Как устроена солнечная батарея? Солнечная батарея: устройство и принцип работы

Солнечные батареи считаются очень эффективным и экологически чистым источником электроэнергии. В последние десятилетия данная технология набирает популярность по всему миру, мотивируя многих людей переходить на дешевую возобновляемую энергию. Задача этого устройства заключается в преобразовании энергии световых лучей в электрический ток, который может использоваться для питания разнообразных бытовых и промышленных устройств.

Правительства многих стран выделяют колоссальные суммы бюджетных средств, спонсируя проекты, которые направлены на разработку солнечных электростанций. Некоторые города полностью используют электроэнергию, полученную от солнца. В России эти устройства часто используются для обеспечения электроэнергией загородных и частных домов в качестве отличной альтернативы услугам централизованного энергоснабжения. Стоит отметить, что принцип работы солнечных батарей для дома достаточно сложный. Далее рассмотрим подробнее, как работают солнечные батареи для дома подробно.

Первые попытки использования энергии солнца для получения электричества были предприняты еще в середине двадцатого века. Тогда ведущие страны мира предпринимали попытки строительства эффективных термальных электростанций. Концепция термальной электростанции подразумевает использование концентрированных солнечных лучей для нагревания воды до состояния пара, который, в свою очередь, вращал турбины электрического генератора.

Поскольку, в такой электростанции использовалось понятие трансформации энергии, их эффективность была минимальной. Современные устройства напрямую преобразуют солнечные лучи в ток благодаря понятию фотоэлектрический эффект.

Современный принцип работы солнечной батареи был открыт еще в 1839 году физиком по имени Александр Беккерель. В 1873 году был изобретен первый полупроводник, который сделал возможным реализовать принцип работы солнечной батареи на практике.

Принцип работы

Как было сказано раньше, принцип работы заключается в эффекте полупроводников. Кремний является одним из самых эффективных полупроводников, из известных человечеству на данный момент.

При нагревании фотоэлемента (верхней кремниевой пластины блока преобразователя) электроны из атомов кремния высвобождаются, после чего их захватывают атомы нижней пластины. Согласно законам физики, электроны стремятся вернуться в свое первоначальное положение. Соответственно, с нижней пластины электроны двигаются по проводникам (соединительным проводам), отдавая свою энергию на зарядку аккумуляторов и возвращаясь в верхнюю пластину.

Эффективность фотоэлементов, созданных при помощи монокристаллического метода нанесения кремния, является существенно выше, поскольку в такой ситуации кристаллы кремния имеют меньше граней, что позволяет электронам двигаться прямолинейно.

Устройство

Конструкция солнечной батареи очень проста.

Основу конструкции устройства составляют:

  • корпус панели;
  • блоки преобразования;
  • аккумуляторы;
  • дополнительные устройства.

Корпус выполняет исключительно функцию скрепления конструкции, не имея больше никакой практической пользы.

Основными элементами являются блоки преобразователей. Это и есть фотоэлемент, состоящий из материала-полупроводника, которым является кремний. Можно сказать, что состоят солнечные батареи, устройство и принцип работы которых всегда одинаковый, из каркаса и двух тонких слоев кремния, который может быть нанесен на поверхность, как монокристаллическим, так и поликристаллическим методом.

От метода нанесения кремния зависит стоимость батареи, а также ее эффективность. Если кремний наносится монокристаллическим способом, то эффективность батареи будет максимально высокой, как и стоимость.

Если говорить о том, как работает солнечная батарея, то не нужно забывать об аккумуляторах. Как правило, используется два аккумулятора. Один является основным, второй — резервным. Основной накапливает электроэнергию, сразу же направляя ее в электрическую сеть. Второй накапливает избыточную электроэнергию, после чего направляет ее в сеть, когда напряжение падает.

Среди дополнительных устройств можно выделить контроллеры, которые отвечают за распределение электроэнергии в сети и между аккумуляторами. Как правило, они работают по принципу простого реостата.

Очень важными элементами солнечной назвать диоды. Данный элемент устанавливается на каждую четвертую часть блока преобразователей, защищая конструкцию от перегрева из-за избыточного напряжения. Если диоды не установлены, то есть большая вероятность, что после первого дождя система выйдет из строя.

