Какую матрицу обозначают a b. Нахождение обратной матрицы

1-й курс, высшая математика, изучаем матрицы и основные действия над ними. Здесь мы систематизируем основные операции, которые можно проводить с матрицами. С чего начать знакомство с матрицами? Конечно, с самого простого - определений, основных понятий и простейших операций. Заверяем, матрицы поймут все, кто уделит им хотя бы немного времени!

Определение матрицы

Матрица – это прямоугольная таблица элементов. Ну а если простым языком – таблица чисел.

Обычно матрицы обозначаются прописными латинскими буквами. Например, матрица A , матрица B и так далее. Матрицы могут быть разного размера: прямоугольные, квадратные, также есть матрицы-строки и матрицы-столбцы, называемые векторами. Размер матрицы определяется количеством строк и столбцов. Например, запишем прямоугольную матрицу размера m на n , где m – количество строк, а n – количество столбцов.

Элементы, для которых i=j (a11, a22, .. ) образуют главную диагональ матрицы, и называются диагональными.

Что можно делать с матрицами? Складывать/вычитать , умножать на число , умножать между собой , транспонировать . Теперь обо всех этих основных операциях над матрицами по порядку.

Операции сложения и вычитания матриц

Сразу предупредим, что можно складывать только матрицы одинакового размера. В результате получится матрица того же размера. Складывать (или вычитать) матрицы просто – достаточно только сложить их соответствующие элементы . Приведем пример. Выполним сложение двух матриц A и В размером два на два.

Вычитание выполняется по аналогии, только с противоположным знаком.

На произвольное число можно умножить любую матрицу. Чтобы сделать это, нужно умножить на это число каждый ее элемент. Например, умножим матрицу A из первого примера на число 5:

Операция умножения матриц

Перемножить между собой удастся не все матрицы. Например, у нас есть две матрицы - A и B. Их можно умножить друг на друга только в том случае, если число столбцов матрицы А равно числу строк матрицы В. При этом каждый элемент получившейся матрицы, стоящий в i-ой строке и j-м столбце, будет равен сумме произведений соответствующих элементов в i-й строке первого множителя и j-м столбце второго . Чтобы понять этот алгоритм, запишем, как умножаются две квадратные матрицы:

И пример с реальными числами. Умножим матрицы:

Операция транспонирования матрицы

Транспонирование матрицы – это операция, когда соответствующие строки и столбцы меняются местами. Например, транспонируем матрицу A из первого примера:

Определитель матрицы

Определитель, о же детерминант – одно из основных понятий линейной алгебры. Когда-то люди придумали линейные уравнения, а за ними пришлось выдумать и определитель. В итоге, разбираться со всем этим предстоит вам, так что, последний рывок!

Определитель – это численная характеристика квадратной матрицы, которая нужна для решения многих задач.
Чтобы посчитать определитель самой простой квадратной матрицы, нужно вычислить разность произведений элементов главной и побочной диагоналей.

Определитель матрицы первого порядка, то есть состоящей из одного элемента, равен этому элементу.

А если матрица три на три? Тут уже посложнее, но справиться можно.

Для такой матрицы значение определителя равно сумме произведений элементов главной диагонали и произведений элементов лежащих на треугольниках с гранью параллельной главной диагонали, от которой вычитается произведение элементов побочной диагонали и произведение элементов лежащих на треугольниках с гранью параллельной побочной диагонали.

К счастью, вычислять определители матриц больших размеров на практике приходится редко.

Здесь мы рассмотрели основные операции над матрицами. Конечно, в реальной жизни можно ни разу так и не встретить даже намека на матричную систему уравнений или же наоборот - столкнуться с гораздо более сложными случаями, когда придется действительно поломать голову. Именно для таких случаев и существует профессиональный студенческий сервис . Обращайтесь за помощью, получайте качественное и подробное решение, наслаждайтесь успехами в учебе и свободным временем.

