Как наносить термопасту на процессор правильно: полное руководство с картинками. Учимся наносить термопасту на процессор

Отвечая на вопрос о том, как наносить термопасту правильно, нельзя обойти сам процесс ее выбора. Сегодня на рынке представлено большое количество видов данной продукции, от именитых и менее известных производителей.

Выбор из широкого ассортимента

На российском рынке более широко представлена термопаста КПТ-8. Ее ценят за невысокую стоимость и хорошую теплопроводность.

Если вы ищете более дорогой и надежный вариант, можно обратиться к зарубежным производителям, таким как Zalman, Titan, Geil. Данные варианты обойдутся дороже, но они более долговечны в использовании, и беспокоиться о температуре вашего процессора придется гораздо реже.

Признаки качественной термопасты

Чтобы разобраться в том, как правильно наносить термопасту, следует ответственно подойти к ее спецификациям. В своем выборе обратите внимание на сроки хранения. В случае отсутствия таковых можно сделать вывод о том, что производитель считает свою пасту долговечной - это является хорошим признаком. Помимо прочего, советуем обратить внимание на следующие показатели:

  • Относительная жидкость термопасты: она не должна быть жидкой, но при этом и твердое ее состояние - плохой знак. Ищите что-то среднее, подобная субстанция хорошо распределяется по поверхности и мягка на ощупь.
  • Высокая устойчивость к предельным температурам процессора. Если термопаста должна справиться с передачей тепла радиатору, в ином случае могут случиться поломки или, что еще хуже, возгорание.
  • Также обратите внимание на упаковку: она может представлять собой тюбик или баночку. Для обычного пользователя вполне подойдет первый вариант, так как стоит он дешевле и его с достатком хватит как минимум на два-три использования. В любом случае всегда отталкивайтесь от ваших нужд и требований.

Итак, мы немного разобрались с выбором термопасты для нанесения. Правильный выбор поможет избежать проблем, которые возникнут, если критерии отбора будут не соблюдены. Перейдем к тому, как правильно наносить термопасту на процессор.

Переносные устройства

Начнем с ноутбуков - гаджетов, наиболее подверженных перегреву при работе от двух и более лет. К этому сроку термопаста уже успевает пересохнуть, а если не проводилась чистка устройства от пыли, то затвердевание может случиться и раньше.

Однозначно ответить на вопрос о том, как правильно наносить термопасту на процессор ноутбука, практически невозможно, так как у каждого устройства свой порядок разборки на компоненты. Потому давайте разберем основные моменты:

  • Во-первых, советуем как можно реже производить замену термопасты на ноутбуке. Основная причина в том, что в большинстве случаев кристалл процессора никак не защищен, потому его можно легко повредить. То же относится и к остальным компонентам гаджета.
  • Наносить термопасту следует минимально тонким слоем, однако промежутков быть не должно. Чем меньше слой - тем лучше. Это актуально потому, что чем больше термопасты на процессоре, тем меньше будет теплопроводность самой субстанции.
  • После обратного присоединения радиатора излишки термопасты можно убрать, чтобы она не помешала в будущем, а также никоим образом не затронула другие компоненты устройства.

Мы изучили основы того, как правильно наносить термопасту на ноутбуке. Основными требованиями в данном случае будут аккуратность и внимательность. Спустя пару замен данная задача будет казаться вам совсем несложной, нужна лишь практика.

Полноценные персональные компьютеры

Мы уже выяснили, как правильно наносить термопасту на процессор ноутбука, но пока что не затронули "старших братьев" - системные блоки.

Если вы счастливый обладатель такового, то можете обрадоваться, ведь заменить термопасту на десктопном процессоре гораздо легче, нежели на мобильном.

Итак, вам понадобятся: отвертка, спирт или его заменитель (для обезжиривания поверхности), сама термопаста, сухие и влажные салфетки. Обзаведясь всем необходимым для замены, следуйте несложной инструкции, приведенной ниже.

Разбираясь, как наносить термопасту правильно, старайтесь не забывать о личной гигиене. Вы можете оставить на крышке процессора грязь, что будет мешать ее теплопроводности. Чтобы избежать подобного казуса, используйте перчатки.

Позаботившись обо всем необходимом, снимите корпусную крышку. Это можно сделать, открутив вручную или при помощи отвертки два болтика, на которых она крепится.

Отложите крышку в сторону и обратите внимание на процессорный кулер. Если вы заметили, что в системном блоке очень пыльно, советуем предварительно почистить компьютер от грязи во избежание возможных проблем.

Снимите процессорный кулер: это можно сделать, отвинтив 4 болтика с крепления или же провернув "ножки", все зависит от типа изделия. Чтобы узнать, как снять конкретно ваш кулер, советуем обратиться к инструкции.

Насухо очистите поверхность крышки процессора салфетками, обезжирьте ее спиртом.

Нанесите новую термопасту при помощи пальца или ненужной пластиковой карты. Помните: в вопросе о том, как правильно наносить термопасту, нельзя забывать о ее оптимальном распределении. Старайтесь, чтобы слой был максимально тонким.