Как подключается

Как было сказано раньше, устройство солнечной батареи достаточно сложное. Правильная схема солнечной батареи поможет добиться максимальной эффективности. Подключать блоки преобразователей необходимо при помощи параллельно-последовательного способа, что позволит получить оптимальную мощность и максимально эффективное напряжение в электрической сети.

Разновидности солнечных батарей

Существует несколько разновидностей фотоэлементов для солнечных батарей, которые отличаются между собой строением кристаллов кремния.

Выделяют три вида фотоэлементов:

  • поликристаллические;
  • монокристаллические;
  • аморфные.

Первый вид панелей является более дешевым, но менее эффективным, поскольку, если кремний нанесен поликристаллическим способом, то электроны не могут двигаться прямолинейно.

Монокристаллические фотоэлементы отличаются максимальным КПД, который достигает 25 %. Стоимость таких батарей выше, но для получения 1 киловатта нужна существенно меньшая площадь фотоэлементов, чем при использовании поликристаллических панелей.

Из аморфного кремния изготавливают гибкие фотоэлементы, но их КПД самый низкий и составляет 4-6 %.

Преимущества и недостатки

Основные преимущества солнечных батарей:

  • солнечная энергия абсолютно бесплатная;
  • позволяют получать экологически чистую электроэнергию;
  • быстро окупаются;
  • простая установка и принцип работы.

Недостатки:

  • большая стоимость;
  • для удовлетворения потребностей небольшой семьи в электроэнергии нужна достаточно большая площадь фотоэлементов;
  • эффективность существенно падает в облачную погоду.

Как добиться максимальной эффективности

При покупке солнечных батарей для дома очень важно подобрать конструкцию, которая сможет обеспечить жилище электроэнергией достаточной мощности. Считается, что эффективность солнечных батарей в пасмурную погоду составляет приблизительно 40 Вт на 1 квадратный метр за час. В действительности, в облачную погоду мощность света на уровне земли составляет приблизительно 200 Вт на квадратный метр, но 40 % солнечного света – это инфракрасное излучение, к которому солнечные батареи не восприимчивы. Также стоит учитывать, что КПД батареи редко превышает 25 %.

Иногда энергия от интенсивного солнечного света может достигать 500 Вт на квадратный метр, но при расчетах стоит учитывать минимальные показатели, что позволит сделать систему автономного электроснабжения бесперебойной.

Каждый день солнце светит в среднем по 9 часов, если брать среднегодовой показатель. За один день квадратный метр поверхности преобразователя способен выработать 1 киловатт электроэнергии. Если за сутки жильцами дома израсходуется приблизительно 20 киловатт электроэнергии, то минимальная площадь солнечных панелей должна составлять приблизительно 40 квадратных метров.

Однако, такой показатель потребления электроэнергии на практике встречается редко. Как правило, жильцы израсходуют до 10 кВТ в сутки.

Если говорить о том, работают ли солнечные батареи зимой, то стоит помнить, что в данную пору года сильно снижается длительность светового дня, но, если обеспечить систему мощными аккумуляторами, то получаемой за день энергии должно быть достаточно с учетом наличия резервного аккумулятора.

При подборе солнечной батареи очень важно обращать внимание на емкость аккумуляторов. Если нужны солнечные батареи работающие ночью, то емкость резервного аккумулятора играет ключевую роль. Также устройство должно отличаться стойкостью к частой перезарядке.

Несмотря на тот факт, что стоимость установки солнечных батарей может превысить 1 миллион рублей, затраты окупятся уже в течении нескольких лет, поскольку энергия солнца абсолютно бесплатна.

Видео

Как устроена солнечная батарея, расскажет наше видео.

Сегодня у всех на слуху понятие альтернативной энергетики. Уже ни для кого не секрет, что запасы нефти, газа и других видов топлива на Земле не безграничны, поэтому ученые и инженеры продолжают искать возможности эффективного применения возобновляемых ресурсов для получения столь необходимого всем электричества. В последние годы солнечные элементы перестали быть экзотикой, используемой только в космических аппаратах, они получили широкое распространение для электроснабжения зданий, автомобилей, автономного питания мелкой бытовой техники и электроники. Поскольку Солнце – огромный источник энергии, который доступен каждому, полезно знать, как преобразовать свет в электричество или как работает солнечная батарея.