Решение матриц – понятие обобщающее операции над матрицами. Под математической матрицей понимается таблица элементов. О подобной таблице, в которой m строк и n столбцов, говорят что это матрица размером m на n.
Общий вид матрицы

Основные элементы матрицы:
Главная диагональ . Её составляют элементы а 11 ,а 22 …..а mn
Побочная диагональ. Её слагают элементы а 1n ,а 2n-1 …..а m1 .
Перед тем как перейти к решению матриц рассмотрим основные виды матриц:
Квадратная – в которой число строк равно числу столбцов (m=n)
Нулевая – все элементы этой матрицы равны 0.
Транспонированная матрица - матрица В, полученная из исходной матрицы A заменой строк на столбцы.
Единичная – все элементы главной диагонали равны 1, все остальные 0.
Обратная матрица - матрица, при умножении на которую исходная матрица даёт в результате единичную матрицу.
Матрица может быть симметричной относительно главной и побочной диагонали. То есть, если а 12 =а 21 , а 13 =а 31 ,….а 23 =а 32 …. а m-1n =а mn-1 . то матрица симметрична относительно главной диагонали. Симметричными бывают только квадратные матрицы.
Теперь перейдем непосредственно к вопросу, как решать матрицы.

Сложение матриц.

Матрицы можно алгебраически складывать, если они обладают одинаковой размерностью. Чтобы сложить матрицу А с матрицей В, необходимо элемент первой строки первого столбца матрицы А сложить с первым элементом первой строки матрицы В, элемент второго столбца первой строки матрицы А сложить с элементом элемент второго столбца первой строки матрицы В и т.д.
Свойства сложения
А+В=В+А
(А+В)+С=А+(В+С)

Умножение матриц .

Матрицы можно перемножать, если они согласованы. Матрицы А и В считаются согласованными, если количество столбцов матрицы А равно количеству строк матрицы В.
Если А размерностью m на n, B размерностью n на к, то матрица С=А*В будет размерностью m на к и будет составлена из элементов

Где С 11 – сумма папарных произведений элементов строки матрицы А и столбца матрицы В, то есть элемента сумма произведения элемента первого столбца первой строки матрицы А с элементом первого столбца первой строки матрицы В, элемента второго столбца первой строки матрицы А с элементом первого столбца второй строки матрицы В и т.д.
При перемножении важен порядок перемножения. А*В не равно В*А.

Нахождение определителя.

Любая квадратная матрица может породить определитель или детерминант. Записывает det. Или | элементы матрицы |
Для матриц размерностью 2 на 2. Определить есть разница между произведением элементов главной и элементами побочной диагонали.

Для матриц размерностью 3 на 3 и более. Операция нахождения определителя сложнее.
Введем понятия:
Минор элемента – есть определитель матрицы, полученной из исходной матрицы, путем вычеркивания строки и столбца исходной матрицы, в которой этот элемент находился.
Алгебраическим дополнением элемента матрицы называется произведение минора этого элемента на -1 в степени суммы строки и столбца исходной матрицы, в которой этот элемент находился.
Определитель любой квадратной матрицы равен сумме произведения элементов любого ряда матрицы на соответствующие им алгебраические дополнения.

Обращение матрицы

Обращение матрицы - это процесс нахождения обратной матрицы, определение которой мы дали в начале. Обозначается обратная матрица также как исходная с припиской степени -1.
Находиться обратная матрица по формуле.
А -1 = A * T x (1/|A|)
Где A * T - Транспонированная матрица Алгебраических дополнений.

Примеры решения матриц мы сделали в виде видеоурока

:

Если хотите разобраться, смотрите обязательно.

Это основные операции по решению матриц. Если появится дополнительные вопросы о том, как решить матрицы , пишите смело в комментариях.

Если все же вы не смогли разобраться, попробуйте обратиться к специалисту.

