Интерфейс tcp ip описание. Основы сетей и протоколов интернет

Введение в TCP/IP

Работа сети Internet основана на использовании семейства коммуникационных протоколов TCP/IP, что расшифровывается как Transmission Control Protocol/Internet Protocol (Протокол управления передачей данных/Протокол Internet). TCP/IP используется для передачи данных как в глобальной сети Internet, так и во многих локальных сетях. В этой главе кратко рассматриваются протоколы TCP/IP и применяемые в них способы управления передачей данных.

Разумеется, для работы с Internet в качестве пользователя не требуется никаких специальных знаний о протоколах TCP/IP, но понимание основных принципов поможет вам в решении возможных проблем общего характера, возникающих, в частности, при настройке системы электронной почты. TCP/IP также тесно связан с двумя другими базовыми приложениями Internet FTP и Telnet. Наконец, знание ряда основополагающих концепций Internet поможет вам в полной мере оценить степень сложности этой системы, подобно тому как представление о работе двигателя внутреннего сгорания помогает проникнуться уважением к устройству автомобиля.

Что такое TCP/IP

TCP/IP - это название семейства протоколов передачи данных в сети. Протокол - это набор правил, которых должны придерживаться все компании, чтобы обеспечить совместимость производимого аппаратного и программного обеспечения. Эти правила гарантируют, что машина фирмы Digital Equipment, работающая с пакетом TCP/IP, сможет общаться с PC Compaq, также работающим с TCP/IP. При соблюдении определенных стандартов для функционирования всей системы не имеет значения, кто является производителем программного обеспечения или аппаратных средств. Идеология открытых систем предполагает использование стандартных аппаратных средств и программного обеспечения. TCP/IP - открытый протокол, и это значит, что вся специальная информация о протоколе издана и может быть свободно использована.

Протокол определяет, каким образом одно приложение связывается с другим. Эта связь программного обеспечения подобна диалогу: "Я посылаю вам эту порцию информации, затем вы посылаете мне обратно то-то, потом я отправлю вам это. Вы должны сложить все биты и послать обратно общий результат, а если возникнут проблемы, вы должны послать мне соответствующее сообщение." Протокол определяет, как различные части полного пакета управляют передачей информации. Протокол указывает, содержит ли пакет сообщение электронной почты, статью телеконференции или служебное сообщение. Стандарты протокола сформулированы таким образом, что принимают во внимание возможные непредвиденные обстоятельства. Протокол также включает правила обработки ошибок.

Термин TCP/IP включает названия двух протоколов - Transmission Control Protocol (TCP) и Internet Protocol (IP). TCP/IP не является одной программой, как ошибочно полагают многие пользователи. Напротив, TCP/IP относится к целому семейству связанных между собой протоколов, разработанных для передачи информации по сети и одновременного обеспечения информацией о состоянии самой сети. TCP/IP является программным компонентом сети. Каждая часть семейства TCP/IP решает определенную задачу: отправление электронной почты, обеспечение удаленного обслуживания входа в систему, пересылку файлов, маршрутизацию сообщений или обработку сбоев в сети. Применение TCP/IP не ограничено глобальной сетью Internet. Это наиболее широко используемые во всем мире сетевые протоколы, применяемые как в крупных корпоративных сетях, так и в локальных сетях с небольшим числом компьютеров.

Как только что говорилось, ТСР/IР - не один протокол, а их семейство. Почему иногда употребляют термин ТСР/IР, хотя имеется в виду сервис, отличный от TCP или IP? Обычно общее название используют при обсуждении всего семейства сетевых протоколов. Однако некоторые пользователи, говоря о TCP/IP, имеют в виду лишь некоторые из протоколов семейства: они предполагают, что другая сторона в диалоге понимает, о чем конкретно идет речь. В действительности лучше называть каждый из сервисов своим именем, чтобы внести большую ясность в предмет разговора.

Компоненты TCP/IP

Различный сервис, включаемый в TCP/IP, и их функции могут быть классифицированы по типу выполняемых задач. Далее приводится описание групп протоколов и их назначение.

Транспорт н ые протоколы управляют передачей данных между двумя машинами.

TCP (Transmission Control Protocol). Протокол, поддерживающий передачу данных, осно­ванную на логическом соединении между посылающим и принимающим компьютерами.

UDP (User Datagram Protocol). Протокол, поддерживающий передачу данных без установ­ления логического соединения. Это означает, что данные посылаются без предварительного установления соединения между компьютерами получателя и отправителя. Можно провести аналогию с отправлением почты по какому-то адресу, когда нет никакой гарантии, что это сообщение прибудет к адресату, если он вообще существует. (Две машины соединены в том смысле, что обе подключены к Internet, но они не поддерживают связь между собой через логическое соединение.)

Протоколы маршрутизации обрабатывают адресацию данных и определяют наилучшие пути до адресата. Они также могут обеспечивать разбиение больших сообщений на несколько сообщений меньшей длины, которые затем последовательно передаются и компонуются в единое целое на компьютере-адресате.

IP (Internet Protocol). Обеспечивает фактическую передачу данных.

ICMP (Internet Control Message Protocol). Обрабатывает сообщения состояния для IP, например, ошибки и изменения в сетевых аппаратных средствах, которые влияют на маршрутизацию.

RIP (Routing Information Protocol). Один из нескольких протоколов, которые определяют наилучший маршрут доставки сообщения.

OSPF (Open Shortest Path First). Альтернативный протокол для определения маршрутов.

Поддержка сетевого адреса - это способ идентификации машины с уникальным номером и именем. (Более подробно об адресах см. ниже в этой главе.)

ARP (Address Resolution Protocol). Определяет уникальные числовые адреса машин в сети.

DNS (Domain Name System). Определяет числовые адреса по именам машин.