Видеокарты

Это, пожалуй, наиболее сложный раздел в теме. Видеоадаптеры очень чувствительны, а продать единожды разобранный экземпляр будет труднее. Постарайтесь внимательно отнестись к тому, как правильно наносить термопасту на видеокарту, и помните, что это в большинстве случаев лишает вас права на гарантийное обслуживание.

Вам понадобится снять кулер видеокарты и ее радиаторы. Будьте предельно аккуратны, если у видеоадаптера отсутствует бекплейт (часть видеокарты, защищающая ее плату от механического воздействия).

Используя техники, описанные выше, нанесите термопасту максимально тонким слоем, предварительно протерев место нанесения обезжиривающим раствором.

Итог

Проведя операцию со всеми необходимыми компонентами, верните системный блок к прежнему состоянию.

Итак, мы разобрались в основах вопроса, как правильно наносить термопасту на процессор и другие компоненты ПК. Немного практики, и процесс перестанет доставлять вам сложности.

Тест термопаст | Всё, что вы хотели бы знать об охлаждении CPU

Работа над данным тестом термопаст , потребовавшим значительных временных затрат, стартовала более полугода назад. Мы заказывали термопасты, предлагавшиеся немецким интернет-магазином Caseking, а также термопасты, которые имелись в наличии в нашей тестовой лаборатории. Мало того, что подготовка теста такого рода занимает много времени (в конце концов, мы протестировали около 40 продуктов), она, определённо, требует последовательной методологии тестирования, чтобы прийти к правильным выводам.

Поскольку у нас было столь много продуктов, мы разбили данный тест термопаст на две части. Первая часть посвящена теории и практическому использованию термоинтерфейсов, а во второй представлены результаты всех бенчмарков и соответствующие тестовые конфигурации.

В первой части мы рассмотрим тепловые свойства CPU, типы поверхности, справочную информацию по различным видам термоинтерфейсов и методам их применения, две разновидности систем охлаждения (воздушную и жидкостную), а также вопросы, связанные с давлением, оказываемым различными типами крепления кулера.

Термопаста, отлично работающая с одним кулером, может плохо подходить для другого. Поэтому нам необходимо протестировать термопасты на процессорах Intel и AMD с водяным охлаждением, воздушным кулером премиум-класса с высоким уровнем давления на площадку теплорассеивателя CPU, а также рассмотреть более заурядную систему установки кулера, идущую в комплекте с большинством коробочных версий CPU.

В дополнение к тестам CPU, мы также протестировали каждую пасту применительно к охлаждению графического процессора и оценили уровень вязкости и простоту использования пасты. Впрочем, вернёмся к основам. Какова роль термопасты в системе охлаждения?

Теплорассеиватель

Если вы разрежете процессор на две половинки, то обнаружите, что сам чип (кристалл) намного меньше, чем упаковка CPU. Таким образом, кристалл соприкасается лишь с частью площадки теплорассеивателя. Функция теплорассеивателя заключается в том, чтобы распределить тепло от кристалла на большую площадь, что позволяет далее отводить тепло к радиатору системы охлаждения.

Приведённая выше схема иллюстрирует два малоизвестных факта. Во-первых, производитель CPU наполняет промежуток между кристаллом и теплорассеивателем теплопроводным материалом. В то время как AMD, как некогда и Intel, заполняет промежуток припоем определённого типа, Intel теперь просто использует термопасту, которая имеет более высокое тепловое сопротивление, но, возможно, позволяет сэкономить пару копеек на себестоимости. Это является объяснением того, почему охлаждение разогнанных процессоров Intel стало намного более сложной задачей после перехода на архитектуру Ivy Bridge.

Теплорассеиватель, хот-спот и далеко идущие последствия

На представленном выше чертеже также видно, что из-за разницы в размерах между кристаллом CPU и теплорассеивателем на последнем имеются некоторые области, которые будут нагреваться меньше, чем те, которые расположены непосредственно над кристаллом. Область над кристаллом называется хот-спот (hot spot) , так как она нагревается непосредственно от находящегося под ней кристалла. На двух представленных ниже изображениях показано, что представляют собой хот-споты, хотя и в крайне упрощённом виде. В реальности всё не так просто: ядра CPU могут быть нагружены неравномерно, плюс также существует проблема встроенной графики, которая может использоваться более или менее активно, чем вычислительные ядра. Но давайте просто посмотрим, как расположен кристалл под площадкой теплорассеивателя при взгляде сверху.


Intel (Core i7-3770K)


AMD (FX-8350)

Благодаря передовой 22-нм технологии производства процессоры Intel имеют меньшую площадь хот-спота, чем процессоры AMD, и это необходимо учитывать при выборе радиатора. В конце концов, вам требуется в первую очередь отводить тепло от хот-спота.

Преимущества и недостатки DHT-кулеров

В последнее время популярны кулеры CPU, оснащённые открытыми теплоотводными трубками с полированным плоским основанием. Такие решения, несомненно, позволяют сэкономить на себестоимости производства, а маркетинговые подразделения затем преподносят это покупателям как технологию, способствующую повышению эффективности охлаждения - DHT (Direct Heatpipe Touch).