В данной теме рассмотрим понятие матрицы, а также виды матриц. Так как в данной теме немало терминов, то я добавлю краткое содержание, чтобы ориентироваться в материале было проще.

Определение матрицы и её элемента. Обозначения.

Матрица - это таблица из $m$ строк и $n$ столбцов. Элементами матрицы могут быть объекты совершенно разнообразной природы: числа, переменные или, к примеру, иные матрицы. Например, матрица $\left(\begin{array} {cc} 5 & 3 \\ 0 & -87 \\ 8 & 0 \end{array} \right)$ содержит 3 строки и 2 столбца; элементами её являются целые числа. Матрица $\left(\begin{array} {cccc} a & a^9+2 & 9 & \sin x \\ -9 & 3t^2-4 & u-t & 8\end{array} \right)$ содержит 2 строки и 4 столбца.

Разные способы записи матриц: показать\скрыть

Матрица может быть записана не только в круглых, но и в квадратных или двойных прямых скобках. Т.е., указанные ниже записи означают одну и ту же матрицу:

$$ \left(\begin{array} {cc} 5 & 3 \\ 0 & -87 \\ 8 & 0 \end{array} \right);\;\; \left[ \begin{array} {cc} 5 & 3 \\ 0 & -87 \\ 8 & 0 \end{array} \right]; \;\; \left \Vert \begin{array} {cc} 5 & 3 \\ 0 & -87 \\ 8 & 0 \end{array} \right \Vert $$

Произведение $m\times n$ называют размером матрицы . Например, если матрица содержит 5 строк и 3 столбца, то говорят о матрице размера $5\times 3$. Матрица $\left(\begin{array}{cc} 5 & 3\\0 & -87\\8 & 0\end{array}\right)$ имеет размер $3 \times 2$.

Обычно матрицы обозначаются большими буквами латинского алфавита: $A$, $B$, $C$ и так далее. Например, $B=\left(\begin{array} {ccc} 5 & 3 \\ 0 & -87 \\ 8 & 0 \end{array} \right)$. Нумерация строк идёт сверху вниз; столбцов - слева направо. Например, первая строка матрицы $B$ содержит элементы 5 и 3, а второй столбец содержит элементы 3, -87, 0.

Элементы матриц обычно обозначаются маленькими буквами. Например, элементы матрицы $A$ обозначаются $a_{ij}$. Двойной индекс $ij$ содержит информацию о положении элемента в матрице. Число $i$ - это номер строки, а число $j$ - номер столбца, на пересечении которых находится элемент $a_{ij}$. Например, на пересечении второй строки и пятого столбца матрицы $A=\left(\begin{array} {cccccc} 51 & 37 & -9 & 0 & 9 & 97 \\ 1 & 2 & 3 & 41 & 59 & 6 \\ -17 & -15 & -13 & -11 & -8 & -5 \\ 52 & 31 & -4 & -1 & 17 & 90 \end{array} \right)$ расположен элемент $a_{25}=59$:

Точно так же на пересечении первой строки и первого столбца имеем элемент $a_{11}=51$; на пересечении третьей строки и второго столбца - элемент $a_{32}=-15$ и так далее. Замечу, что запись $a_{32}$ читается как "а три два", но не "а тридцать два".

Для сокращённого обозначения матрицы $A$, размер которой равен $m\times n$, используется запись $A_{m\times n}$. Можно записать и несколько более развёрнуто:

$$ A_{m\times n}=(a_{ij}) $$

где запись $(a_{ij})$ означает обозначение элементов матрицы $A$. В полностью развёрнутом виде матрицу $A_{m\times n}=(a_{ij})$ можно записать так:

$$ A_{m\times n}=\left(\begin{array}{cccc} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{m1} & a_{m2} & \ldots & a_{mn} \end{array} \right) $$

Введём еще один термин - равные матрицы .