RARP (Reverse Address Resolution Protocol). Определяет адреса машин в сети, но способом, обратным ARP.

Прикладные сервисы - это программы, которые пользователь (или компьютер) использует для получения доступа к различным услугам. (Более подробно см. "Прикладные программы TCP/IP" позже в этой главе.)

ВООТР (Boot Protocol) загружает сетевую машину, читая информацию для начальной загрузки с сервера.

FTP (File Transfer Protocol) передает файлы между компьютерами.

TELNET обеспечивает удаленный терминальный доступ к системе, т. е. пользователь одного компьютера может соединяться с другим компьютером и чувствовать себя так, как будто он работает за клавиатурой удаленной машины.

Шлюзовые протоколы помогают передавать по сети сообщения о маршрутизации и информацию о состоянии сети, а также обрабатывать данные для локальных сетей. (Более подробно о шлюзовых протоколах см. "Шлюзовые протоколы" позже в этой главе.)

EGP (Exterior Gateway Protocol) служит для передачи маршрутизационной информации для внешних сетей.

GGP (Gateway-to-Gateway Protocol) служит для передачи маршрутизационной информации между шлюзами.

IGP (Interior Gateway Protocol) служит для передачи маршрутизационной информации для внутренних сетей.

NFS (Network File System) позволяет использовать каталоги и файлы удаленного компьютера так, как если бы они существовали на локальной машине.

NIS (Network Information Service) поддерживает в сети информацию о пользователях не­скольких компьютеров, упрощая вход в систему и проверку паролей.

RPC (Remote Procedure Call) позволяет удаленным прикладным программам связываться друг с другом простым и эффективным способом.

SMTP (Simple Mail Transfer Protocol) - это протокол, который передает сообщения электронной почты между машинами. SMTP обсуждается более подробно в гл. 13 "Как работает электронная почта в Internet."

SNMP (Simple Network Management Protocol) - протокол для администрирования, который посылает сообщения о состоянии сети и подключенных к ней устройств.

Все эти виды сервиса в совокупности составляют TCP/IP - мощное и эффективное семейство сетевых протоколов.

Числовой адрес компьютера

Каждая машина, которая подключена к Internet или любой другой TCP/IP-сети, должна быть уникально идентифицирована. Без уникального идентификатора сеть не знает, как доставить сообщение для вашей машины. Если один и тот же идентификатор окажется у нескольких компьютеров, то сеть не сможет адресовать сообщение.

В Internet компьютеры сети идентифицируются путем назначения Internet-адреса или, более правильно, IP-адреса. IP-адреса всегда имеют длину 32 бита и состоят из четырех частей по 8 бит. Это значит, что каждая часть может принимать значение в пределах от 0 до 255. Четыре части объединяют в запись, в которой каждое восьмибитовое значение отделяется точкой. Например, 255.255.255.255 или 147.120.3.28 - это два IP-адреса. Когда речь идет о сетевом адресе, то обычно имеется в виду IP-адрес.

Если бы использовались все 32 бита в IP-адресе, то получилось бы свыше четырех миллиардов возможных адресов - более чем достаточно для будущего расширения Internet! Однако некоторые комбинации битов зарезервированы для специальных целей, что уменьшает число потенциальных адресов. Кроме того, 8-битные четверки сгруппированы специальными способами в зависимости от типа сети, так что фактическое число возможных адресов еще меньше.

IP-адреса назначаются не по принципу перечисления хостов в сети -1, 2, 3, ... На самом деле IP-адрес как бы состоит из двух частей: адреса сети и адреса хоста в этой сети. Благодаря такой структуре IP-адреса компьютеры в разных сетях могут иметь одинаковые номера. Поскольку адреса сетей различны, то компьютеры идентифицируются однозначно. Без такой схемы нумерация быстро становится очень неудобной.

IP-адреса выделяются в зависимости от размеров организации и типа ее деятельности. Если это небольшая организация, то скорее всего в ее сети немного компьютеров (и, следовательно, IP-адресов). Напротив, у большой корпорации могут быть тысячи компьютеров, объединенных в несколько соединенных между собой локальных сетей. Для обеспечения максимальной гибкости IP-адреса выделяются в зависимости от количества сетей и компьютеров в организации и разделяются на классы А, В и С. Еще существуют классы D и Е, но они используются для специфических целей.

Три класса IP-адресов позволяют распределять их в зависимости от размера сети организации. Так как 32 бита - допустимый полный размер IP-адреса, то классы разбивают четыре 8-битные части адреса на адрес сети и адрес хоста в зависимости от класса. Один или несколько битов зарезервированы в начале IP-адреса для идентификации класса.

Адреса класса А - числа между 0 и 127

Адреса класса В - числа между 128 и 191

Адреса класса С - числа между 192 и 223

Если IP-адрес вашей машины - 147.14.87.23, то вы знаете, что ваша машина находится в сети класса В, сетевой идентификатор - 147.14, а уникальный номер вашей машины в этой сети - 87.23. Если IP-адрес - 221.132.3.123, то машина находится в сети класса С с сетевым идентификатором 221.132.3 и идентификатором хоста 123.

Всякий раз, когда посылается сообщение какому-либо хост-компьютеру в Internet, IP-адрес используется для указания адреса отправителя и получателя. Конечно, вам не придется самому запоминать все IP-адреса, так как для этого существует специальный сервис TCP/IP, называемый Domain Name System (Доменная система имен).

Доменные имена

Когда компания или организация хочет использовать Internet, то нужно принять решение; либо самим непосредственно подключаться к Internet, либо возложить решение всех вопросов подключения на другую компанию, называемую сервис-провайдером. Большинство компаний выбирают второй путь, чтобы уменьшить количество оборудования, снять вопросы администрирования и снизить общие затраты.