Принцип работы солнечной батареи

Это устройство, называемое также солнечной панелью, состоит из совокупности соединенных определенным способом фотоэлектрических преобразователей, в состав которых входят два слоя полупроводников с различными типами проводимости – p и n. В качестве вещества, обладающего такими свойствами, чаще всего используется кремний с определенными примесями. При добавлении к нему фосфора в полученной структуре возникает избыток электронов (отрицательных зарядов) и образуется полупроводник n-типа, а при подмешивании бора – p-типа, характеризуемый недостатком электронов или наличием дырок. Если разместить эти слои между двумя электродами так, как показано на картинке, и обеспечить к верхнему доступ света, получится фотоэлектрический преобразователь.

При освещении элемента им поглощается часть падающей энергии, в результате чего происходит дополнительная генерация дырок и электронов. Электрическим полем, существующим в p-n переходе, первые перемещаются в p-область, а вторые – в n-область. При этом на нижнем электроде скапливаются положительные заряды, на верхнем – отрицательные, то есть возникает разность потенциалов – постоянное напряжение U. Таким образом, фотоэлектрический преобразователь работает как источник электродвижущей силы (ЭДС) – небольшая батарейка. Если к ней подсоединить нагрузку, в цепи возникнет ток I, значение которого будет зависеть от вида фотоэлемента, его размеров, интенсивности солнечного излучения и сопротивления подключенных потребителей. ЭДС батареи снижается с повышением температуры приблизительно на 0,4%/°С. Поэтому для эффективной и долговременной работы панель необходимо охлаждать с помощью вентиляторов или водяных систем.

Важнейшим параметром солнечного источника энергии является мощность P=UI. Естественно, что ток и напряжение, получаемые в результате работы одного фотоэлемента, невелики, поэтому в батарее они комбинируются определенным образом для увеличения указанных показателей. Если соединить преобразователи последовательно, то общее выходное напряжение будет пропорционально их количеству. Параллельное подключение отдельных элементов приводит к увеличению тока. Сочетая определенным образом оба типа соединений так, как показано на картинке, получают требуемые выходные параметры батареи, а следовательно, и ее мощность.

При освещении батареи не вся энергия солнечного излучения преобразуется в электричество – часть ее отражается, а также тратится на нагрев элементов. Большинство выпускаемых промышленностью фотоэлектрических панелей имеют эффективность 9-24%. Также важно знать, как работает солнечная батарея в условиях, когда некоторые из элементов затемнены. В данном случае преобразователи, на которые не попадает солнечный свет, будут превращаться в потребителей энергии и нагреваться. Поэтому группы фотоэлементов шунтируются низкоомными диодами, препятствующими прохождению тока через затемненные компоненты батареи. Панель при этом будет функционировать с меньшей мощностью.

Преобразование энергии, полученной с помощью солнечных батарей

Фотоэлектрические элементы вырабатывают постоянное напряжение, но многие виды аппаратуры питаются переменным, что требует наличия соответствующих преобразователей. Кроме того, солнечные батареи производят электричество днем, а его потребление происходит круглосуточно, следовательно, необходимы дополнительные компоненты, которые будут запасать и распределять энергию. Рассмотрим пример системы электроснабжения здания с использованием солнечных источников – небольшой гелиоэлектростанции, структура которой представлена на картинке.

Эта схема может функционировать в зданиях, где присутствует электросеть, а солнечная батарея используется для экономии потребления энергии из нее, а также в качестве резервного источника при отключении основного. Общий принцип работы системы такой: постоянное напряжение, вырабатываемое фотоэлектрическими преобразователями, поступает на инвертор, преобразующий его в переменное, и на аккумуляторы, которые, заряжаясь под управлением специального контроллера, накапливают энергию.