Две матрицы одинакового размера $A_{m\times n}=(a_{ij})$ и $B_{m\times n}=(b_{ij})$ называются равными , если их соответствующие элементы равны, т.е. $a_{ij}=b_{ij}$ для всех $i=\overline{1,m}$ и $j=\overline{1,n}$.

Пояснение к записи $i=\overline{1,m}$: показать\скрыть

Запись "$i=\overline{1,m}$" означает, что параметр $i$ изменяется от 1 до m. Например, запись $i=\overline{1,5}$ говорит о том, что параметр $i$ принимает значения 1, 2, 3, 4, 5.

Итак, для равенства матриц требуется выполнение двух условий: совпадение размеров и равенство соответствующих элементов. Например, матрица $A=\left(\begin{array}{cc} 5 & 3\\0 & -87\\8 & 0\end{array}\right)$ не равна матрице $B=\left(\begin{array}{cc} 8 & -9\\0 & -87 \end{array}\right)$, поскольку матрица $A$ имеет размер $3\times 2$, а размер матрицы $B$ составляет $2\times 2$. Также матрица $A$ не равна матрице $C=\left(\begin{array}{cc} 5 & 3\\98 & -87\\8 & 0\end{array}\right)$, поскольку $a_{21}\neq c_{21}$ (т.е. $0\neq 98$). А вот для матрицы $F=\left(\begin{array}{cc} 5 & 3\\0 & -87\\8 & 0\end{array}\right)$ можно смело записать $A=F$ поскольку и размеры, и соответствующие элементы матриц $A$ и $F$ совпадают.

Пример №1

Определить размер матрицы $A=\left(\begin{array} {ccc} -1 & -2 & 1 \\ 5 & 9 & -8 \\ -6 & 8 & 23 \\ 11 & -12 & -5 \\ 4 & 0 & -10 \\ \end{array} \right)$. Указать, чему равны элементы $a_{12}$, $a_{33}$, $a_{43}$.

Данная матрица содержит 5 строк и 3 столбца, поэтому размер её $5\times 3$. Для этой матрицы можно использовать также обозначение $A_{5\times 3}$.

Элемент $a_{12}$ находится на пересечении первой строки и второго столбца, поэтому $a_{12}=-2$. Элемент $a_{33}$ находится на пересечении третьей строки и третьего столбца, поэтому $a_{33}=23$. Элемент $a_{43}$ находится на пересечении четвертой строки и третьего столбца, поэтому $a_{43}=-5$.

Ответ : $a_{12}=-2$, $a_{33}=23$, $a_{43}=-5$.

Виды матриц в зависимости от их размера. Главная и побочная диагонали. След матрицы.

Пусть задана некая матрица $A_{m\times n}$. Если $m=1$ (матрица состоит из одной строки), то заданную матрицу называют матрица-строка . Если же $n=1$ (матрица состоит из одного столбца), то такую матрицу называют матрица-столбец . Например, $\left(\begin{array} {ccccc} -1 & -2 & 0 & -9 & 8 \end{array} \right)$ - матрица-строка, а $\left(\begin{array} {c} -1 \\ 5 \\ 6 \end{array} \right)$ - матрица-столбец.

Если для матрицы $A_{m\times n}$ верно условие $m\neq n$ (т.е. количество строк не равно количеству столбцов), то часто говорят, что $A$ - прямоугольная матрица. Например, матрица $\left(\begin{array} {cccc} -1 & -2 & 0 & 9 \\ 5 & 9 & 5 & 1 \end{array} \right)$ имеет размер $2\times 4$, т.е. содержит 2 строки и 4 столбца. Так как количество строк не равно количеству столбцов, то эта матрица является прямоугольной.