Если компания решила непосредственно подключиться к Internet (а иногда и при подключении через сервис-провайдера), может возникнуть желание получить для себя уникальный идентификатор. Например, корпорация АВС может захотеть получить адрес электронной почты в Internet, содержащий строку abc.com. Такой идентификатор, включающий название фирмы, позволяет отправителю определить компанию адресата.

Чтобы получить один из этих уникальных идентификаторов, называемых доменным именем, ком­пания или организация посылает запрос в орган, который контролирует подключение к Internet - Network Information Center (InterNIC). Если InterNIC утверждает имя компании, то оно добавляется в базу данных Internet. Доменные имена должны быть уникальны, чтобы предотвратить коллизии.

Последняя часть доменного имени называется идентификатором домена верхнего уровня (например, .corn). Существуют шесть доменов верхнего уровня, установленных InterNIC:

Агра Идентификатор сети ARPANET

Corn Коммерческие компании

Edu Образовательные учреждения

Gov Правительственные учреждения или организации

Mil Военные учреждения

Org Организации, которые не относятся ни к одной из перечисленных категорий

Сервис WWW

World Wide Web (WWW, Всемирная паутина) - это новейший вид информационных услуг Internet, основанный на архитектуре клиент-сервер. В конце 80-х годов в CERN (Европейский центр физики элементарных частиц) начались работы по созданию информационного сервиса, который позволил бы любому пользователю легко найти и прочитать документы, размещенные на серверах в любой части Internet. Для этого был разработан стандартный формат документов, позволяющий наглядным образом представить информацию на дисплее компьютера любого типа, а также обеспечить возможность установки внутри одних документов ссылок на другие документы.

Хотя WWW был разработан с целью применения сотрудниками CERN, после того как этот вид сервиса был обнародован, его популярность стала расти необычайно быстро. Было разработано множество прикладных программ, используемых в качестве WWW-клиентов, т. е. обеспечивающих доступ к WWW-серверам и представление документов на экране. Имеется клиентское программное обеспечение, основанное как на графическом интерфейсе пользователя (одной из наиболее популярных является программа Mosaic), так и на эмуляции алфавитно-цифрового терминала (примером является программа Lynx). Большинство WWW-клиентов позволяют использовать их интерфейс и для доступа к другим видам сервиса Internet, таким как FTP и Gopher.

Документы, расположенные на WWW-серверах, представляют собой не просто текстовые документы в стандарте ASCII. Это ASCII-файлы, содержащие команды специального языка, названного HTML (HyperText Markup Language, Язык разметки гипертекста). Команды HTML позволяют структурировать документ, выделяя в нем логически различающиеся части текста (заголовки разных уровней, абзацы, перечисления и т. д.). В результате каждая из клиентских программ просмотра WWW может форматировать текст документа таким образом, чтобы наилучшим способом отобразить его на конкретном дисплее. Для придания документам большей выразительности текст обычно форматируется с использованием увеличенных размеров шрифта заголовков, применением полужирного и курсивного начертаний для важных терминов, выде­лением пунктов перечислений и т. д. Язык HTML позволяет также включать в документы иллюстративную графику, которая может быть отображена программами просмотра, основанными на использовании графического интерфейса пользователя.

Одним из самых важных свойств HTML является возможность включения в документ гипер­текстовых ссылок. Эти ссылки позволяют пользователю загрузить новый документ на свой компьютер, просто щелкнув указателем мыши в том месте экрана, где расположена ссылка. Любой документ может содержать ссылки на другие документы. Документ, на который указывает ссылка, может находиться как на том же WWW-сервере, что и исходный документ, так и на любом другом компьютере в Internet. Областью документа, используемой в качестве ссылки, может служить слово, группа слов, графическое изображение или даже заданный фрагмент изображения. Большинство программ просмотра WWW могут также обращаться к ресурсам других информационных сервисов, таких как FTP и Gopher. В дополнение к этому программы просмотра WWW позволяют работать с файлами мультимедиа, содержащими видео и звук, посредством использования программ поддержки мультимедиа, инсталлированных на локальном компьютере.

Введение. 1

Эталонная модель OSI 2

Анатомия модели TCP/IP. 4

Прикладной уровень . 4

Межхостовой уровень . 4

Межсетевой уровень . 4

Уровень сетевого доступа . 5

Преимущества TCP/IP. 5

Уровни и протоколы TCP / IP . 6

Модель TCP/IP. 6

Семейство протоколов TCP/IP. 6

Протокол IP. 7

Задачи протокола IP . 8

Протокол ТСР. 8

Задачи протокола ТСР . 8

Протокол UDP. 8

Задачи протокола UDP . 9

World Wide Web. 14

Заключение. 17

Приложение. 19

Список используемой литературы.. 20

Введение

В общем случае термин TCP/IP обозначает целое семейство протоколов: TCP (Transmission Control Protocol/Internet Protocol) для надежной доставки данных, UDP (User Datagram Protocol) для негарантированной доставки, IP (Internet Protocol) и других прикладных служб.

TCP/IP является открытым коммуникационным протоколом. Открытость означает, что он обеспечивает связь в любых комбинациях устройств независимо от того, насколько они различаются на физическом уровне.

Благодаря протоколу TCP/IP Интернет стал тем, чем он является сегодня. В результате Интернет произвел в нашем стиле жизни и работы почти такие же революционные изменения, как печатный станок, электричество и компьютер. Без популярных протоколов и служб – таких, как HTTP, SMTP и FTP – Интернет был бы просто большим количеством компьютеров, связанных в бесполезный клубок.

Протокол TCP/IP встречается повсеместно. Это семейство протоколов, благодаря которым любой пользователь с компьютером, модемом и договором, заключенным с поставщиком услуг Интернета, может получить доступ к информации по всему Интернету. Пользователи служб AOL Instant Messenger и ICQ (также принадлежащей AOL) получают и отправляют свыше 750 миллионов сообщений в день.