Но у такой конструкции основания имеются и недостатки. Рассмотрим кулер, в котором используются четыре трубки, вроде Xigmatek Achilles, на представленном ниже изображении. Внешние теплоотводные трубки вообще не касаются хот-спота. Но и две внутренние трубки лишь частично покрывают узкую область хот-спота процессора Ivy Bridge. Усугубляет проблему тот факт, что кулер нельзя повернуть на 90 градусов.


Проблема кулеров с DHT-дизайном

Если бы мы могли поворачивать радиатор, то можно было бы несколько исправить ситуацию. Как правило, процессоры AMD не затронуты данной проблемой по причине большей площади кристалла и ориентации CPU на плате: в большинстве случаев, все теплоотводные трубки проходят вдоль прямоугольника хот-спота. Если вы хотите использовать кулер с технологией DHT в сочетании с последними процессорами Intel, остановите выбор на модели кулера с пятью трубками и постарайтесь избегать кулеров с большими зазорами между трубками, образующими основание кулера.

Промежуточные выводы

Просто выбрав кулер неподходящей конструкции, вы можете потерять больше тепловой эффективности, чем способно когда-либо вернуть большинство дорогих термопаст. Но есть и другие плохие новости. Давайте взглянем на то, что происходит между теплорассеивателем и радиатором.

Тест термопаст | Взаимодействие теплорассеивателя и радиатора

Неровные поверхности

Микроскоп позволяет убедиться, что ни поверхность теплорассеивателя, ни поверхность радиатора не являются действительно гладкими. Даже невооружённым глазом видно, что они шероховатые.

Если вы сложите две поверхности вместе, то только отдельные участки металлических поверхностей будут соприкасаться друг с другом. Без использования термопасты промежутки заполнит воздух. Но воздух не является хорошим теплопроводником. Скорее, на практике он выступает как термоизолятор. Таким образом, без термопасты большая часть конструкторских усилий, направленных на повышение эффективности систем охлаждения, будет потрачена впустую, так как тепло будет отводиться только на участках, где металлические поверхности примыкают друг к другу.

Призываем на помощь теплопроводящие материалы: пасты и накладки

Очевидно, что термоизолятор-воздух нужно заменить на какой-нибудь теплопроводник. Понятно, что любая термопаста, накладка или жидкий металл будут проводить тепло менее эффективно, чем две соприкасающиеся металлические поверхности. Таким образом, термоинтерфейс должен быть достаточно тонким, чтобы не увеличить тепловое сопротивление, но достаточно толстым, чтобы преодолеть несовершенство поверхностей теплорассеивателя и радиатора.

Тест термопаст | Различия в теплорассеивателях AMD и Intel

Выпуклые и вогнутые теплораспределители

Ещё хуже, что поверхность тепораспределителей не только недостаточно гладкая, но и не совсем плоская – это из-за метода изготовления. На следующей диаграмме схематически изображено данное проблемное явление:

Теплораспределители AMD чуть выше в центре, а Intel - по краям. С нашей точки зрения, подход AMD правильнее в плане охлаждения. Под давлением установленного радиатора системы охлаждения термоинтерфейс тоньше в той области, где требуется передать больше тепла. Таким образом, для процессоров Intel, возможно, потребуется чуть больше термопасты, и вам следует позаботиться о том, чтобы в центре не появилось какой-либо разновидности воздушной прослойки.

Как термопасты растекаются под давлением

На следующей картинке показано, как термопаста растекается в стороны при приложении давления. Позднее мы подробно обсудим взаимосвязь между текучестью пасты (насколько "жидкой" либо, наоборот, вязкой она является) и максимальным давлением от крепления радиатора. Сейчас просто отметим, что паста с низкой вязкостью больше подходит для способов установки, обеспечивающих низкое давление (например, при использовании стандартных защёлок типа push-pin от Intel), чем "тяжёлая" паста.

Технические спецификации теплового сопротивления термопасты не всегда позволяют нам заранее судить о практической эффективности конкретной комбинации процессора, пасты и системы охлаждения. Хороший радиатор может не работать должным образом из-за неподходящей термопасты. Правильно сочетая кулер и пасту, вы сможете достичь большего эффекта, нежели слепо отдавая предпочтение более дорогой пасте.

Тест термопаст | Правильный выбор пасты важнее, чем разница в цене

Поскольку термопаста - продукт с высокой рентабельностью, рынок переполнен различными продуктами. Хотя точный состав большинства паст держится в секрете, поиск в Google позволяет легко получить список типичных ингредиентов. Верхний предел температуры обычно составляет 150 °C, хотя некоторые пасты, по утверждениям производителя, выдерживают 300 °C и более.