Если для матрицы $A_{m\times n}$ верно условие $m=n$ (т.е. количество строк равно количеству столбцов), то говорят, что $A$ - квадратная матрица порядка $n$. Например, $\left(\begin{array} {cc} -1 & -2 \\ 5 & 9 \end{array} \right)$ - квадратная матрица второго порядка; $\left(\begin{array} {ccc} -1 & -2 & 9 \\ 5 & 9 & 8 \\ 1 & 0 & 4 \end{array} \right)$ - квадратная матрица третьего порядка. В общем виде квадратную матрицу $A_{n\times n}$ можно записать так:

$$ A_{n\times n}=\left(\begin{array}{cccc} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{n1} & a_{n2} & \ldots & a_{nn} \end{array} \right) $$

Говорят, что элементы $a_{11}$, $a_{22}$, $\ldots$, $a_{nn}$ находятся на главной диагонали матрицы $A_{n\times n}$. Эти элементы называются главными диагональными элементами (или просто диагональными элементами). Элементы $a_{1n}$, $a_{2 \; n-1}$, $\ldots$, $a_{n1}$ находятся на побочной (второстепенной) диагонали ; их называют побочными диагональными элементами . Например, для матрицы $C=\left(\begin{array}{cccc}2&-2&9&1\\5&9&8& 0\\1& 0 & 4 & -7 \\ -4 & -9 & 5 & 6\end{array}\right)$ имеем:

Элементы $c_{11}=2$, $c_{22}=9$, $c_{33}=4$, $c_{44}=6$ являются главными диагональными элементами; элементы $c_{14}=1$, $c_{23}=8$, $c_{32}=0$, $c_{41}=-4$ - побочные диагональные элементы.

Сумма главных диагональных элементов называется следом матрицы и обозначается $\Tr A$ (или $\Sp A$):

$$ \Tr A=a_{11}+a_{22}+\ldots+a_{nn} $$

Например, для матрицы $C=\left(\begin{array} {cccc} 2 & -2 & 9 & 1\\5 & 9 & 8 & 0\\1 & 0 & 4 & -7\\-4 & -9 & 5 & 6 \end{array}\right)$ имеем:

$$ \Tr C=2+9+4+6=21. $$

Понятие диагональных элементов используется также и для неквадратных матриц. Например, для матрицы $B=\left(\begin{array} {ccccc} 2 & -2 & 9 & 1 & 7 \\ 5 & -9 & 8 & 0 & -6 \\ 1 & 0 & 4 & -7 & -6 \end{array} \right)$ главными диагональными элементами будут $b_{11}=2$, $b_{22}=-9$, $b_{33}=4$.

Виды матриц в зависимости от значений их элементов.

Если все элементы матрицы $A_{m\times n}$ равны нулю, то такая матрица называется нулевой и обозначается обычно буквой $O$. Например, $\left(\begin{array} {cc} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} \right)$, $\left(\begin{array} {ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right)$ - нулевые матрицы.

Пусть матрица $A_{m\times n}$ имеет такой вид:

Тогда данную матрицу называют трапециевидной . Она может и не содержать нулевых строк, но уж если они есть, то располагаются в низу матрицы. В более общем виде трапециевидную матрицу можно записать так:

Повторюсь, наличие нулевых строк в конце не является обязательным. Т.е. формально можно выделить такие условия для трапециевидной матрицы:

  1. Все элементы, расположенные ниже главной диагонали, равны нулю.
  2. Все элементы от $a_{11}$ до $a_{rr}$, лежащие на главной диагонали, не равны нулю: $a_{11}\neq 0, \; a_{22}\neq 0, \ldots, a_{rr}\neq 0$.
  3. Либо все элементы последних $m-r$ строк равны нулю, либо $m=r$ (т.е. нулевых строк нету вообще).