Именно благодаря TCP/IP каждый день благополучно выполняются многие миллионы операций – а возможно, и миллиарды, поскольку работа в Интернете отнюдь не ограничивается электронной почтой и обменом сообщениями. Более того, в ближайшее время TCP/IP не собирается сдавать свои позиции. Это стабильное, хорошо проработанное и достаточно полное семейство протоколов.

В своей курсовой работе я описываю общий обзор семейства протоколов TCP/IP, основные принципы их работы и задачи, краткая история World Wide Web и HTTP.

Эталонная модель OSI

Международная организация по стандартизации (ISO, International Organization for Standardization) разработала эталонную модель взаимодействия открытых систем (OSI, Open Systems Interconnection) в 1978/1979 годах для упрощения открытого взаимодействия компьютерных систем. Открытым называется взаимодействие, которое может поддерживаться в неоднородных средах, содержащих системы разных поставщиков. Модель OSI устанавливает глобальный стандарт, определяющий состав функциональных уровней при открытом взаимодействии между компьютерами.

Следует заметить, что модель настолько успешно справилась со своими исходными целями, что в настоящее время ее достоинства уже практически не обсуждаются. Существовавший ранее закрытый, интегрированный подход уже не применяется на практике, в наше время открытость коммуникаций является обязательной. Как ни странно, очень не многие продукты полностью соответствуют стандарту OSI. Вместо этого базовая многоуровневая структура часто адаптируется к новым стандартам. Тем не менее, эталонная модель OSI остается ценным средством для демонстрации принципов работы сети.

Эталонная модель TCP / IP

В отличие от эталонной модели OSI, модель ТСР/IP в большей степени ориентируется на обеспечение сетевых взаимодействий, нежели на жесткое разделение функциональных уровней. Для этой цели она признает важность иерархической структуры функций, но предоставляет проектировщикам протоколов достаточную гибкость в реализации. Соответственно, эталонная модель OSI гораздо лучше подходит для объяснения механики межкомпьютерных взаимодействий, но протокол TCP/IP стал основным межсетевым протоколом.

Гибкость эталонной модель TCP/IP по сравнению с эталонной моделью OSI продемонстрирована на рисунке.

Анатомия модели TCP/IP

Стек протоколов TCP/IP состоит из четырех функциональных уровней: прикладного, межхостового, межсетевого и уровня сетевого доступа.

Прикладной уровень

Прикладной уровень содержит протоколы удаленного доступа и совместного использования ресурсов. Хорошо знакомые приложения- такие, как Telnet, FTP, SMTP, HTTP и многие другие- работают на этом уровне и зависят от функциональности уровней, расположенных ниже в иерархии. Любые приложения, использующие взаимодействие в сетях IP (включая любительские и коммерческие программы), относятся к этому уровню модели.

Межхостовой уровень

К функциям этого уровня относится сегментирование данных в приложениях для пересылки по сети, выполнение математических проверок целостности принятых данных и мультиплексирование потоков данных (как передаваемых, так и принимаемых) для нескольких приложений одновременно. Отсюда следует, что межхостовой уровень располагает средствами идентификации приложений и умеет переупорядочивать данные, принятые не в том порядке.

В настоящее время межхостовой уровень состоит из двух протоколов: протокола управления передачей TCP и протокола пользовательских дейтаграмм UDP. С учетом того, что Интернет становится все более транзакционно-ориентированным, был определен третий протокол, условно названный протоколом управления транзакциями/передачей T/TCP (Transaction/Transmission Control Protocol). Тем не менее, в большинстве прикладных сервисов Интернета на межхостовом уровне используются протоколы TCP и UDP.

Межсетевой уровень

Межсетевой уровень IPv4 состоит из всех протоколов и процедур, позволяющих потоку данных между хостами проходить по нескольким сетям. Следовательно, пакеты, в которых передаются данные, должны быть маршрутизируемыми. За маршрутизируемость пакетов отвечает протокол IP (Internet Protocol).

Межсетевой уровень должен поддерживать маршрутизацию и функции управления маршрутами. Эти функции предоставляются внешними протоколами, которые называются протоколами маршрутизации. К их числу относятся протоколы IGP (Interior Gateway Protocols) и EGP (Exterior Gateway Protocols).

Уровень сетевого доступа

Уровень сетевого доступа состоит из всех функций, необходимых для физического подключения и передачи данных по сети. В эталонной модели OSI (Open Systems Interconnection) этот набор функций разбит на два уровня: физический и канальный. Эталонная модель TCP/IP создавалась после протоколов, присутствующих в ее названии, и в ней эти два уровня были слиты воедино, поскольку различные протоколы IP останавливаются на межсетевом уровне. Протокол IP предполагает, что все низкоуровневые функции предоставляются либо локальной сетью, либо подключением через последовательный интерфейс.

Преимущества TCP/IP

Протокол TCP/IP обеспечивает возможность межплатформенных сетевых взаимодействий (то есть связи в разнородных сетях). Например, сеть под управлением Windows NT/2000 может содержать рабочие станции Unix и Macintosh, и даже другие сети более низкого порядка. TCP/IP обладает следующими характеристиками:

o Хорошие средства восстановления после сбоев.

o Возможность добавления новых сетей без прерывания текущей работы.

o Устойчивость к ошибкам.

o Независимость от платформы реализации.

o Низкие непроизводительные затраты на пересылку служебных данных.