Состав пасты определяет её теплопроводность, электрическую проводимость, степень вязкости и долговечность. Но из чего реально состоит паста? Основные компоненты - это оксид цинка и силикон, используемый в качестве связующего. Тем не менее, столь простые комбинации уже вряд ли можно встретить в продаже. Большинство производителей берут эти компоненты за основу и добавляют другие материалы, вроде алюминия. В случае, например, Prolimatech PK1 алюминий составляет 60-80% пасты, 15-20% приходится на оксид цинка, оставшиеся 12-20% - на силиконовое связующее вещество, а также антиокислительную добавку. Некоторые списки компонентов выглядят более загадочно. Например, наклейка на шприце DC1 от компании be quiet! неоднозначно указывает на содержание 60% оксида металла, 30% оксида цинка (на минуточку, с каких это пор цинк не является металлом?) и 10% силикона.

Некоторые пасты, вроде Arctic Silver 5, даже содержат серебро. Другие пасты сделаны на основе графита, вроде пасты профессионального класса WLPG 10 от Fischer Elektronik, отказавшейся от использования силикона и заявляющей об очень высокой теплопроводности (10,5 Вт/мК), но такие пасты намного сложнее в использовании и часто характеризуются высокой электропроводностью. Существует также класс паст, использующих наночастицы из углепластика (карбона), но они не подходят для большинства компьютерных энтузиастов по причине высокой электропроводности и цены. Число паст на основе меди на рынке сократилось, но если постараться, их ещё можно встретить в продаже.

Мы оставим более экзотические материалы, вроде жидкого металла и металлических накладок, для второй части нашей статьи. Использование продуктов с высокой электропроводностью не лишено доли риска, и мы не хотели бы вводить в смуту наших читателей на данном этапе обзора. Остановимся на том, что эти материалы предназначены для экспертного использования, и необходимо соблюдать некоторые требования для их безопасного использования.

Все пасты имеют нечто общее: независимо от их состава или цены, все они уступают по теплопроводности радиаторам и теплорассеивателям. Таким образом, термопаста - это всегда самое слабое звено в цепочке системы охлаждения, независимо от своей цены!

Тест термопаст | Нанесение термопасты

Философский вопрос: способ применения

Сложно выбрать технику нанесения пасты. Любой метод работает лишь тогда, когда количество и вязкость пасты абсолютно подходят для конкретного случая. В свете обсуждения проблемы хот-спотов, тем не менее, мы считаем, что размазывание пасты по всей поверхности процессора является довольно бессмысленным занятием и уходит в прошлое. Вместо этого необходимо сфокусироваться на особенностях CPU, его теплорассеивателя, радиатора, а также способе установки радиатора (учитывая уровень прикладываемого давления).

Кисти и пасты с низкой вязкостью

Жидкие пасты вроде Revoltec Thermal Grease Nano можно наносить с помощью кисточки, и, следовательно, они являются наиболее простыми в использовании. Но низкая вязкость достигается ценой высокого содержания силикона, что снижает теплопроводность пасты. Эти пасты обычно находились среди аутсайдеров в наших тестах тепловой производительности. Когда вы пытаетесь нанести полужидкую пасту с помощью кисти, вы обычно размазываете её слишком густым слоем, что также не оптимально.

Капля, колбаска или художественная роспись?

На наш взгляд, размазывание пасты по всей площадке CPU слишком утомительно и сопровождается риском нанести слишком много пасты и даже появления воздушных карманов. Кроме того, некоторые пасты просто не нуждаются в выравнивании. Чем больше вы пытаетесь выровнять поверхность слоя пасты, тем более неровным он становится.

Попытка размазать высоковязкую пасту с помощью кредитной карточки - неудачная затея. Вы потратите много времени, но не сможете получить тонкий, ровный слой. Можно надеть перчатки из латекса и использовать указательный палец. Но даже этот метод сохраняет значительный риск оставить избыток пасты, особенно если у вас не хватает практики. Чем выше вязкость, тем менее успешно вы можете предвидеть результат своих попыток "настенной живописи".

Полоса пасты

Если представить процессор под теплорессеивателем, может показаться разумным решение положить полосу пасты вдоль этой области. Но не наносите слишком большое количество. В противном случае паста будет растекаться по сторонам. Если используемая вами паста обладает высокой электропроводностью, можно почти не сомневаться, что это приведёт к повреждению "железа".

Если вы наносите пасту экономно, результат будет лучше. Не стоит сильно беспокоиться об областях без пасты по краям процессора - они всё равно не вносят большого вклада в отвод тепла. Если ваша система охлаждения оснащена бэкплейтом и оказывает большое давление, паста всё равно растечётся дальше. Как правило, чем ниже вязкость пасты и выше давление радиатора, тем большую поверхность заполнит паста.

Метод "капля" ("клякса") может использоваться и новичками, и опытными энтузиастами, и работает даже с высоковязкими пастами при наличии качественного кулера с высоким давлением на площадку CPU.

Не наносите слишком мало пасты, боясь переусердствовать. Термоинтерфейс может, в конечном итоге, не покрыть площадь хот-спота, что снизит эффективность теплоотвода и приведёт к перегреву CPU.