В данном случае приборы в доме подразделяются на резервируемые – те, для которых отключение электричества может привести к нежелательным последствиям (холодильник, системы видеонаблюдения, сигнализации), и нерезервируемые – все остальные. При отключении сети инвертор питает резервируемые устройства от солнечной батареи, а если энергии от нее недостаточно, то от аккумуляторов. Когда сеть подключена, электричество, вырабатываемое панелью, в первую очередь поступает на их зарядку. А когда в этом уже нет необходимости, инвертор преобразует постоянное напряжение в переменное, от которого питается нагрузка. Тем самым экономится потребление из основного источника.

Солнечные батареи могут использоваться без рассмотренной дополнительной аппаратуры для питания или зарядки портативной электронной техники, работающей от постоянного напряжения, например, калькуляторов, плееров, фонариков, мобильных устройств.

Помимо электричества, из энергии света можно непосредственно получать тепло. Для этого применяются солнечные коллекторы. Учитывая, что сегодня прослеживаются тенденции снижения стоимости фотоэлектрических преобразователей и повышения их эффективности, в целом гелиоэнергетика – перспективное направление, позволяющее бесшумным и экологически чистым способом получать бесплатное электричество, а также тепло для отопления и горячего водоснабжения.


В наше время практически каждый может собрать и получить в свое распоряжение свой независимый источник электроэнергии на солнечных батареях (в научной литературе они называются фотоэлектрическими панелями).

Дорогостоящее оборудование со временем компенсируется возможностью получать бесплатную электроэнергию. Важно, что солнечные батареи - это экологически чистый источник энергии. За последние годы цены на фотоэлектрические панели упали в десятки раз и они продолжают снижаться, что говорит о больших перспективах при их использовании.

В классическом виде такой источник электроэнергии будет состоять из следующих частей: непосредственно, солнечной батареи (генератора постоянного тока), аккумулятора с устройством контроля заряда и инвертора, который преобразует постоянный ток в переменный.


Солнечные батареи состоят из набора солнечных элементов (фотоэлектрических преобразователей), которые непосредственно преобразуют солнечную энергию в электрическую.

Большинство солнечных элементов производят из кремния, который имеет довольно высокую стоимость. Этот факт определят высокую стоимость электрической энергии, которая получается при использовании солнечных батарей.

Распространены два вида фотоэлектрических преобразователей: сделанные из монокристаллического и поликристаллического кремния. Они отличаются технологией производства. Первые имеют кпд до 17,5%, а вторые - 15%.

Наиболее важным техническим параметром солнечной батареи, которая оказывает основное влияние на экономичность всей установки, является ее полезная мощность. Она определяется напряжением и выходным током. Эти параметры зависят от интенсивности солнечного света, попадающего на батарею.


Электродвижущая сила отдельных солнечных элементов не зависит от их площади и снижается при нагревании батареи солнцем, примерно на 0,4% на 1 гр. С. Выходной ток зависит от интенсивности солнечного излучения и размера солнечных элементов. Чем ярче солнечный свет, тем больший ток генерируется солнечными элементами. Зарядный ток и отдаваемая мощность в пасмурную погоду резко снижается. Это происходит за счет уменьшения отдаваемой батареей тока.

Если освещенная солнцем батарея замкнута на какую либо нагрузку с сопротивлением Rн, то в цепи появляется электрический ток I, величина которого определяется качеством фотоэлектрического преобразователя, интенсивностью освещения и сопротивлением нагрузки. Мощность Pн, которая выделяется в нагрузке определяется произведением Pн = IнUн, где Uн напряжение на зажимах батареи.

Наибольшая мощность выделяется в нагрузке при некотором оптимальном ее сопротивлении Rопт, которое соответствует наибольшему коэффициенту полезного действия (кпд) преобразования световой энергии в электрическую. Для каждого преобразователя имеется свое значение Rопт, которая зависит от качества, размера рабочей поверхности и степени освещенности.

Солнечная батарея состоит из отдельных солнечных элементов, которые соединяются последовательно и параллельно для того, чтобы увеличить выходные параметры (ток, напряжение и мощность). При последовательном соединении элементов увеличивается выходное напряжение, при параллельном - выходной ток.