Уровни и протоколы TCP/ IP

Протоколы TCP и IP совместно управляют потоками данных (как входящими, так и исходящими) в сети. Но если протокол IP просто передает пакеты, не обращая внимания на результат, TCP должен проследить за тем, чтобы пакеты прибыли в положенное место. В частности, TCP отвечает за выполнение следующих задач:

o Открытие и закрытие сеанса.

o Управление пакетами.

o Управление потоком данных.

o Обнаружение и обработка ошибок.

Модель TCP/IP

Протокол TCP/IP обычно рассматривается в контексте эталонной модели, определяющей структурное деление его функций. Однако модель TCP/IP разрабатывалась значительно позже самого комплекса протоколов, поэтому она ни как не могла быть взята за образец при проектировании протоколов.

Семейство протоколов TCP/IP

Семейство протоколов IP состоит из нескольких протоколов, часто обозначаемых общим термином “TCP/IP”:

o IP – протокол межсетевого уровня;

o TCP – протокол межхостового уровня, обеспечивающий надежную доставку;

Большинство из нас знает TCP/IP как "клей", связующий Internet. Но не многие способны дать убедительное описание того, что этот протокол представляет собой и как работает. Итак, что же такое TCP/IP в действительности?

TCP/IP — это средство для обмена информацией между компьютерами, объединенными в сеть. Не имеет значения, составляют ли они часть одной и той же сети или подключены к отдельным сетям. Не играет роли и то, что один из них может быть компьютером Cray, а другой Macintosh. TCP/IP — это не зависящий от платформы стандарт, который перекидывает мосты через пропасть, лежащую между разнородными компьютерами, операционными системами и сетями. Это протокол, который глобально управляет Internet, и в значительной мере благодаря сети TCP/IP завоевал свою популярность.

Понимание TCP/IP главным образом подразумевает способность разбираться в наборах таинственных протоколов, которые используются главными компьютерами TCP/IP для обмена информацией. Давайте рассмотрим некоторые из этих протоколов и выясним, что составляет оболочку TCP/IP.

Основы TCP/IP

TCP/IP — это аббревиатура термина Transmission Control Protocol/Internet Protocol (Протокол управления передачей/Протокол Internet). В терминологии вычислительных сетей протокол — это заранее согласованный стандарт, который позволяет двум компьютерам обмениваться данными. Фактически TCP/IP не один протокол, а несколько. Именно поэтому вы часто слышите, как его называют набором, или комплектом протоколов, среди которых TCP и IP — два основных.

Программное обеспечение для TCP/IP, на вашем компьютере, представляет собой специфичную для данной платформы реализацию TCP, IP и других членов семейства TCP/IP. Обычно в нем также имеются такие высокоуровневые прикладные программы, как FTP (File Transfer Protocol, Протокол передачи файлов), которые дают возможность через командную строку управлять обменом файлами по Сети.

TCP/IP — зародился в результате исследований, профинансированных Управлением перспективных научно-исследовательских разработок (Advanced Research Project Agency, ARPA) правительства США в 1970-х годах. Этот протокол был разработан с тем, чтобы вычислительные сети исследовательских центров во всем мире могли быть объединены в форме виртуальной "сети сетей" (internetwork). Первоначальная Internet была создана в результате преобразования существующего конгломерата вычислительных сетей, носивших название ARPAnet, с помощью TCP/IP.

Причина, по которой TCP/IP столь важен сегодня, заключается в том, что он позволяет самостоятельным сетям подключаться к Internet или объединяться для создания частных интрасетей. Вычислительные сети, составляющие интрасеть, физически подключаются через устройства, называемые маршрутизаторами или IP-маршрутизаторами. Маршрутизатор — это компьютер, который передает пакеты данных из одной сети в другую. В интрасети, работающей на основе TCP/IP, информация передается в виде дискретных блоков, называемых IP-пакетами (IP packets) или IP-дейтаграммами (IP datagrams). Благодаря программному обеспечению TCP/IP все компьютеры, подключенные к вычислительной сети, становятся "близкими родственниками". По существу оно скрывает маршрутизаторы и базовую архитектуру сетей и делает так, что все это выглядит как одна большая сеть. Точно так же, как подключения к сети Ethernet распознаются по 48-разрядным идентификаторам Ethernet, подключения к интрасети идентифицируются 32-разрядными IP-адресами, которые мы выражаем в форме десятичных чисел, разделенных точками (например, 128.10.2.3). Взяв IP-адрес удаленного компьютера, компьютер в интрасети или в Internet может отправить данные на него, как будто они составляют часть одной и той же физической сети.

TCP/IP дает решение проблемы данными между двумя компьютерами, подключенными к одной и той же интрасети, но принадлежащими различным физическим сетям. Решение состоит из нескольких частей, причем каждый член семейства протоколов TCP/IP вносит свою лепту в общее дело. IP — самый фундаментальный протокол из комплекта TCP/IP — передает IP-дейтаграммы по интрасети и выполняет важную функцию, называемую маршрутизацией, по сути дела это выбор маршрута, по которому дейтаграмма будет следовать из пункта А в пункт B, и использование маршрутизаторов для "прыжков" между сетями.

TCP — это протокол более высокого уровня, который позволяет прикладным программам, запущенным на различных главных компьютерах сети, обмениваться потоками данных. TCP делит потоки данных на цепочки, которые называются TCP-сегментами, и передает их с помощью IP. В большинстве случаев каждый TCP-сегмент пересылается в одной IP-дейтаграмме. Однако при необходимости TCP будет расщеплять сегменты на несколько IP-дейтаграмм, вмещающихся в физические кадры данных, которые используют для передачи информации между компьютерами в сети. Поскольку IP не гарантирует, что дейтаграммы будут получены в той же самой последовательности, в которой они были посланы, TCP осуществляет повторную "сборку" TCP-сегментов на другом конце маршрута, чтобы образовать непрерывный поток данных. FTP и telnet — это два примера популярных прикладных программ TCP/IP, которые опираются на использование TCP.