Также принимайте во внимание тип кулера. Радиатор от стороннего производителя с бэкплейтом, который ввинчивается снизу, позволит обойтись меньшим количеством пасты, чем стандартные крепления от AMD и Intel. При использовании высоковязкой пасты кулер должен обеспечивать большее давление, что позволяет взять больше пасты. Конечно, когда мы говорим "больше", мы имеем в виду "немного больше", так как количество пасты ни в коем случае не должно быть избыточным.

На приведённом выше изображении показано близкое к оптимальному распределение пасты: мы нанесли её тонким слоем, который полностью покрывает площадь кристалла. Так как паста не достигла краёв теплораспределителя, мы знаем, что не использовали слишком много пасты, и что в конечном итоге слой пасты не будет слишком толстым. Говорят, что капля пасты должна быть размером примерно с горошину, но не стоит придерживаться размеров горошины буквально. Диаметр должен составлять от 2,5 до 4 мм, но не больше! Иными словами, здесь более уместна аналогия с чечевичным зерном.

Последнее, но не менее важное: не паникуйте!

Производители процессоров также придерживаются философии "меньше - лучше", о чём свидетельствуют их штатные кулеры. Например, радиатор AMD касается лишь примерно 2/3 теплорассеивателя. Нанесённая трафаретным методом паста имеет высокую степень вязкости. Она почти твёрдая и не растекается к краям (давление радиатора на площадку CPU относительно невелико). Но этот метод, очевидно, получил благословление от самой компании AMD.

Почему мы упоминаем здесь о дешёвом боксовом кулере? Чтобы развеять ваши опасения и поощрить здоровую инициативу "сделай сам". Да, пару десятилетий назад у нас могло быть много опасений перед установкой стороннего кулера. А сейчас мы призываем наших читателей тщательно подготовиться, поверить в свои силы и осторожно установить кулер. Ничего плохого не случится!

Тест термопаст | Зачем мы тестируем каждую пасту на четырёх платформах?

При выборе четырёх тестовых платформ мы руководствовались пожеланиями наших читателей. Например, мы учли пожелание принять во внимание давление кулера. Мы исключили из тестирования систему на жидком азоте и сосредоточились на тестовых сценариях, которые вы можете оценить в реальной жизни. Например, мы используем популярные водяные системы с заводской сборкой, которые должны поддерживать температуру радиатора ниже 60 °C, воздушные кулеры премиум-класса с бэкплейтом, которые должны обеспечивать высокое давление, и рядовые бюджетные кулеры со стандартной установкой push-pin (которая обеспечивает умеренный уровень давления). Штатные кулеры подобного типа позволяют процессору нагреваться свыше 60 °C (AMD) и 80 °C (Intel).

В зависимости от вязкости и состава, не все пасты хорошо подходят для любого случая, и далеко не все из них годятся для новичков. Это предупреждение можно отнести и к случаю замены радиатора на графическом процессоре вашей видеокарты (данный случай мы отдельно разберём немного позднее).

Для начала, давайте взглянем на три системы, которые мы использовали для тестирования каждой термопасты:

Тестовая система 1: жидкостное охлаждение замкнутого цикла
Кулер Corsair H80i
Вентилятор Оригинальный вентилятор H80i, питание от нерегулируемого выхода 7 В
Процессор AMD FX-8350
Материнская плата Asus 990FX Sabertooth
Тестовая система 2: воздушный кулер с бэкплейтом
Кулер be quiet! Shadow Rock
Вентилятор Оригинальный вентилятор Shadow Rock, уровень скорости на 70%
Процессор Intel Core 2 Quad Q6600 (степпинг Q0) на частоте 2,66 ГГц
Материнская плата Gigabyte UP45-UD3LR
Тестовая система 3: боксовый кулер Intel (установка с помощью системы четырёх фиксаторов push- pin)
Кулер Боксовый кулер Intel
Вентилятор Оригинальный вентилятор Intel, уровень скорости на 80%
Процессор Intel Core 2 Duo E6850
Материнская плата Gigabyte UP45-UD3LR

Тестирование термопасты с графической картой

Этот случай стоит особняком, в связи с чем мы исключили из теста пасты с высокой электропроводностью и решения на основе жидкого металла в целях безопасности. Поскольку GPU не имеет теплораспределителя, но позволяет радиатору системы охлаждения непосредственно размещаться над кристаллом, мы не хотели, чтобы кто-либо рисковал устроить короткое замыкание.

Мы также использовали старую видеокарту, которая была удобна с точки зрения тестирования. Кулер данной карты был зафиксирован с помощью четырёх винтов, а скорость вентилятора можно было установить на постоянном значении. Кроме того, мы полагали, что старая карта может быть более устойчива к высоким температурам, которые планировали наблюдать в ходе теста. В конце концов, нам не хотелось бы, чтобы дешёвая паста привела к выходу из строя дорогой видеокарты последнего поколения. К счастью, размер кристалла GPU и температура поверхности всё ещё соответствуют уровню нынешних плат среднего ценового диапазона.