Для того, чтобы увеличить и ток и напряжение комбинируют два этих способа соединения. Кроме того, при таком способе соединения выход из строя одного из солнечных элементов не приводит в выходу из строя всей цепочки, т.е. повышает надежность работы всей батареи.


Таким образом, солнечная батарея состоит из параллельно-последовательно соединенных солнечных элементов. Величина максимально возможного тока отдаваемого батареей прямо пропорциональна числу параллельно включенных, а электродвижущая сила - последовательно включенных солнечных элементов. Так, комбинируя типы соединения, собирают батарею с требуемыми параметрами.

Солнечные элементы батареи шунтируются диодами. Обычно их 4 - по одному, на каждую ¼ часть батареи. Диоды предохраняют от выхода из строя части батареи, которые по какой-то причине оказались затемненными, т. е. если в какой-то момент времени свет на них не попадает.

Батарея при этом временно генерирует на 25% меньшую выходную мощность, чем при нормальном освещении солнцем всей поверхности батареи.

При отсутствии диодов эти солнечные элементы будут перегреваться и выходить из строя, так как они на время затемнения превращаются в потребителей тока (аккумуляторы разряжаются через солнечные элементы), а при использовании диодов они шунтируются и ток через них не идет.


Получаемая электрическая энергия накапливается в аккумуляторах, а затем отдается в нагрузку. Аккумуляторы - химические источники тока. Заряд аккумулятора происходит тогда, когда к нему приложен потенциал, который больше напряжения аккумулятора.

Число последовательно и параллельно соединенных солнечных элементов должно быть таким, чтобы рабочее напряжение подводимое к аккумуляторам с учетом падения напряжения в зарядной цепи немного превышало напряжение аккумуляторов, а нагрузочный ток батареи обеспечивал требуемую величину зарядного тока.

Например, для зарядки свинцовой аккумуляторной батареи 12 В необходимо иметь солнечную батарею состоящую из 36 элементов.


При слабом солнечном свете заряд аккумуляторной батареи уменьшается и батарея отдает электрическую энергию электроприемнику, т.е. аккумуляторные батареи постоянно работают в режиме разряда и подзаряда.

Это процесс контролируется специальным контроллером. При циклическом заряде требуется постоянное напряжение или постоянный ток заряда.


При хорошей освещенности аккумуляторная батарея быстро заряжается до 90% своей номинальной емкости, а затем с меньшей скоростью заряда до полной емкости. Переключение на меньшую скорость заряда производится контроллером зарядного устройства.

Наиболее эффективно использование специальных аккумуляторов - гелевых (в батарее в качестве электролита применяется серная кислота) и свинцовыех батарей, которые сделанны по AGM-технологии. Этим батареям не нужны специальные условия для установки и не требуется обслуживание. Паспортный срок службы таких батарей - 10 - 12 лет при глубине разряда не более 20%. Аккумуляторные батареи никогда не должны разряжаться ниже этого значения, иначе их срок службы резко сокращается!

Аккумулятор подсоединяется к солнечной батарее через контроллер, который контролирует ее заряд. При заряде батареи на полную мощность к солнечной батареи подключается резистор, который поглощает избыточную мощность.


Для того чтобы преобразовать постоянное напряжение от аккумуляторной батареи в переменное напряжение, которой можно использовать для питания большинства электроприемников совместно с солнечной батарей можно использовать специальные устройства - инверторы.

Без использования инвертора от солнечной батареи можно питать электроприемники, работающие на постоянном напряжении, в т.ч. различную портативную технику, энергосберегающие источники света, например, те же светодиодные лампы.

Автор текста: Андрей Повный. Текст впервые опубликован на сайте Electrik.info. Перепечатано с согласия редакции.

Альтернативные источники энергии, преобразующие солнечный свет в электричество, становятся все более востребованными в быту и промышленности. Они используются в авиации, космических разработках, электронике, для создания экологически безопасного транспорта. Но самой перспективной считается отрасль энергообеспечения зданий: питание бытовых приборов и системы отопления дома, нагрев горячей воды. К преимуществам относят: независимость от времени года и коммунальных служб, возможность аккумулирования запаса энергии, надежность и долгий срок службы. Но для достижения максимального эффекта от применения важно знать принцип действия батарей и соблюдать условия их монтажа и эксплуатации.