Другой важный член комплекта TCP/IP — User Datagram Protocol (UDP, протокол пользовательских дейтаграмм), который похож на TCP, но более примитивен. TCP — "надежный" протокол, потому что он обеспечивает проверку на наличие ошибок и обмен подтверждающими сообщениями чтобы данные достигали своего места назначения заведомо без искажений. UDP — "ненадежный" протокол, ибо не гарантирует, что дейтаграммы будут приходить в том порядке, в котором были посланы, и даже того, что они придут вообще. Если надежность — желательное условие, для его реализации потребуется программное обеспечение. Но UDP по-прежнему занимает свое место в мире TCP/IP, и испльзуется во многих программах. Прикладная программа SNMP (Simple Network Management Protocol, простой протокол управления сетями), реализуемый во многих воплощениях TCP/IP, — это один из примеров программ UDP.

Другие TCP/IP протоколы играют менее заметные, но в равной степени важные роли в работе сетей TCP/IP. Например, протокол определения адресов (Address Resolution Protocol, ARP) ппреобразует IP-адреса в физические сетевые адреса, такие, как идентификаторы Ethernet. Родственный протокол — протокол обратного преобразования адресов (Reverse Address Resolution Protocol, RARP) — выполняет обеспечивает обратное действие, преобразуя физические сетевые адреса в IP-адреса. Протокол управления сообщениями Internet (Internet Control Message Protocol, ICMP) представляет собой протокол сопровождения, который использует IP для обмена управляющей информацией и контроля над ошибками, относящимися к передаче пакетов IP. Например, если маршрутизатор не может передать IP-дейтаграмму, он использует ICMP, с тем чтобы информировать отправителя, что возникла проблема. Краткое описание некоторых других протоколов, которые "прячутся под зонтиком" TCP/IP, приведено во врезке.

Краткое описание протоколов семейства TCP/IP с расшифровкой аббревиатур
ARP (Address Resolution Protocol, протокол определения адресов): конвертирует 32-разрядные IP-адреса в физические адреса вычислительной сети, например, в 48-разрядные адреса Ethernet.

FTP (File Transfer Protocol, протокол передачи файлов): позволяет передавать файлы с одного компьютера на другой с использованием TCP-соединений. В родственном ему, но менее распространенном протоколе передачи файлов — Trivial File Transfer Protocol (TFTP) — для пересылки файлов применяется UDP, а не TCP.

ICMP (Internet Control Message Protocol, протокол управляющих сообщений Internet): позволяет IP-маршрутизаторам посылать сообщения об ошибках и управляющую информацию другим IP-маршрутизаторам и главным компьютерам сети. ICMP-сообщения "путешествуют" в виде полей данных IP-дейтаграмм и обязательно должны реализовываться во всех вариантах IP.

IGMP (Internet Group Management Protocol, протокол управления группами Internet): позволяет IP-дейтаграммам распространяться в циркулярном режиме (multicast) среди компьютеров, которые принадлежат к соответствующим группам.

IP (Internet Protocol, протокол Internet): низкоуровневый протокол, который направляет пакеты данных по отдельным сетям, связанным вместе с помощью маршрутизаторов для формирования Internet или интрасети. Данные "путешествуют" в форме пакетов, называемых IP-дейтаграммами.

RARP (Reverse Address Resolution Protocol, протокол обратного преобразования адресов): преобразует физические сетевые адреса в IP-адреса.

SMTP (Simple Mail Transfer Protocol, простой протокол обмена электронной почтой): определяет формат сообщений, которые SMTP-клиент, работающий на одном компьютере, может использовать для пересылки электронной почты на SMTP-сервер, запущенный на другом компьютере.

TCP (Transmission Control Protocol, протокол управления передачей): протокол ориентирован на работу с подключениями и передает данные в виде потоков байтов. Данные пересылаются пакетами — TCP-сегментами, — которые состоят из заголовков TCP и данных. TCP — "надежный" протокол, потому что в нем используются контрольные суммы для проверки целостности данных и отправка подтверждений, чтобы гарантировать, что переданные данные приняты без искажений.

UDP (User Datagram Protocol, протокол пользовательских дейтаграмм): протокол, не зависящий от подключений, который передает данные пакетами, называемыми UDP-дейтаграммами. UDP — "ненадежный" протокол, поскольку отправитель не получает информацию, показывающую, была ли в действительности принята дейтаграмма.

Архитектура TCP/IP

Проектировщики вычислительных сетей часто используют семиуровневую модель ISO/OSI (International Standards Organization/Open Systems Interconnect, Международная организация по стандартизации/ Взаимодействие открытых систем), которая описывает архитектуру сетей. Каждый уровень в этой модели соответствует одному уровню функциональных возможностей сети. В самом основании располагается физический уровень, представляющий физическую среду, по которой "путешествуют" данные, — другими словами, кабельную систему вычислительной сети. Над ним имеется канальный уровень, или уровень звена данных, функционирование которого обеспечивается сетевыми интерфейсными платами. На самом верху размещается уровень прикладных программ, где работают программы, использующие служебные функции сетей.

На рисунке показано, как TCP/IP согласуется с моделью ISO/OSI. Этот рисунок также иллюстрирует уровневое строение TCP/IP и показывает взаимосвязи между основными протоколами. При переносе блока данных из сетевой прикладной программы в плату сетевого адаптера он последовательно проходит через ряд модулей TCP/IP. При этом на каждом шаге он доукомплектовывается информацией, необходимой для эквивалентного модуля TCP/IP на другом конце цепочки. К тому моменту, когда данные попадают в сетевую плату, они представляют собой стандартный кадр Ethernet, если предположить, что сеть основана именно на этом интерфейсе. Программное обеспечение TCP/IP на приемном конце воссоздает исходные данные для принимающей программы путем захвата кадра Ethernet и прохождения его в обратном порядке по набору модулей TCP/IP. (Один из наилучших способов разобраться во внутреннем устройстве TCP/IP стоит в использовании программы-"шпиона", чтобы найти внутри кадров, "пролетающих" по сети, информацию, добавленную различными модулями TCP/IP.)