Примеры трапециевидных матриц:

Перейдём к следующему определению. Матрицу $A_{m\times n}$ называют ступенчатой , если она удовлетворяет таким условиям:


Например, ступенчатыми матрицами будут:

Для сравнения, матрица $\left(\begin{array} {cccc} 2 & -2 & 0 & 1\\0 & 0 & 8 & 7\\0 & 0 & 4 & -7\\0 & 0 & 0 & 0 \end{array}\right)$ не является ступенчатой, поскольку у третьей строки нулевая часть такая же, как и у второй строки. Т.е., нарушается принцип "чем ниже строка - тем больше нулевая часть". Добавлю, что трапециевидная матрица есть частный случай ступенчатой матрицы.

Перейдём к следующему определению. Если все элементы квадратной матрицы, расположенные под главной диагональю, равны нулю, то такую матрицу называют верхней треугольной матрицей . Например, $\left(\begin{array} {cccc} 2 & -2 & 9 & 1 \\ 0 & 9 & 8 & 0 \\ 0 & 0 & 4 & -7 \\ 0 & 0 & 0 & 6 \end{array} \right)$ - верхняя треугольная матрица. Заметьте, что в определении верхней треугольной матрицы ничего не сказано про значения элементов, расположенных над главной диагональю или на главной диагонали. Они могут быть нулевыми или нет, - это несущественно. Например, $\left(\begin{array} {ccc} 0 & 0 & 9 \\ 0 & 0 & 0\\ 0 & 0 & 0 \end{array} \right)$ - тоже верхняя треугольная матрица.

Если все элементы квадратной матрицы, расположенные над главной диагональю, равны нулю, то такую матрицу называют нижней треугольной матрицей . Например, $\left(\begin{array} {cccc} 3 & 0 & 0 & 0 \\ -5 & 1 & 0 & 0 \\ 8 & 2 & 1 & 0 \\ 5 & 4 & 0 & 6 \end{array} \right)$ - нижняя треугольная матрица. Заметьте, что в определении нижней треугольной матрицы ничего не сказано про значения элементов, расположенных под или на главной диагонали. Они могут быть нулевыми или нет, - это неважно. Например, $\left(\begin{array} {ccc} -5 & 0 & 0 \\ 0 & 0 & 0\\ 0 & 0 & 9 \end{array} \right)$ и $\left(\begin{array} {ccc} 0 & 0 & 0 \\ 0 & 0 & 0\\ 0 & 0 & 0 \end{array} \right)$ - тоже нижние треугольные матрицы.

Квадратная матрица называется диагональной , если все элементы этой матрицы, не лежащие на главной диагонали, равны нулю. Пример: $\left(\begin{array} {cccc} 3 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 6 \end{array} \right)$. Элементы на главной диагонали могут быть любыми (равными нулю или нет), - это несущественно.

Диагональная матрица называется единичной , если все элементы этой матрицы, расположенные на главной диагонали, равны 1. Например, $\left(\begin{array} {cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$ - единичная матрица четвёртого порядка; $\left(\begin{array} {cc} 1 & 0 \\ 0 & 1 \end{array}\right)$ - единичная матрица второго порядка.

Математическая матрица – это таблица упорядоченных элементов. Размеры этой таблицы определяются по количеству строк и столбцов в ней. Что касается решения матриц, то им называют огромное количество операций, которые производятся над этими самыми матрицами. Математики различают несколько видов матриц. Для некоторых из них действуют общие правила по решению, а для других не действуют. Например, если матрицы имеют одинаковую размерность, то их можно сложить, а если они согласовываются между собой, то их можно перемножить. Обязательно для решения любой матрицы необходимо найти детерминант. Кроме того, матрицы подвергаются транспонированию и нахождению в них миноров. Итак, давайте рассмотрим, как решать матрицы.

Порядок решения матриц

Сначала записываем заданные матрицы. Считаем сколько в них строк и столбцов. Если количество строк и столбцов одинаковое, то такая матрица называется квадратной. Если каждый элемент матрицы оказался равен нулю, то такая матрица нулевая. Следующее, что мы делаем, это находим главную диагональ матрицы. Элементы такой матрицы находятся от правого нижнего угла до левого верхнего. Вторая же диагональ в матрице является побочной. Теперь необходимо произвести транспонирование матрицы. Чтобы это сделать, необходимо заменить в каждой из двух матриц элементы строк на соответствующие элементы столбцов. Например, элемент под а21 окажется элементом а12 или же наоборот. Таким образом, после этой процедуры должна появиться совершенно иная матрица.