Циклы тестирования, длительность теста и настройки

Необходимо пояснить, как мы проводим измерения. Поскольку цифровой датчик температуры, встроенный в современные CPU, даёт нам лишь некалиброванное значение Tcore, мы использовали старый способ измерения температуры с помощью термодиода под теплорассеивателем. В процессорах, используемых в данном тесте, всё ещё применяется теплорассеиватель с припоем, поэтому эти значения должны быть достаточно точными. Мы приводим разницу между Tcase и температурой окружающей среды, так как последняя цифра не была столь постоянной, как нам мы хотелось видеть на протяжении всего тестирования.

В случае графической карты мы проводим данные по температуре в соответствии с показаниями GPU. Эта цифра не находилась под влиянием незначительных колебаний комнатной температуры.

Условия тестирования
Температура окружающей среды Около 22 °С (между 21 и 23 °С)
Результаты тестов CPU Приводится в °C как среднее значение разницы температур (Разница между температурой окружающей среды и показаниями датчика под теплорассеивателем).
Результаты тестов GPU Приводится в °C в соответствии с датчиком температуры GPU
Циклы тестирования CPU 1 х 4 часа в режиме разогрева, с последующим перерывом не менее двух часов 4х измерения в течение часа, с перерывами по часу Общее время тестирования не менее 16 часов на термопасту и кулер
Циклы тестирования GPU 1 х 4 часа прогрева, с последующим перерывом не менее двух часов 2х измерения в течение часа, с перерывами по 30 минут Общее время тестирования не менее 8,5 часов на одну термопасту

Тест термопаст | Ожидайте тесты термопаст во второй части обзора

Сводные тестовые таблицы термопаст Tom"s Hardware и вторая часть обзора

На основе этих четырёх конфигураций мы составили тестовую таблицу, включающую 20 термопаст. Эти тесты помогут определить, насколько много опыта требуют данные продукты, какое применение наилучшим образом подходит для каждой пасты и подходят ли эти пасты для использования в видеокартах.

Во второй части нашего обзора мы также затронем решения на базе жидкого металла и различные тепловые прокладки - оба этих случая требуют отдельного рассмотрения. Наконец, все протестированные продукты должны быть представлены читателям и показаны на фото. Иными словами, вторая часть обзора будет состоять не только из тестовых таблиц и графиков, но и включать краткое описание каждого протестированного продукта. И, разумеется, мы выделим несколько продуктов, заслуживших рекомендацию от THG.

Правда ли "очень дорого" всегда означает "очень хорошо"? Ждите продолжения статьи, и в ближайшее время мы дадим ответ и на этот вопрос.

Видеокарта и процессор, пожалуй, являются наиболее горячими комплектующими в среднестатистической системе. Поэтому первым делом нужно обеспечить этим комплектующим качественное охлаждение, особенно это актуально в жаркую летнюю пору.

Качественное охлаждение, будет начинаться с хорошего отвода горячего воздуха из системного блока, посредством вентиляторов на стенках корпуса, также сюда входят кулеры процессора и видеокарты , которые охлаждают радиаторы, а те в свою очередь отводят тепло от чипов с помощью термоинтерфейса, которым и является термопаста.

Вот мы и добрались по цепочке зависимости до самого понятия термопаста для процессора, о котором мы и будем говорить на протяжении всей статьи. И не только о понятии термопасты, а и о том как наносить термопасту на процессор .

Что такое термопаста? И для чего она нужна?

Казалось бы, ответы на данные вопросы достаточно простые, но вот когда дело доходит до подробного рассмотрения, то сразу возникает множество неясностей. Ведь если бы все «звезды ютуба», которые размещают там ролики по якобы правильному нанесению термопасты, были осведомлены в этом вопросе, то точно бы не выдавливали полтюбика на процессор, а остальные - на радиатор:)

Начнём со скучного определения, увы, без него никак. Термопаста (теплопроводная паста) – это многокомпонентное вещество, которое находится в пластичном состоянии и имеет высокую теплопроводность. Используется данное вещество для уменьшения теплового сопротивления между прикасающимися поверхностями.

Если говорить более просто и приближенно к тематике центральных и графических процессоров , то термопаста – это паста, которой мы заполняем неровности поверхности процессора и радиатора. Несмотря на то, что их поверхности и кажутся абсолютно ровными, там присутствуют микротрещины и впадины, которые и создают воздушную подушку, а она в свою очередь мешает эффективному отводу тепла. Именно относительно назначения термопасты и формируется необходимая толщина наносимого слоя. Но об этом мы поговорим немного позже, а сейчас давайте рассмотрим очень неприятный процесс очищения поверхности центрального и графического процессора от термопасты. Пожалуй, будем рассматривать именно на показательном примере графического процессора, ибо на видеокартах термопасту меняют не так часто, как на центральных процессорах, хотя и там и там, процесс очистки абсолютно идентичен.