Уровни сетей и протоколы TCP/IP

ISO/OSI TCP/IP _____________________________ __________________________ | Уровень прикладных программ | | | |_____________________________| | _________ _________ | _____________________________ | |Сетевая | |Сетевая | | Уровень | Уровень представления | | |программа| |программа| | прикладных |_____________________________| | |_________| |_________| | программ _____________________________ | | | Уровень сеанса | | | |_____________________________| |__________________________| | | _____________________________ _____|_____________|______ | Транспортный уровень | | TCP UDP | Транспортный |_____________________________| |_____|_____________|______| уровень | | _____________________________ _____|_____________|______ | Сетевой уровень | | | | | Сетевой |_____________________________| | ----> IP <--- | уровень |__________________________| _________ _____________________________ _______| Сетевая |________ | Уровень звена данных | | ARP<->| плата |<->RARP | Уровень |_____________________________| |_______|_________|________| звена | данных _____________________________ | | Физический уровень | _____________|______________ Физический |_____________________________| Кабельные соединения сети уровень

В левой части этой диаграммы показаны уровни модели ISO/OSI. Правая часть диаграммы иллюстрирует корреляцию TCP/IP с этой моделью.

Для иллюстрации роли, которую TCP/IP играет в вычислительных сетях в реальном мире, рассмотрим, что происходит, когда Web-браузер использует HTTP (HyperText Transfer Protocol, протокол передачи гипертекста) для извлечения страницы HTML-данных из Web-сервера, подключенного к Internet. Для формирования виртуального подключения к серверу браузер использует абстракцию программного обеспечения высокого уровня, называемую гнездом (socket). А чтобы извлечь страницу Web, он посылает на сервер команду GET HTTP, записывая ее в гнездо. Программное обеспечение гнезда, в свою очередь, применяет TCP для пересылки битов и байтов, составляющих команду GET на Web-сервер. TCP сегментирует данные и передает отдельные сегменты модулю IP, который пересылает сегменты в дейтаграммах на Web-сервер.

Если браузер и сервер работают на компьютерах, подключенных к различным физическим сетям (как это обычно бывает), дейтаграммы передаются от сети к сети до тех пор, пока не достигнут той, к которой физически подключен сервер. В конце концов дейтаграммы достигают пункта своего назначения и вновь собираются таким образом, чтобы Web-сервер, который считывает цепочки данных из своего гнезда, получал непрерывный поток данных. Для браузера и сервера данные, записанные в гнездо на одном конце, как по волшебству, "всплывают" на другом конце. Но между этими событиями происходят все виды сложных взаимодействий для создания иллюзии непрерывной передачи данных между вычислительными сетями.

Если вкратце, то это набор правил, которые регулируют «общение» компьютеров между собой по сети. Их существует около десятка, и каждый из них определяет правила передачи отдельного типа данных. Но для удобства в обращении их все объединяют в так называемый «стек», называя его именем самого важного протокола - протокола TCP/IP (Transmission Control Protocol и Internet Protocol). Слово ­­«стек» подразумевает, что все эти протоколы представляют собой как бы «стопку протоколов», в которой протокол верхнего уровня не может функционировать без протокола нижнего уровня.

Стек TCP/IP включает 4 уровня:

1. Прикладной - протоколы HTTP, RTP, FTP, DNS. Самый верхний уровень; отвечает за работу прикладных приложений, например почтовых сервисов, отображение данных в браузере и прочее.

2. Транспортный - протоколы TCP, UDP, SCTP, DCCP, RIP. Данный уровень протоколов обеспечивает правильное взаимодействие компьютеров между собой и является проводником данных между разными участниками сети.

3. Сетевой - протокол IP. Этот уровень обеспечивает идентификацию компьютеров в сети, раздавая каждому из них уникальный цифровой адрес.

4. Канальный - протоколы Ethernet, IEEE 802.11, Wireless Ethernet. Самый низкий уровень; он взаимодействует с физическим оборудованием, описывает среду передачи даннных и ее характеристики.

Следовательно, для отображения этой статьи ваш компьютер использует стек протоколов «HTTP - TCP - IP - Ethernet».

Как передается информация по интернету

Каждый компьютер в сети называется хостом и с помощью одноименного протокола получает уникальный IP-адрес. Этот адрес записывается в следующей форме: четыре числа от 0 до 255, разделенных точкой, например, 195.19.20.203. Для успешного обмена информацией по сети IP-адрес также должен включать номер порта. Поскольку информацией обмениваются не сами компьютеры, а программы, каждый тип программы должен также иметь собственный адрес, который и отображается в номере порта. Например, порт 21 отвечает за работу FTP, порт 80 - за работу HTTP. Общее количество портов у компьютера ограничено и равно 65536 с нумерацией от 0 до 65535. Номера портов от 0 до 1023 зарезервированы серверными приложениями, а нишу портов с 1024 по 65535 занимают клиентские порты, которыми программы вольны распоряжаться как угодно. «Клиентские порты» назначаются динамически.

Комбинация IP-адреса и номера порта называется «сокет» . В нем значения адреса и порта разделяются двоеточием, например, 195.19.20.203:110

Таким образом, чтобы удаленный компьютер с IP 195.19.20.203 получил электронную почту, нужно всего лишь доставить данные на его порт 110. А, поскольку, этот порт денно и нощно «слушает» протокол POP3 , который отвечает за прием электронных писем, значит дальнейшее — «дело техники».