Фотоэлектрические преобразователи или солнечные аккумулирующие батареи представляют собой пластину со свойствами полупроводника, вырабатывающую постоянный ток при попадании на нее световых лучей. Основой может быть кремний (наиболее распространенный вид) и его соединения с медью, галлием, кадмием, индием, амфорные, органические или химические фотоэлементы, полимерная пленка.

Каждый материал имеет свой коэффициент ФЭП солнечных лучей (от 5 до 30 %) и, как следствие - вырабатывает определенную мощность при равной интенсивности светового потока. Многое зависит от площади батареи, одиночный кристалл полупроводника производит незначительное количество энергии, в среднем для получения 0,15 кВт потребуется 1 м2 панели. Исключение составляют инновационные многослойные полимерные соединения (монокристаллы), их КПД достигает 30 %, но эта технология еще недоступна рядовому потребителю.

Помимо пластины, в схему солнечной батареи входят вспомогательные приборы (для передачи, распределения и аккумулирования энергии):

  • Инвертор или преобразователь постоянного тока.
  • Накопитель для бесперебойной работы системы в ночное время или в пасмурную погоду.
  • Стабилизатор напряжения.
  • Контроллер для отслеживания заряда.

В зависимости от площади используются миниатюрные маломощные батареи (до 10 Вт) либо большие стационарные панели. Первые относятся к переносным (популярны для зарядки ноутбука, калькулятора, мобильных устройств). Вторые чаще служат для энергоснабжения и отопления дома, размещаются обычно на крыше. Так как мощность батарей полностью пропорциональна солнечной интенсивности, стало целесообразным размещать отслеживающие панели (изменяющие угол расположения, в зависимости от движения Солнца). Толщина вариантов из полупроводника незначительна (от 10 мкм до 10 см), но с учетом вспомогательных приборов модули весят больше, что учитывается при просчете нагрузки на стропила и поверхность крыши.

Принцип фотоэлектрического преобразования

Для того чтобы понять как работает солнечная батарея, следует вспомнить школьный курс физики. При попадании света на пластину из двух слоев полупроводников разной проводимости возникает эффект p-n перехода, электроны из катода покидают свои атомы и захватываются на уровне анода. При подключении в схему нагрузки (аккумулятора) они отдают свою положительно заряженную энергию и возвращаются в n-слой. Это явление более известно как «внешний фотоэффект», а двухслойная пластина как «фотоэлемент». Чаще всего применяется один и тот же материал: базовый полупроводник с определенным типом проводимости покрывается слоем с противоположным зарядом, но с высокой концентрацией легирующих примесей.

Этот принцип работы солнечных батарей неизменен с момента открытия эффекта; именно на границе зон осуществляется электронно-дырочный переход. При воздействии солнечных лучей в обоих направлениях проходит движение разнозаряженных частиц, при замыкании контура ФЭП они осуществляют работу на нагрузку. Для полноценной передачи (сбора и отвода электронов) используется контактная система (внешняя сторона батареи напоминает сетку или гребенку, а тыльная обычно сплошная). Чем выше площадь p-n перехода и коэффициент фотоэлектрического преобразования полупроводника, тем большую мощность производит устройство. Физическое явление и принцип работы не зависят от температуры воздуха, важна лишь интенсивность солнечного света. Как следствие, на величину КПД панели оказывают влияние погодные условия, климат, сезон, географическая широта.

Способы повысить эффективность батареи

Даже в средней полосе России установка солнечных аккумуляторов окупается за 3–5 лет, ведь лучи абсолютно бесплатны и доступны круглый год. Но для полноценного отопления дома в 100 м2 полезной площади потребуется около 30 м2 панелей. Для усиления принципа фотоэффекта рекомендуется провести следующие работы:

  1. Разместить батареи на южной стороне под углом не менее 30°.
  2. Не монтировать солнечные панели под тенью высоких деревьев.
  3. Раз в 2 года очищать поверхность от грязи.
  4. Установить отслеживающие солнечный свет системы.