Очищение поверхности процессора и радиатора от засохшей термопасты

Когда вы с легкостью снимаете радиатор с кулером и видите там пластичное вещество, то можно сказать вам повезло. Термопасту в таком случае запросто можно удалить с помощью спирта и тряпочки, ну или чем-то подобным. Зачастую, в большинстве систем я наблюдаю вещество, далеко не пластичное, а радиатор от поверхности процессора приходится отдирать руками и ногами. Ну, ногами - это конечно же шутка, но со скрипом точно. Так вот когда мы (тем, кому с веществом повезло меньше), можно сказать разорвали процессор и радиатор (это следует делать крайне осторожно), то перед нашим взором появляется не что иное, как солидно засохшая термопаста. Удалить термопасту нужно так, чтобы не поцарапать поверхности процессора и радиатора, потому что это может негативно сказаться на температурном режиме, да и вообще на корректной работе, если речь идёт об исцарапанном процессоре.

Я видел много разных способов удаления именно присохшей термопасты, но выбрал для себя только один. Данный способ воплощается в жизнь с помощью обычной школьной резинки («стирачки») и крепких пальцев. Запасаемся терпением и трём-натираем площадку до блеска. Как по мне этот способ один из самых безопасных для поверхности радиатора и процессора. Единственное неудобство, в том, что тереть придётся довольно долго. Если уж совсем невмоготу, то можно помочь каким-нибудь другим предметов (вандалов с ножиками прошу отойти), например деревянной линейкой, и то лишь на поверхности радиатора, процессор всё-таки лучше до конца аккуратно затереть резинкой. И ещё одно, когда затираете центральный процессор, то доставать его из сокета не надо, ибо помрут его ножки страшной смертью.

На рис. 1 можно заметить солидные остатки термопасты на поверхности графического процессора, которые своей формой образуют целые «горы» в таких масштабах. И это учитывая то, что половина уже вычищена.

Рис.1

И не странно, что видеокарта солидно перегревалась. Ладно, не буду вспоминать «не злым тихим словом» людей, которые её наносили, а просто начну усилено тереть. Через пару минут горы были в прямом смысле «свёрнуты» и передо мной заблестела поверхность графического процессора рис. 2

Рис.2

Точно так же, на рис. 3 и 4 , наблюдается «прекрасное превращение» поверхности радиатора, с помощью резинки и деревянной линейки:


Рис.3


Рис.4

Нанесение термопасты

Важно уяснить тот факт, что термопасты для процессора нужно совсем немножко, буквально капельку размером со спичечную головку, а в случае нанесения термопасты на процессор видеокарты – ещё меньше. Да, конечно же, наша ментальность этого не позволяет, ведь если был приобретён тюбик термопасты, то чего ж добру пропадать-то? -нужно всю выдавить. Это делать ни в коем случае нельзя, так как теплопроводность даже самой дорогой термопасты, намного хуже, чем теплопроводность самого дешевого радиатора. Поэтому для того, чтобы не ухудшить охлаждение графического или центрального процессора , необходимо наносить термопасту очень тонким равномерным слоем (даже чтобы немного просвечивалось). Прежде всего, необходимо замазать микротрещины, а не создать сантиметровый слой «масла» между радиатором и процессором.

После того как поверхность была очищена от остатков термопасты, то необходимо взять немного этилового спирта и обезжирить поверхность (для этого хорошо подойдут палочки с ватой), хотя делать это не обязательно, но для большего эффекта всё же желательно. Далее необходимо выдавить из тюбика небольшое количество термопасты (именно на корпус процессора, смазываем только его) и аккуратно растираем её (для этого хорошо подойдёт пластиковая карточка). Нужно растирать термопасту равномерно по всей поверхности, чтобы нигде по углам не оставалось пропущенных областей. И ещё раз напоминаю: очень и очень тонким слоем!

Данная картинка, взятая на одном из специализированных форумов, наглядно демонстрирует правильность нанесения термопасты.

Когда вы нанесли термопасту, можно смело накрывать её радиатором, а затем хорошо прикрутить, чтобы поверхности плотно соприкасались.

Собственно, теперь вы, я думаю, четко разобрались с тем, как наносить термопасту на процессор. Хочу ещё раз обратить ваше внимание на то, что не нужно вестись на откровенно глупые ролики на ютубе, где товарищи с «ровными» руками наносят термопасту килограммами. Возможно, система и будет работать с таким обилием термоинтерфейса, но вот температурный режим будет в разы хуже, по сравнению с системой, где термопаста была нанесена правильно.

Холодных процессоров вам. Удачи!

Приветствую, дорогие читатели моего блога! Из сегодняшней публикации вы узнаете, сколько нужно грамм термопасты на процессор и чем чревато использование неправильного ее количества. Информация будет полезна всякому, кто собирает комп самостоятельно или решил заняться плановым обслуживанием «железа».

Что это такое и зачем оно надо

Термопаста – пластинчатое многокомпонентное вещество, обеспечивающее теплообмен между процессором и радиатором кулера (кстати, о выборе кулера для процессора вы можете почитать ).

Использование состава обосновано тем, что металлические детали, хотя прилегают и плотно, но отнюдь не идеально. Зазоры в несколько микрон заполнены воздухом, что сводит на нет любые попытки отведения лишнего тепла без использования дополнительной «прокладки».