Если матрицы имеют совершенно одинаковую размерность, то их можно запросто сложить. Чтобы это сделать, мы берем первый элемент первой матрицы а11 и складываем его с подобным элементом второй матрица b11. То, что получится в результате, записываем на ту же позицию, только уже в новую матрицу. Теперь аналогичным образом складываем все остальные элементы матрицы, пока не получится новая совершенно иная матрица. Посмотрим еще несколько способов, как решать матрицы.

Варианты действий с матрицами

Также мы можем определить, являются ли согласованными матрицы. Для этого нам нужно сравнить количество строк в первой матрице с количеством столбцов второй матрицы. В случае если они оказываются равными, можно их перемножить. Чтобы это сделать, мы попарно умножаем элемент строки одной матрицы на аналогичный элемент столбца другой матрицы. Только после этого можно будет посчитать сумму получившихся произведений. Исходя из этого, начальный элемент той матрицы, которая должна получиться в результате будет равен g11 = а11* b11 + а12*b21 + а13*b31 + … + а1m*bn1. После того как будет выполнено сложение и умножение всех произведений, вы сможете заполнить итоговую матрицу.

Также можно при решении матриц найти их детерминант и определитель для каждой. Если матрица квадратная и имеет размерность 2 на 2, то определитель можно найти как разницу всех произведений элементов главной и побочной диагоналей. Если матрица уже трехмерная, то определитель можно будет найти, применив следующую формулу. D = а11* а22*а33 + а13* а21*а32 + а12* а23*а31 - а21* а12*а33 - а13* а22*а31 - а11* а32*а23.

Чтобы найти минор заданного элемента, нужно вычеркнуть столбец и строку, там, где находится этот элемент. После этого найдите детерминант данной матрицы. Он и будет соответствующим минором. Подобный метод решающих матриц был разработан еще несколько десятилетий тому назад для того, чтобы повысить достоверность результата путем разделения проблемы на подпроблемы. Таким образом, решать матрицы не так уж сложно, если вы знаете основные математические действия.

>> Матрицы

4.1.Матрицы. Операции над матрицами

Прямоугольной матрицей размера mxn называется совокупность mxn чисел, расположенных в виде прямоугольной таблицы, содержащей m строк и n столбцов. Мы будем записывать ее в виде

или сокращенно в виде A = (a i j) (i = ; j = ), числа a i j , называются ее элементами; первый индекс указывает на номер строки, второй - на номер столбца. A = (a i j) и B = (b i j) одинакового размера называются равными, если попарно равны их элементы, стоящие на одинаковых местах, то есть A = B, если a i j = b i j .

Матрица, состоящая из одной строки или одного столбца, называется соответственно -строкой или вектор-столбцом. Вектор-столбцы и вектор-строки называют просто векторами.

Матрица, состоящая из одного числа, отождествляется с этим числом. A размера mxn, все элементы которой равны нулю, называются нулевой и обозначается через 0. Элементы с одинаковыми индексами называют элементами главной диагонали. Если число строк равно числу столбцов, то есть m = n, то матрицу называют квадратной порядка n. Квадратные матрицы, у которых отличны от нуля лишь элементы главной диагонали, называются диагональными и записываются так:

Если все элементы a i i диагонали равны 1, то она называется единичной и обозначается буквой Е:

.

Квадратная матрица называется треугольной, если все элементы, стоящие выше (или ниже) главной диагонали, равны нулю. Транспонированием называется такое преобразование, при котором строки и столбцы меняются местами с сохранением их номеров. Обозначается транспонирование значком Т наверху.