Все данные по сети для удобства разбиваются на пакеты. Пакет - это файл размером 1-1,5 Мб, который содержит адресные данные отправителя и получателя, передаваемую информацию, плюс служебные данные. Разбиение файлов на пакеты позволяет намного снизить нагрузку на сеть, т.к. путь каждого из них от отправителя к получателю не обязательно будет идентичным. Если в одном месте в сети образуется «пробка», пакеты смогут ее оминуть, используя другие пути сообщения. Такая технология позволяет максимально эффективно использовать интернет: если какая-то транспортная часть его обрушится, информация сможет и дальше передаваться, но уже по другим путям. Когда пакеты достигают целевой компьютер, он начинает собирать их обратно в цельный файл, используя служебную информацию, которую они содержат. Весь процесс можно сравнить с неким большим паззлом, который, в зависимости от размеров передаваемого файла, может достигать воистину огромных размеров.

Как уже было сказано ранее, IP-протокол выдает каждому участнику сети, в том числе, сайтам уникальный числовой адрес. Однако запомнить миллионы IP-адресов никакому человеку не под силу! Поэтому был создан сервис доменных имен DNS (Domain Name System), который занимается тем, что переводит цифровые IP-адреса в буквенно-цифровые имена, которые гораздо легче запомнить. Например, вместо того, чтобы набирать каждый раз ужасное число 5.9.205.233, можно набрать в адресной строке браузера www.сайт.

Что же происходит, когда мы набираем в браузере адрес искомого сайта? С нашего компьютера отправляется пакет с запросом DNS-серверу на порт 53. Этот порт зарезервирован службой DNS, которая, обработав наш запрос, возвращает IP-адрес, соответствующий буквенно-цифровому имени сайта. После этого наш компьютер соединяется с сокетом 5.9.205.233:80 компьютера 5.9.205.233, на котором расположен HTTP-протокол, отвечающий за отображение сайтов в браузере, и посылает пакет с запросом на получение страницы www.сайт. Нам нужно установить соединение именно на 80-й порт, поскольку именно он соответствует Веб-серверу. Можно, при большом желании, указать 80-й порт и прямо в адресной строке браузера — http://www.сайт:80. Веб-сервер обрабатывает полученный от нас запрос и выдает несколько пакетов, содержащих текст HTML, который отображает наш браузер. В результате мы видим на экране главную страницу

Стек протоколов TCP/IP – это альфа и омега Интернета, и нужно не только знать, но также понимать модель и принцип работы стека.

Мы разобрались с классификацией, стандартами сетей и моделью OSI. Теперь поговорим о стеке, на базе которого построена всемирная система объединенных компьютерных сетей Интернет.

Модель TCP/IP

Изначально данный стек создавался для объединения больших компьютеров в университетах по телефонным линиям связи соединения «точка-точка». Но когда появились новые технологии, широковещательные (Ethernet) и спутниковые, возникла необходимость адаптировать TCP/IP, что оказалось непростой задачей. Именно поэтому наряду с OSI появилась модель TCP/IP.

Через модель описывается, как необходимо строить сети на базе различных технологий, чтобы в них работал стек протоколов TCP/IP.

В таблице представлено сравнение моделей OSI и TCP/IP. Последняя включает в себя 4 уровня:

  1. Самый нижний, уровень сетевых интерфейсов , обеспечивает взаимодействие с сетевыми технологиями (Ethernet, Wi-Fi и т. д.). Это объединение функций канального и физического уровней OSI.
  2. Уровень интернет стоит выше, и по задачам перекликается с сетевым уровнем модели OSI. Он обеспечивает поиск оптимального маршрута, включая выявление неполадок в сети. Именно на этом уровне работает маршрутизатор.
  3. Транспортный отвечает за связь между процессами на разных компьютерах, а также за доставку переданной информации без дублирования, потерь и ошибок, в необходимой последовательности.
  4. Прикладной объединил в себе 3 уровня модели OSI: сеансовый, представления и прикладной. То есть он выполняет такие функции, как поддержка сеанса связи, преобразование протоколов и информации, а также взаимодействие пользователя и сети.

Иногда специалисты пытаются объединить обе модели в нечто общее. Например, ниже приведено пятиуровневое представление симбиоза от авторов «Компьютерные сети» Э. Таненбаума и Д. Уэзеролла:

Модель OSI обладает хорошей теоретической проработкой, но протоколы не используются. С моделью TCP/IP все иначе: протоколы широко используются, но модель подходит исключительно для описания сетей на базе TCP/IP.

Не путайте их:

  • TCP/IP – это стек протоколов, представляющий собой основу Интернета.
  • Модель OSI (Базовая Эталонная Модель Взаимодействия Открытых Систем) подходит для описания самых разных сетей.

Стек протоколов TCP/IP

Рассмотрим каждый уровень более подробно.

Нижний уровень сетевых интерфейсов включает в себя Ethernet, Wi-Fi и DSL (модем). Данные сетевые технологии формально не входят в состав стека, но крайне важны в работе интернета в целом.

Основной протокол сетевого уровня – IP (Internet Protocol). Это маршрутизированный протокол, частью которого является адресация сети (IP-адрес). Здесь также работают такие дополнительные протоколы, как ICMP, ARRP и DHCP. Они обеспечивают работу сетей.

На транспортной уровне расположились TCP – протокол, обеспечивающий передачу данных с гарантией доставки, и UDP – протокол для быстрой передачи данных, но уже без гарантии.

Прикладной уровень – это HTTP (для web), SMTP (передача почты), DNS (назначение IP-адресам понятных доменных имен), FTP (передача файлов). Протоколов на прикладном уровне стека TCP/IP больше, но приведенные можно назвать самыми значимыми для рассмотрения.