Кроме центрального процессора, используется термопаста для отвода тепла от графического процессора – «мозга» видеокарты. Универсальную термопасту можно использовать для того, чтобы смазать обе детали.

Какие термопасты бывают

По физическим свойствам это вязкая плотная субстанция, по консистенции напоминающая чуть подтопленное сливочное масло (настоящее хорошее масло, а не суррогат из свежевыдоенного молока дикой пальмы).

Чаще всего термопаста серого цвета – производители специально делают ее такой, чтобы нанесенный слой был хорошо различим на поверхности процессора во время обслуживания.

О том, как правильно наносить термопасту на процессор компьютера, .

Теплопроводимость термопасты в десятки раз выше, чем у воздуха.

Это достигается добавлением в состав таких элементов:

  • Оксидов цинка и алюминия;
  • Нитридов алюминия и бора;
  • Серебра или вольфрама;
  • Графита;
  • Индия, галлия и их сплавов.

От доли компонентов в составе зависит и стоимость тюбика термопасты. И что характерно, состав самых крутых паст, демонстрирующих очень высокие показатели теплопроводности, производители почти всегда держат в секрете – точно так, как знаменитый шеф-повар вряд ли поделится своими фирменными рецептами.

Так сколько же ее нужно?

В граммах количество термопасты измеряют сами производители, обычно указывая эту цифру на тюбике. Естественно, юзер при нанесении термопасты никакими измерительными приборами (чего греха таить, обычно и защитными перчатками) не пользуется, отмеривая количество вещества на глаз.

В среднем, на один процессор требуется пару капель термопасты размером со спичечную головку – то есть от 2 до 4 грамм.

Скажу так: четырехграммового тюбика достаточно для планового обслуживания центрального процессора и чипа видеокарты. Если вы экономны и рука набита, такого тюбика может хватить и на два раза.

Можно ли обойтись без термопасты для компьютера

Можно, но недолго. При недостаточном теплоотводе процессор перегревается, что существенно увеличивает вероятность выхода его из строя. Это же может произойти, если переборщить с количеством термопасты – теплоотвод в этом случае также ухудшается, со всеми вытекающими.
Поэтому регулярная своевременная замена термопасты – залог стабильной, а главное, долгой работы процессора. Конечно, от неприятных сюрпризов никто не застрахован, но использование качественной пасты существенно снижает их вероятность.

И я не хотел об этом говорить, но озорной бесенок над левым плечом подсказывает, что информация может быть полезна некоторым читателям. Гарантированный способ «убить» процессор – удалить старую термопасту и не нанести новую.

Зачем это надо? Например, вы уже устали пользоваться тем древним монстром, который на заре цивилизации называли компьютером, но начальство (как вариант, родители или жена) никак не решатся на очередной апгрейд. Выход из строя процессора – отличный повод выделить деньги из бюджета на незапланированный ремонт. Не так ли?

Выбор редакции

Исходя из вышесказанного, я рекомендую использовать Arctic MX4 – универсальную термопасту средней ценовой категории. Отпускается она как раз в четырехграммовых шприцах, а теплопроводимости 8,5 Вт/мК «за глаза» хватит даже для самого мощного домашнего компа.

На этом я прощаюсь, дорогие читатели. Не забудьте моего блога и отдельное спасибо всем, кто делится публикациями в социальных сетях.

Из статьи вы узнаете, как часто надо менять термопасту на процессоре или видеокарте. Сколько времени она сохнет и что является признаком того, что пора приступать к замене.

Как часто нужно менять термопасту?

Ответ: зависит от марки термопасты. Если это КПТ-8 (старая, но надёжная) — то о замене можно не думать в ближайшие 4-5 года , после нанесения. Разумеется, если компьютер не был подвержен серьёзным перегревам, которые бы “высушили” её раньше срока.

Обладатели Arctic Cooling MX-3, могут забыть о замене на рекордное время в 8 лет ! По истечению такого срока, согласитесь, целесообразней заменить морально устаревшую деталь на новую, чем возиться с термопастой.

АлСил-3 так же, как и КПТ-8 имеет срок службы, не превышающий 5 лет , потом её следует обновить.

Изделия Thermalright имеет минимальный срок службы, равный всего 1 (!) году .

Количество нанесённой термопасты — так же играет роль.

Если между процессором и подошвой радиатора нанесено лишь мизерное её кол-во, то и высохнет она быстрее, это логично. С другой стороны, не рекомендую мазать её, аки масло на хлеб. Пользы не будет.

Предельные температуры — немаловажный фактор

Если процессор греется до, скажем, 60 градусов максимум — это одно. Но если он работает при температурах, граничащих с сотней — это совсееем другая история. В таких условиях всё что угодно высохнет. И произойдёт это значительно быстрее. Впрочем, найти числовые корреляции между температурой и высыханием мне не удалось, всё лишь “на глазок”.

Сколько сохнет термопаста?

Пожалуй, на этот вопрос мы ответили выше: играют роль:

а) нанесённые объёмы

б) температуры

в) марка изделия.

Напоследок: не ломайте голову над проблемой, пока компьютер не стал заметно . Определить это поможет .