Если в (4.1) переставим строки со столбцами, то получим

,

которая будет транспонированной по отношению к А. В частности, при транспонировании вектора-столбца получается вектор-строка и наоборот.

Произведением А на число b называется матрица, элементы которой получаются из соответствующих элементов А умножением на число b: b A = (b a i j).

Суммой А = (a i j) и B = (b i j) одного размера называется C = (c i j) того же размера, элементы которой определяются по формуле c i j = a i j + b i j .

Произведение АВ определяется в предположении, что число столбцов А равно числу строк В.

Произведением AB, где А = (a i j) и B = (b j k), где i = , j= , k= , заданных в определенном порядке АВ, называется С = (c i k), элементы которой определяются по следующему правилу:

c i k = a i 1 b 1 k + a i 2 b 2 k +... + a i m b m k = a i s b s k . (4.2)

Иначе говоря, элемент произведения AB определяются следующим образом: элемент i-й строки и k-го столбца С равен сумме произведений элементов i-й строки А на соответствующие элементы k-го столбца В.

Пример 2.1. Найти произведение AB и .

Решение. Имеем: А размера 2x3, В размера 3x3, тогда произведение АВ = С существует и элементы С равны

С 11 = 1×1 +2×2 + 1×3 = 8, с 21 = 3×1 + 1×2 + 0×3 = 5, с 12 = 1×2 + 2×0 + 1×5 = 7,

с 22 =3×2 + 1×0 + 0×5 = 6, с 13 = 1×3 + 2×1 + 1×4 = 9, с 23 = 3×3 + 1×1 + 0×4 = 10.

, а произведение BA не существует.

Пример 2.2. В таблице указано количество единиц продукции, отгружаемой ежедневно на молокозаводах 1 и 2 в магазины М 1 , М 2 и М 3 , причем доставка единицы продукции с каждого молокозавода в магазин М 1 стоит 50 ден. ед., в магазин М 2 - 70, а в М 3 - 130 ден. ед. Подсчитать ежедневные транспортные расходы каждого завода.

Молокозавод

Решение. Обозначим через А матрицу, данную нам в условии, а через
В - матрицу, характеризующую стоимость доставки единицы продукции в магазины, т.е.,

,

Тогда матрица затрат на перевозки будет иметь вид:

.

Итак, первый завод ежедневно тратит на перевозки 4750 ден. ед., второй - 3680 ден.ед.

Пример 2.3. Швейное предприятие производит зимние пальто, демисезонные пальто и плащи. Плановый выпуск за декаду характеризуется вектором X = (10, 15, 23). Используются ткани четырех типов Т 1 , Т 2 , Т 3 , Т 4 . В таблице приведены нормы расхода ткани (в метрах) на каждое изделие. Вектор С = (40, 35, 24, 16) задает стоимость метра ткани каждого типа, а вектор P = (5, 3, 2, 2) - стоимость перевозки метра ткани каждого вида.

Расход ткани

Зимнее пальто

Демисезонное пальто

1. Сколько метров ткани каждого типа потребуется для выполнения плана?

2. Найти стоимость ткани, расходуемой на пошив изделия каждого вида.

3. Определить стоимость всей ткани, необходимой для выполнения плана.

Решение. Обозначим через А матрицу, данную нам в условии, т. е.,

тогда для нахождения количества метров ткани, необходимой для выполнения плана, нужно вектор X умножить на матрицу А:

Стоимость ткани, расходуемой на пошив изделия каждого вида, найдем, перемножив матрицу А и вектор C T:

.

Стоимость всей ткани, необходимой для выполнения плана, определится по формуле:

Наконец, с учетом транспортных расходов вся сумма будет равна стоимости ткани, т. е. 9472 ден. ед., плюс величина

X А P T =
.

Итак, X А C T + X А P T = 9472 + 1037 = 10509 (ден. ед).