покупки. Всегда учитывайте данный фактор.

Итак, мы выяснили, для чего нужен такой элемент, как магнетрон, и в каких сферах он применяется.

Принцип действия магнетрона основан на влиянии электрического и магнитного полей на траекторию движения электронов. По своей сути, магнетрон является электровакуумным диодом. Другими словами «электронной лампой» с двумя электродами. В основе работы электровакуумных приборов лежит явление термоэлектронной эмиссии. Термоэлектронная эмиссия возникает при разогреве поверхности эмиттера (катода), в следствии чего увеличивается количество электронов, способных совершить работу выхода. Для того, что бы выяснить, как электроны ведут себя в электрическом поле, рассмотрим принцип действия обычного электровакуумного диода.

На рисунке выше изображена схема работы электровакуумного диода. На части «А» рисунка, составлена электрическая цепь состоящая из диода, батареи питания «В», и ключа «К». Ключ «К» разомкнут – следовательно, напряжение на аноде отсутствует «Ua = 0». Если нет напряжения, то ток анода тоже будет равен нулю «Ia = 0». На нить накала подано напряжение «Un» следовательно, катод диода разогрет, и самые активные электроны уже готовы покинуть его. Но своей энергии им для этого не хватает, поэтому они все еще находятся возле катода.

Перейдем ко второй части рисунка. На части «Б» данного рисунка все та же схема, но ключ «К» на ней замкнут. Следовательно — на аноде появилось напряжение «Ua = x», поданное с положительного полюса батареи питания «В» через ключ «К». В результате чего, между электродами диода возникло электрическое поле. Под действием силы этого поля электроны начали покидать катод и устремились к аноду. Таким образом, цепь замкнулась и по цепи начал протекать ток анода определенной величины «Ia = y». Из выше изложенного можно сделать вывод, что электрическое поле заставляет электроны двигаться по прямой вдоль, своих силовых линий.

Магнитное поле ни как не действует на не подвижный электрон. Но если электрон, движущийся по прямой траектории под действием электрического поля, попадает в магнитное поле, то последнее влияет на траекторию движения электрона, отклоняя ее вдоль своих силовых линий. Таким образом, электрон двигавшийся по прямой, под действием магнитного поля начинает двигаться по дуге.

Теперь рассмотрим внутренности магнетрона. Отличительной особенностью конструкции магнетрона – является конструкция анода. Анод магнетрона представляет собой толстостенный медный цилиндр с системой резонаторов внутри. В поперечном сечении, вид конструкции анода напоминает колесо телеги со спицами. Каждая «спица» — является резонатором. В центре анода расположен катод с подогревателем. По краям анодного блока находятся два кольцевых магнита, которые образуют магнитную систему, между полюсами которой и располагается анод. Если бы данная магнитная система отсутствовала, то не было бы и магнитного поля и в этом случае, при подаче напряжения накала и анодного напряжения, электроны двигались бы по прямой, от катода — к аноду т. е. вдоль силовых линий электрического поля.

На рисунке сверху изображена очень упрощенная схема работы магнетрона. На ней голубым цветом выделена приблизительная форма траектории движения одного электрона покинувшего катод и стремящегося к аноду. На рисунке видно, что благодаря наличию магнитного поля, траектория движения электрона изменяется таким образом, что покинувший катод электрон достигает анода, далеко не сразу. Из-за такого влияния магнитного поля на движение электрона, в рабочей области образуется своеобразное «электронное облако», которое вращается вокруг катода – внутри анода. Пролетая мимо резонаторов, электроны отдают им часть своей энергии и наводят в них токи высокой частоты которые в свою очередь, создают сильное СВЧ поле в полостях резонаторов. В одну из таких полостей помещена петля связи (на схеме не показана), посредством которой энергия СВЧ поля выводится наружу.

Это очень краткое описание работы магнетрона. Для тех, кто хотел бы познакомиться с принципом его действия поближе, даю ссылки на более подробные описания.