Полностью отказываться от внешнего энергоснабжения не стоит, даже современные комплексы не способны аккумулировать достаточное количество энергии для полноценного обеспечения здания при длительной непогоде. Лучше всего использовать их как часть комбинированной системы.

Применение солнечных батарей

Использование солнечной энергии для создания солнечных электростанций является очень выгодным и не таким уж дорогим источником электроэнергии. Широкое применение солнечных батарей нашли не только в промышленности и других отраслях, но и для индивидуальных нужд.

Со временем солнечные батареи становятся дешевле и все большее число людей приобретают их и используют в качестве источника альтернативной энергии. На солнечных панелях работают калькуляторы, радиоприемники, фонари на аккумуляторах с подзарядкой от солнечной панели.

Есть даже корейский мобильный телефон, который может заряжаться от солнечных панелей. Появились небольшие переносные электростанции на солнечных панелях, которыми пользуются туристы, рыбаки, охотники. Сейчас никого не удивишь автомобилем с солнечной панелью на крыше.

Как работают солнечные батареи

Солнечная панель состоит из множества фотоэлементов, которые при освещении солнечными лучами создают разность потенциалов. Теперь, соединяя эти фотоэлементы последовательно, мы увеличим величину постоянного напряжения, а соединяя параллельно, увеличим силу тока.

Устройство солнечных батарей

Т. е., соединяя фотоэлементы последовательно – параллельно мы можем достичь большой мощности солнечной панели. Также батареи можно собирать параллельно и последовательно в модуле и добиться значительного увеличения напряжения, тока и мощности такого модуля.

Принцип работы солнечной панели

Кроме солнечных батарей схема имеет еще такие устройства как , необходимый для контроля заряда аккумулятора, инвертор имеет функцию преобразования постоянного напряжения в стабильное переменное, для потребителей электроэнергии. Аккумуляторы предназначены для накопления электроэнергии.

Как работают фотоэлементы солнечной батареи

Еще Беккерель доказал, что энергию солнца можно преобразовать в электричество, освещая специальные полупроводники. Позднее эти полупроводники стали называть фотоэлементами. Фотоэлемент представляет собой два слоя полупроводника имеющих разную проводимость. С обеих сторон к этим полупроводникам припаиваются контакты для подключения в цепь. Слой полупроводника с n проводимостью является катодом, а слой с p проводником анодом.

Проводимость n называют электронной проводимостью, а слой p дырочной проводимостью. За счет передвижения «дырок» в p слое во время освещения, создается ток. Состояние атома потерявшего электрон называется «дырка». Таким образом, электрон перемещается по «дыркам» и создается иллюзия движения «дырок».

В действительности «дырки» не передвигаются. Граница соприкосновения проводников с разной проводимостью называется p-n переходом. Создается аналог диода, который выдает разность потенциалов при его освещении. Когда освещается n проводимость, то электроны, получая дополнительную энергию, начинают проникать сквозь барьер p-n перехода.

Число электронов и «дырок» меняется, что приводит к появлению разности потенциала, и при замыкании цепи появляется ток. Величина разности потенциала зависит от размеров фотоэлемента, силы света, температуры. Основной первого фотоэлемента стал кремний. Однако высокую чистоту кремния получить трудно, стоит это недешево.

Когда освещается n проводимость, то электроны, получая дополнительную энергию, начинают проникать сквозь барьер p-n перехода. Число электронов и «дырок» меняется, что приводит к появлению разности потенциала, и при замыкании цепи появляется ток

Поэтому сейчас ищут замену кремнию. В новых разработках кремний заменен на многослойный полимер с высоким КПД до 30%. Но такие солнечные панели дорогие, и пока отсутствуют на рынке. КПД солнечных батарей можно повысить, если устанавливать их на южной стороне и под углом не меньше 30 градусов.

Рекомендуется, на устройство слежения за движением солнца. Это устройство передвигает панели таким образом, чтобы они получали максимально возможное освещение лучами солнца от восхода до заката. При этом КПД солнечных панелей возрастает достаточно сильно.